Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)
Year of Publication
Document Types
1.  Sequencing and Functional Annotation of Avian Pathogenic Escherichia coli Serogroup O78 Strains Reveal the Evolution of E. coli Lineages Pathogenic for Poultry via Distinct Mechanisms 
Infection and Immunity  2013;81(3):838-849.
Avian pathogenic Escherichia coli (APEC) causes respiratory and systemic disease in poultry. Sequencing of a multilocus sequence type 95 (ST95) serogroup O1 strain previously indicated that APEC resembles E. coli causing extraintestinal human diseases. We sequenced the genomes of two strains of another dominant APEC lineage (ST23 serogroup O78 strains χ7122 and IMT2125) and compared them to each other and to the reannotated APEC O1 sequence. For comparison, we also sequenced a human enterotoxigenic E. coli (ETEC) strain of the same ST23 serogroup O78 lineage. Phylogenetic analysis indicated that the APEC O78 strains were more closely related to human ST23 ETEC than to APEC O1, indicating that separation of pathotypes on the basis of their extraintestinal or diarrheagenic nature is not supported by their phylogeny. The accessory genome of APEC ST23 strains exhibited limited conservation of APEC O1 genomic islands and a distinct repertoire of virulence-associated loci. In light of this diversity, we surveyed the phenotype of 2,185 signature-tagged transposon mutants of χ7122 following intra-air sac inoculation of turkeys. This procedure identified novel APEC ST23 genes that play strain- and tissue-specific roles during infection. For example, genes mediating group 4 capsule synthesis were required for the virulence of χ7122 and were conserved in IMT2125 but absent from APEC O1. Our data reveal the genetic diversity of E. coli strains adapted to cause the same avian disease and indicate that the core genome of the ST23 lineage serves as a chassis for the evolution of E. coli strains adapted to cause avian or human disease via acquisition of distinct virulence genes.
PMCID: PMC3584874  PMID: 23275093
2.  Escherichia coli Strain Nissle 1917 Ameliorates Experimental Colitis via Toll-Like Receptor 2- and Toll-Like Receptor 4-Dependent Pathways  
Infection and Immunity  2006;74(7):4075-4082.
Toll-like receptors (TLRs) are key components of the innate immune system that trigger antimicrobial host defense responses. The aim of the present study was to analyze the effects of probiotic Escherichia coli Nissle strain 1917 in experimental colitis induced in TLR-2 and TLR-4 knockout mice. Colitis was induced in wild-type (wt), TLR-2 knockout, and TLR-4 knockout mice via administration of 5% dextran sodium sulfate (DSS). Mice were treated with either 0.9% NaCl or 107 E. coli Nissle 1917 twice daily, followed by the determination of disease activity, mucosal damage, and cytokine secretion. wt and TLR-2 knockout mice exposed to DSS developed acute colitis, whereas TLR-4 knockout mice developed significantly less inflammation. In wt mice, but not TLR-2 or TLR-4 knockout mice, E. coli Nissle 1917 ameliorated colitis and decreased proinflammatory cytokine secretion. In TLR-2 knockout mice a selective reduction of gamma interferon secretion was observed after E. coli Nissle 1917 treatment. In TLR-4 knockout mice, cytokine secretion was almost undetectable and not modulated by E. coli Nissle 1917, indicating that TLR-4 knockout mice do not develop colitis similar to the wt mice. Coculture of E. coli Nissle 1917 and human T cells increased TLR-2 and TLR-4 protein expression in T cells and increased NF-κB activity via TLR-2 and TLR-4. In conclusion, our data provide evidence that E. coli Nissle 1917 ameliorates experimental induced colitis in mice via TLR-2- and TLR-4-dependent pathways.
PMCID: PMC1489743  PMID: 16790781
3.  Maternal transmission of immunity to Eimeria maxima: enzyme-linked immunosorbent assay analysis of protective antibodies induced by infection. 
Infection and Immunity  1994;62(4):1348-1357.
Vaccination of broiler chickens against Eimeria infection is problematic because of the need to ensure that birds are protected from the time of hatching. We have therefore investigated the feasibility of protecting hatchling broilers via maternal transfer of protective antibodies from hens to their offspring. Oral infection of broiler breeder hens with 20,000 sporulated Eimeria maxima oocysts caused production of antibodies which were passed into the egg yolk and subsequently to hatchlings. The level of specific antibodies in the yolks to unsporulated oocysts, sporulated oocysts, merozoites, and gametocytes was assessed by enzyme-linked immunosorbent assays. The levels in yolks of antibodies to all developmental stages peaked 3 to 4 weeks after infection of the hens. Groups of 10 hatchlings were challenged at 3 days of age by oral infection with 100 sporulated E. maxima oocysts. In the first experiment, the mean 4-day (days 6 to 9 post-infection) total number of oocysts excreted in the feces of chicks from eggs collected 3 weeks after infection of the hens was (0.6 +/- 0.4) x 10(6) (mean +/- standard error) compared with (9.9 +/- 1.4) x 10(6) for the progeny of uninfected hens, which represents a greater than 90% reduction. However, oocyst excretion by chicks from eggs collected 7 or 8 weeks after infection of the hens was only 47 or 68% lower than control values, reflecting declining levels of protective antibodies. In a second experiment, in which the hens were somewhat older and pretreated by intramuscular injection of saline in the emulsifying agent, Arlacel A, the period for which protective antibodies were transferred to hatchlings was prolonged. Thus, oocyst excretion by challenged hatchlings from eggs collected for an 8-week period after infection of the hens was more than 90% lower than oocyst excretion by control chicks, and even hatchlings of eggs collected 19 weeks after infection of the hens showed a 60% reduction in oocyst output. In both experiments, the levels of immunoglobulin G (IgG) antibodies to all developmental stages in yolks or hatchling sera were very strongly correlated with maternally derived immunity to E. maxima. In contrast, parasite-specific IgM or IgA was not detectable, either in egg yolk or egg white. These results demonstrate the ability of IgG antibodies to protect against E. maxima in poultry, thus raising the possibility of using protective maternally derived IgG antibodies to identify potentially protective parasite antigens and indicating the feasibility of using maternal immunization as a means for parasite control.
PMCID: PMC186285  PMID: 8132342
4.  Escherichia coli Nissle 1917 Distinctively Modulates T-Cell Cycling and Expansion via Toll-Like Receptor 2 Signaling  
Infection and Immunity  2005;73(3):1452-1465.
Although the probiotic Escherichia coli strain Nissle 1917 has been proven to be efficacious for the treatment of inflammatory bowel diseases, the underlying mechanisms of action still remain elusive. The aim of the present study was to analyze the effects of E. coli Nissle 1917 on cell cycling and apoptosis of peripheral blood and lamina propria T cells (PBT and LPT, respectively). Anti-CD3-stimulated PBT and LPT were treated with E. coli Nissle 1917-conditioned medium (E. coli Nissle 1917-CM) or heat-inactivated E. coli Nissle 1917. Cyclin B1, DNA content, and caspase 3 expression were measured by flow cytometry to assess cell cycle kinetics and apoptosis. Protein levels of several cell cycle and apoptosis modulators were determined by immunoblotting, and cytokine profiles were determined by cytometric bead array. E. coli Nissle 1917-CM inhibits cell cycling and expansion of peripheral blood but not mucosal T cells. Bacterial lipoproteins mimicked the effect of E. coli Nissle 1917-CM; in contrast, heat-inactivated E. coli Nissle 1917, lipopolysaccharide, or CpG DNA did not alter PBT cell cycling. E. coli Nissle 1917-CM decreased cyclin D2, B1, and retinoblastoma protein expression, contributing to the reduction of T-cell proliferation. E. coli Nissle 1917 significantly inhibited the expression of interleukin-2 (IL-2), tumor necrosis factor α, and gamma interferon but increased IL-10 production in PBT. Using Toll-like receptor 2 (TLR-2) knockout mice, we further demonstrate that the inhibition of PBT proliferation by E. coli Nissle 1917-CM is TLR-2 dependent. The differential reaction of circulating and tissue-bound T cells towards E. coli Nissle 1917 may explain the beneficial effect of E. coli Nissle 1917 in intestinal inflammation. E. coli Nissle 1917 may downregulate the expansion of newly recruited T cells into the mucosa and limit intestinal inflammation, while already activated tissue-bound T cells may eliminate deleterious antigens in order to maintain immunological homeostasis.
PMCID: PMC1064918  PMID: 15731043
5.  Maternal transmission of immunity to Eimeria maxima: western blot analysis of protective antibodies induced by infection. 
Infection and Immunity  1994;62(11):4811-4817.
Infection of breeding hens with Eimeria maxima induces production of parasite-specific antibodies which are transferred, via the egg yolk, to hatchling chicks. These antibodies (immunoglobulin G) are highly protective, mediating up to a 97% reduction in oocyst excretion in challenged hatchlings. However, the degree of maternally derived immunity transferred by the hens to their offspring declines with increasing time after infection of the hens. This decline in immunity is directly related to declining immunoglobulin G titers. However, sera from highly protected hatchlings recognize only a very few E. maxima proteins on Western blots (immunoblots). In particular, a 230-kDa protein band is outstanding for its association with maternally derived immunity to E. maxima in hatchlings. This band was excised from a sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) preparative gel of crude merozoite protein extract. The SDS-PAGE cutout was emulsified in Freund's adjuvant and injected, intramuscularly, into six breeding hens on two occasions, 2 weeks apart. Eggs were collected from these hens 28 to 39 days after the second injection, and the hatchlings from these eggs were challenged with 150 sporulated oocysts of E. maxima. Subsequent oocyst excretion in these hatchlings was, on average, 54% lower than oocyst excretion by control chicks but only 37% lower (significant at P < 0.05) than that by chicks from hens sham immunized with Freund's adjuvant. The latter result is apparently due to the ability of the adjuvant to induce production of antibodies which recognize Eimeria spp. and thereby transfer some degree of protection to hatchlings. These experiments indicate that protective, maternally derived immunoglobulin G antibodies may be useful for the identification of putative anticoccidial vaccine candidates.
PMCID: PMC303191  PMID: 7927759
6.  Production and characterization of monoclonal antibodies specific for Cryptococcus neoformans capsular polysaccharide. 
Infection and Immunity  1987;55(8):1895-1899.
Cryptococcus neoformans is surrounded by a capsular polysaccharide. There are at least four known serotypes of the polysaccharide. The objective of this study was to produce monoclonal antibodies (MAbs) that could be used to study the distribution of epitopes among the serotypes of C. neoformans. BALB/c mice were immunized with cryptococcal polysaccharides of serotype A or D that were coupled to sheep erythrocytes. Splenocytes were isolated, and hybridomas secreting MAbs specific for cryptococcal polysaccharides were isolated. Two hybridomas, designated MAbs 439 and 1255, were produced from mice immunized with serotype A polysaccharide. One hybridoma, designated MAb 302, was produced from mice immunized with serotype D polysaccharide. All three antibodies were of the immunoglobulin G1 isotype. MAb 302 showed a specificity for serotypes A and D in Ouchterlony diffusion, agglutination, and opsonophagocytosis assays. MAb 1255 was reactive with polysaccharides and cells of serotypes A, B, and D. MAb 439 was reactive with polysaccharides and cells of serotypes A, B, C, and D. The reactivity of these MAbs closely matched the distribution of epitopes among cryptococcal polysaccharides predicted in previous studies of polyclonal antibodies reactive with cryptococcal polysaccharides. The ability to produce a MAb against an epitope shared by all four serotypes may have value for the detection of cryptococcal antigens in body fluids.
PMCID: PMC260621  PMID: 2440810

Results 1-6 (6)