Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)
more »
Year of Publication
Document Types
author:(Liliane J dable)
1.  Complement Activation Selectively Potentiates the Pathogenicity of the IgG2b and IgG3 Isotypes of a High Affinity Anti-Erythrocyte Autoantibody 
By generating four IgG isotype-switch variants of the high affinity 34–3C anti-erythrocyte autoantibody, and comparing them to the IgG variants of the low affinity 4C8 anti-erythrocyte autoantibody that we have previously studied, we evaluated in this study how high affinity binding to erythrocytes influences the pathogenicity of each IgG isotype in relation to the respective contributions of Fcγ receptor (FcγR) and complement. The 34–3C autoantibody opsonizing extensively circulating erythrocytes efficiently activated complement in vivo (IgG2a = IgG2b > IgG3), except for the IgG1 isotype, while the 4C8 IgG autoantibody failed to activate complement. The pathogenicity of the 34–3C autoantibody of IgG2b and IgG3 isotypes was dramatically higher (>200-fold) than that of the corresponding isotypes of the 4C8 antibody. This enhanced activity was highly (IgG2b) or totally (IgG3) dependent on complement. In contrast, erythrocyte-binding affinities only played a minor role in in vivo hemolytic activities of the IgG1 and IgG2a isotypes of 34–3C and 4C8 antibodies, where complement was not or only partially involved, respectively. The remarkably different capacities of four different IgG isotypes of low and high affinity anti-erythrocyte autoantibodies to activate FcγR-bearing effector cells and complement in vivo demonstrate the role of autoantibody affinity maturation and of IgG isotype switching in autoantibody-mediated pathology.
PMCID: PMC2193744  PMID: 11901193
autoimmune hemolytic anemia; complement receptor; Fc receptor; IgG isotype; phagocytosis
2.  Modulation of receptor cycling by neuron-enriched endosomal protein of 21 kD 
The Journal of Cell Biology  2002;157(7):1197-1209.
Although correct cycling of neuronal membrane proteins is essential for neurite outgrowth and synaptic plasticity, neuron-specific proteins of the implicated endosomes have not been characterized. Here we show that a previously cloned, developmentally regulated, neuronal protein of unknown function binds to syntaxin 13. We propose to name this protein neuron-enriched endosomal protein of 21 kD (NEEP21), because it is colocalized with transferrin receptors, internalized transferrin (Tf), and Rab4. In PC12 cells, NEEP21 overexpression accelerates Tf internalization and recycling, whereas its down-regulation strongly delays Tf recycling. In primary neurons, NEEP21 is localized to the somatodendritic compartment, and, upon N-methyl-d-aspartate (NMDA) stimulation, the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor subunit GluR2 is internalized into NEEP21-positive endosomes. NEEP21 down-regulation retards recycling of GluR1 to the cell surface after NMDA stimulation of hippocampal neurons. In summary, NEEP21 is a neuronal protein that is localized to the early endosomal pathway and is necessary for correct receptor recycling in neurons.
PMCID: PMC2173541  PMID: 12070131
recycling; SNARE; transferrin; development; 1A75

Results 1-2 (2)