Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)
Year of Publication
Document Types
author:(Liliane J dable)
1.  The RFamide receptor DMSR-1 regulates stress-induced sleep in C. elegans 
eLife  null;6:e19837.
In response to environments that cause cellular stress, animals engage in sleep behavior that facilitates recovery from the stress. In Caenorhabditis elegans, stress-induced sleep(SIS) is regulated by cytokine activation of the ALA neuron, which releases FLP-13 neuropeptides characterized by an amidated arginine-phenylalanine (RFamide) C-terminus motif. By performing an unbiased genetic screen for mutants that impair the somnogenic effects of FLP-13 neuropeptides, we identified the gene dmsr-1, which encodes a G-protein coupled receptor similar to an insect RFamide receptor. DMSR-1 is activated by FLP-13 peptides in cell culture, is required for SIS in vivo, is expressed non-synaptically in several wake-promoting neurons, and likely couples to a Gi/o heterotrimeric G-protein. Our data expand our understanding of how a single neuroendocrine cell coordinates an organism-wide behavioral response, and suggest that similar signaling principles may function in other organisms to regulate sleep during sickness.
eLife digest
People often feel fatigued and sleepy when they are sick. Other animals also show signs of sleepiness when ill – they stop eating, move less, and are less responsive to changes in their environment. Sickness-induced sleep helps both people and other animals to recover, and many scientists believe that this type of sleep is different than nightly sleep.
Studies of sickness-induced sleep have made use of a simple worm with a simple nervous system. In this worm, a single nerve cell releases chemicals that cause the worm to fall asleep in response to illness. Animals exposed to one of these chemicals, called FLP-13, fall asleep even when they are not sick. As such, scientists would like to know which cells in the nervous system FLP-13 interacts with, what receptor the cells use to recognize this chemical, and whether it turns on cells that induce sleep or turns off the cells that cause wakefulness.
Now, Iannacone et al. show that FLP-13 likely causes sleep by turning down activity in the cells in the nervous system that promote wakefulness. The experiments sifted through genetic mutations to determine which ones cause the worms not to fall asleep when FLP-13 is released. This revealed that worms with a mutation that causes them to lack a receptor protein called DMSR-1 do not become sleepy in response to FLP-13. This suggests that DMSR-1 must be essential for FLP-13 to trigger sleep. About 10% of cells in the worm’s nervous system have the DMSR-1 receptor. Some of these neurons tell the worm to move forward or to forage around for food. The experiments also showed that FLP-13 is probably not the only chemical that interacts with the DMSR-1 receptor, but the identities of these other chemicals remain unknown.
Additional experiments are now needed to determine if sickness-induced sleepiness in humans and other mammals is triggered by a similar mechanism. If it is, then drugs might be developed to treat people experiencing fatigue associated with sickness as well as other unexplained cases of fatigue.
PMCID: PMC5241116  PMID: 28094002
sleep; sickness; neuropeptides; GPCR; RFamide; C. elegans
2.  Proteomic Alterations in B Lymphocytes of Sensitized Mice in a Model of Chemical-Induced Asthma 
PLoS ONE  2015;10(9):e0138791.
Introduction and Aim
The role of B-lymphocytes in chemical-induced asthma is largely unknown. Recent work demonstrated that transferring B lymphocytes from toluene diisocyanate (TDI)-sensitized mice into naïve mice, B cell KO mice and SCID mice, triggered an asthma-like response in these mice after a subsequent TDI-challenge. We applied two-dimensional difference gel electrophoresis (2D-DIGE) to describe the “sensitized signature” of B lymphocytes comparing TDI-sensitized mice with control mice.
Sixteen proteins were identified that were significantly up- or down-regulated in B lymphocytes of sensitized mice. Particularly differences in the expression of cyclophilin A, cofilin 1 and zinc finger containing CCHC domain protein 11 could be correlated to the function of B lymphocytes as initiators of T lymphocyte independent asthma-like responses.
This study revealed important alterations in the proteome of sensitized B cells in a mouse model of chemical-induced asthma, which will have an important impact on the B cell function.
PMCID: PMC4580316  PMID: 26398101
3.  Neuropeptide GPCRs in C. elegans 
Like most organisms, the nematode Caenorhabditis elegans relies heavily on neuropeptidergic signaling. This tiny animal represents a suitable model system to study neuropeptidergic signaling networks with single cell resolution due to the availability of powerful molecular and genetic tools. The availability of the worm’s complete genome sequence allows researchers to browse through it, uncovering putative neuropeptides and their cognate G protein-coupled receptors (GPCRs). Many predictions have been made about the number of C. elegans neuropeptide GPCRs. In this review, we report the state of the art of both verified as well as predicted C. elegans neuropeptide GPCRs. The predicted neuropeptide GPCRs are incorporated into the receptor classification system based on their resemblance to orthologous GPCRs in insects and vertebrates. Appointing the natural ligand(s) to each predicted neuropeptide GPCR (receptor deorphanization) is a crucial step during characterization. The development of deorphanization strategies resulted in a significant increase in the knowledge of neuropeptidergic signaling in C. elegans. Complementary localization and functional studies demonstrate that neuropeptides and their GPCRs represent a rich potential source of behavioral variability in C. elegans. Here, we review all neuropeptidergic signaling pathways that so far have been functionally characterized in C. elegans.
PMCID: PMC3527849  PMID: 23267347
nematoda; Caenorhabditis elegans; G protein-coupled receptor; neuropeptidergic signaling; GPCR deorphanization
4.  Phenotypic and Genome-Wide Analysis of an Antibiotic-Resistant Small Colony Variant (SCV) of Pseudomonas aeruginosa 
PLoS ONE  2011;6(12):e29276.
Small colony variants (SCVs) are slow-growing bacteria, which often show increased resistance to antibiotics and cause latent or recurrent infections. It is therefore important to understand the mechanisms at the basis of this phenotypic switch.
Methodology/Principal Findings
One SCV (termed PAO-SCV) was isolated, showing high resistance to gentamicin and to the cephalosporine cefotaxime. PAO-SCV was prone to reversion as evidenced by emergence of large colonies with a frequency of 10−5 on media without antibiotics while it was stably maintained in presence of gentamicin. PAO-SCV showed a delayed growth, defective motility, and strongly reduced levels of the quorum sensing Pseudomonas quinolone signal (PQS). Whole genome expression analysis further suggested a multi-layered antibiotic resistance mechanism, including simultaneous over-expression of two drug efflux pumps (MexAB-OprM, MexXY-OprM), the LPS modification operon arnBCADTEF, and the PhoP-PhoQ two-component system. Conversely, the genes for the synthesis of PQS were strongly down-regulated in PAO-SCV. Finally, genomic analysis revealed the presence of mutations in phoP and phoQ genes as well as in the mexZ gene encoding a repressor of the mexXY and mexAB-oprM genes. Only one mutation occurred only in REV, at nucleotide 1020 of the tufA gene, a paralog of tufB, both encoding the elongation factor Tu, causing a change of the rarely used aspartic acid codon GAU to the more common GAC, possibly causing an increase of tufA mRNA translation. High expression of phoP and phoQ was confirmed for the SCV variant while the revertant showed expression levels reduced to wild-type levels.
By combining data coming from phenotypic, gene expression and proteome analysis, we could demonstrate that resistance to aminoglycosides in one SCV mutant is multifactorial including overexpression of efflux mechanisms, LPS modification and is accompanied by a drastic down-regulation of the Pseudomonas quinolone signal quorum sensing system.
PMCID: PMC3240657  PMID: 22195037
5.  UNC-108/RAB-2 and its effector RIC-19 are involved in dense core vesicle maturation in Caenorhabditis elegans 
The Journal of Cell Biology  2009;186(6):897-914.
Uncoordinated movement in Rab2 mutants is caused by impaired retention of cargo on dense core vesicles, not by defective synaptic vesicle release. (Also see the companion article by Edwards et al. in this issue.)
Small guanosine triphosphatases of the Rab family regulate intracellular vesicular trafficking. Rab2 is highly expressed in the nervous system, yet its function in neurons is unknown. In Caenorhabditis elegans, unc-108/rab-2 mutants have been isolated based on their locomotory defects. We show that the locomotion defects of rab-2 mutants are not caused by defects in synaptic vesicle release but by defects in dense core vesicle (DCV) signaling. DCVs in rab-2 mutants are often enlarged and heterogeneous in size; however, their number and distribution are not affected. This implicates Rab2 in the biogenesis of DCVs at the Golgi complex. We demonstrate that Rab2 is required to prevent DCV cargo from inappropriately entering late endosomal compartments during DCV maturation. Finally, we show that RIC-19, the C. elegans orthologue of the human diabetes autoantigen ICA69, is also involved in DCV maturation and is recruited to Golgi membranes by activated RAB-2. Thus, we propose that RAB-2 and its effector RIC-19 are required for neuronal DCV maturation.
PMCID: PMC2753160  PMID: 19797081
6.  Functional Characterization of Three G Protein-coupled Receptors for Pigment Dispersing Factors in Caenorhabditis elegans*S⃞ 
The Journal of Biological Chemistry  2008;283(22):15241-15249.
Here, we report the identification, cloning, and functional characterization of three Caenorhabditis elegans G protein-coupled pigment dispersing factor (PDF) receptors, which we designated as Ce_PDFR-1a, -b, and -c. They represent three splice isoforms of the same gene (C13B9.4), which share a high degree of similarity with the Drosophila PDF receptor and are distantly related to the mammalian vasoactive intestinal peptide receptors (VPAC2) and calcitonin receptors. In a reverse pharmacological screen, three bioactive C. elegans neuropeptides, which were recently identified as the Drosophila PDF orthologues, were able to activate these receptors in a dose-dependent manner with nanomolar potency (isoforms a and b). Integrated green fluorescent protein reporter constructs reveal the expression of these PDF receptors in all body wall muscle cells and many head and tail neurons involved in the integration of environmental stimuli and the control of locomotion. Using a custom data analysis system, we demonstrate the involvement of this newly discovered neuropeptide signaling system in the regulation of locomotor behavior. Overexpression of PDF-2 phenocopies the locomotor defects of a PDF-1 null mutant, suggesting that they elicit opposite effects on locomotion through the identified PDF receptors. Our findings strengthen the hypothesis that the PDF signaling system, which imposes the circadian clock rhythm on behavior in Drosophila, has been functionally conserved throughout the protostomian evolutionary lineage.
PMCID: PMC3258896  PMID: 18390545

Results 1-6 (6)