Search tips
Search criteria


Important Notice

PubMed Central Canada to be taken offline in February 2018

On February 23, 2018, PubMed Central Canada (PMC Canada) will be taken offline permanently. No author manuscripts will be deleted, and the approximately 2,900 manuscripts authored by Canadian Institutes of Health Research (CIHR)-funded researchers currently in the archive will be copied to the National Research Council’s (NRC) Digital Repository over the coming months. These manuscripts along with all other content will also remain publicly searchable on PubMed Central (US) and Europe PubMed Central, meaning such manuscripts will continue to be compliant with the Tri-Agency Open Access Policy on Publications.

Read more

Results 1-14 (14)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Combination of the toll like receptor agonist and α-Galactosylceramide as an efficient adjuvant for cancer vaccine 
DNA vaccines have emerged as an attractive approach for the generation of cytotoxic T lymphocytes (CTL). In our previous study, we found That Toll like receptor (TLR) ligands are promising candidates for the development of novel adjuvants for DNA vaccine. To improve the efficacy of DNA vaccine directed against human papillomavirus (HPV) tumors, we evaluated whether co-administration of a TLR4 ligand, monophosphoryl lipid A (MPL), and Natural Killer T Cell Ligand α-Galactosylceramide(α-GalCer) adjuvants with DNA vaccine would influence the anti-tumor efficacy of DNA vaccinations.
We investigated the effectiveness of α-GalCer and MPL combination as an adjuvant with an HPV-16 E7 DNA vaccine to enhance antitumor immune responses.
By using adjuvant combination for a DNA vaccine, we found that the levels of lymphocyte proliferation, CTL activity, IFN- γ, IL-4 and IL-12 responses, and tumor protection against TC-1 cells were significantly increased compared to the DNA vaccine with individual adjuvants.
In addition, inhibition of IL-18 signaling during vaccination decreased IFN-γ responses and tumor protection, and that this inhibition suggested stimulatory role of IL-18 in adjuvant effects of α-GalCer and MPL combination.
The strong adjuvanticity associated with α-GalCer/MPL combination may to be an important tool in the development of novel and strong cancer immunotherapy.
PMCID: PMC4727273  PMID: 26811064
Human Papilloma Virus; DNA vaccine; E7; Adjuvant combination; α-Galactosylceramide; MPL
2.  Comparison of Biological and Immunological Characterization of Lipopolysaccharides From Brucella abortus RB51 and S19 
Brucella abortus RB51 is a rough stable mutant strain, which has been widely used as a live vaccine for prevention of brucellosis in cattle instead of B. abortus strain S19. B. abortus lipopolysaccharide (LPS) has unique properties in comparison to other bacterial LPS.
In the current study, two types of LPS, smooth (S-LPS) and rough (R-LPS) were purified from B. abortus S19 and RB51, respectively. The aim of this study was to evaluate biological and immunological properties of purified LPS as an immunogenical determinant.
Materials and Methods:
Primarily, S19 and RB51 LPS were extracted and purified by two different modifications of the phenol water method. The final purity of LPS was determined by chemical analysis (2-keto-3-deoxyoctonate (KDO), glycan, phosphate and protein content) and different staining methods, following sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). C57BL/6 mice were immunized subcutaneously three times at biweekly intervals with the same amount of purified LPSs. The humoral immunity was evaluated by measuring specific IgG levels and also different cytokine levels, such as IFN-γ, TNF-α, IL-4 and IL-10, were determined for assessing T-cell immune response.
Biochemical analysis data and SDS-PAGE profile showed that the chemical nature of S19 LPS is different from RB51 LPS. Both S and R-LPS induce an immune response. T-cell immune response induced by both S and R-LPS had almost the same pattern whereas S19 LPS elicited humoral immunity, which was higher than RB51 LPS.
Purified LPS can be considered as a safe adjuvant and can be used as a component in prophylactic and therapeutic vaccines targeting infectious disease, cancer and allergies.
PMCID: PMC4741057  PMID: 26862376
Lipopolysaccharide; Immune System; Adjuvant; Brucella abortus
3.  Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression 
The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family such as calcium/calmodulin-dependent kinase II, which plays a crucial role in replication and pathogenesis of the virus. The aim of this study was to expression bovine rotavirus NSP4 gene in HEK293 cell and evaluation of its biological effect related to activation of calcium/calmodulin-dependent kinase II in cell culture.
Materials and Methods:
MA104 cells was used as a sensitive cell for propagation of virus and defined as a positive control. The NSP4 gene was amplified and inserted into an expression vector, and introduced as a recombinant plasmid into HEK293T cells. Western blot analysis was performed as a confirmation test for both expression of NSP4 protein and activation of calcium/calmodulin-dependent kinase II.
Expression of NSP4 and activated form of calcium/calmodulin-dependent kinase II were demonstrated by western blotting.
It was shown that the expression of biologically active full- length NSP4 protein in HEK293T cells may be associated with some biological properties such as calcium calmodulin kinase II activation, which was indicator of rotaviruses replication and pathogenesis.
PMCID: PMC4439455  PMID: 26019803
Calcium/calmodulin-dependent kinase II; Expression; Nonstructural protein 4 (NSP4); Rotavirus
4.  Evaluation of cellular responses for a chimeric HBsAg-HCV core DNA vaccine in BALB/c mice 
Fusion of Hepatitis B virus surface antigen (HBsAg) to a DNA construct might be considered as a strategy to enhance cellular and cytotoxic T-lymphocytes (CTL) responses of a Hepatitis C Virus core protein (HCVcp)-based DNA vaccine comparable to that of adjuvanted protein (subunit) immunization.
Materials and Methods:
pCHCORE vector harboring coding sequence of HBsAg and HCVcp (amino acids 2-120) in tandem within the pCDNA3.1 backbone was constructed. The corresponding recombinant HCVcp was also expressed and purified in Escherichia coli. Mice were immunized either by adjuvanted HCVcp (pluronic acid + protein) or by pCHCORE vector primed/protein boosted immunization regimen. The cellular immune responses (proliferation, In vivo CTL assay and IFN-γ/IL-4 ELISpot) against a strong and dominant H2-d restricted, CD8+-epitopic peptide (C39) (core 39-48; RRGPRLGVRA) of HCVcp were compared in immunized animals.
Proper expression of the fused protein by pCHCORE in transiently transfected HEK 293T cells and in the expected size (around 50 kDa) was confirmed by western blotting. The immunization results indicated that the pCHCORE shifted the immune responses pathway to Th1 by enhancing the IFN-γ cytokine level much higher than protein immunization while the proliferative and CTL responses were comparable (or slightly in favor of DNA immunization).
Fusion of HBsAg to HCVcp in the context of a DNA vaccine modality could augment Th1-oriented cellular and CTL responses toward a protective epitope, comparable to that of HCVcp (subunit HCV vaccine) immunization.
PMCID: PMC4300588  PMID: 25625119
Cytotoxic T-lymphocyte response; Deoxyribonucleic acid vaccine; ELISpot; Hepatitis C virus; HCV core protein; HBsAg
5.  Further Stimulation of Cellular Immune Responses through Association of HPV-16 E6, E7 and L1 Genes in order to produce more Effective Therapeutic DNA Vaccines in Cervical Cancer Model 
Cervical cancer has been shown to be highly associated with human papillomavirus (HPV) infection. The viral oncogenes E6 and E7 are constantly expressed by the tumor cells and are therefore potent targets for therapeutic genetic vaccination. In the present study, it was investigated the potential effect of HPV-16 E6, E7 and L1 co-administration to activate specific cytotoxic T lymphocytes in tumor mice models.
The HPV-16 E6, E7 and L1 genes from Iranian isolate were separately inserted into the mammalian expression vector, pcDNA3, to construct the DNA vaccine candidates. Tumor-bearing Animals (C57BL/6 mice) were immunized with the vaccine candidate; then, Lymphocyte Proliferation Assay (LPA) and relative tumor volume measurements were carried out in order to examine the immunological effects of the vaccine.
Obtained results showed that co-administration of the HPV-16 E6, E7 and L1 DNA induced HPV-16 specific cellular immune responses and also protected against TC-1-induced tumor in vivo compared with negative controls.
The results showed that mixed delivery systems might be valuable to improve the magnitude of the induced immune responses and confirmed therapeutic effects of HPV-16 E6, E7 through cytotoxic T lymphocyte induction and illustrate the new promising role for HPV-16 L1 CTL epitopes as a suitable CTL inducer.
PMCID: PMC4360347  PMID: 25821567
pcDNA3/E6; pcDNA3/E7; pcDNA3/L1; immunocellular responses
6.  Efficient Lentiviral Transduction of Adipose Tissue-Derived Mouse Mesenchymal Stem Cells and Assessment of Their Penetration in Female Mice Cervical Tumor Model 
Although the incidence of cervical cancer has reduced during last years, but it causes mortality among women. Many efforts have performed to develop new drugs and strategy for treatment of cervical cancer. Adipose Tissue-Derived mouse Mesenchymal Stem Cells (MSCs) has many advantages which make them a suitable choice as a cell therapeutic agent in cancer treatment. In this study, we aimed to develop an improved protocol for Mouse MSCs transduction as well as assess the homing capacity and incorporation of MSCs in cervical cancer model.
MScs were isolated from the mouse adipose tissue and characterized by differentiation and flow cytometry. In our study, lentiviral vector transductions of MSCs performed. Their penetrations were detected in tissue sections after injection of transduced MSCs to female C57BL/6 mice as a cervical cancer model.
Results showed that MSCs were efficiently transduced with lentiviral vector resulting in efficient tumor penetration.
The results provide evidence that MSCs were able to penetrate into the tumor mass of cervical tumor model and are good vehicles for gene transfer to cervical cancer.
PMCID: PMC4307105  PMID: 25628843
Lentivector; Adipose Tissue-Derived mouse Mesenchymal Stem Cells; cervical cancer; Transduction
7.  Characterization and Transferring of Human Rotavirus Double-Layered Particles in MA104 Cells 
Rotavirus (RV) is a major cause of gastroenteritis in infants and children and is one of the most severe public health problems. Rotaviruses outer layer contains two proteins including VP4 and VP7. These proteins are necessary for host-cell binding and penetration. TLP (triple layer virus particle) of RV is a complete infectious virion that binds to the target cells and internalized at the cytoplasm. The DLP (double layer virus particle) is a non-infectious particle that is formed through exclusion of the outer layer proteins including VP4 and VP7. These DLPs are the transcriptionally active forms of rotavirus.
The aim of this study was to transfer DLP of RV into cytoplasm of MA104 cells by Lipofectamine and to analyze their replication.
Materials and Methods:
Initially, rotavirus was purified by CsCl discontinuous gradient and DLP was separated from TLP based on density differences. For confirmation, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of the proteins were conducted Then the purified DLP of RV was transferred into MA104 cells using Lipofectamine.
We attempt to avoid the attachment and entry of the rotavirus by using Lipofectamine to mediate the delivery of viral particles directly into the cytoplasm. DLP was endocytosed into the cytoplasm following treatment by Lipofectamine and then replicated in cytoplasm.
Therefore the non-infectious DLPs were became infectious if introduced into the cytoplasm of permissive and cancerous cells, without passing attachment and entry process.
PMCID: PMC4217670  PMID: 25371799
Rotavirus; Transfection; Viral Plaque Assay
8.  Construction of Recombinant Bacmid Containing M2e-Ctxb and Producing the Fusion Protein in Insect Cell Lines 
Sequence variations in glycoproteins of influenza virus surface impel us to design new candidate vaccines yearly. Ectodomain of influenza M2 protein is a surface and highly conserved protein. M2e in influenza vaccines may eliminate the need for changing vaccine formulation every year.
In this study, a recombinant baculovirus containing M2e and cholera toxin subunit B fusion gene was generated with transposition process to express in large amounts in insect cell lines.
Materials and Methods:
M2e-ctxB fusion gene was created and cloned into pFastBac HT. The recombinant vector was transformed into DH10Bac cells to introduce the fusion gene into the bacmid DNA via a site-specific transposition process. The recombinant bacmid was then extracted from white colonies and further analyzed using PCR, DNA sequence analyzing, and indirect immunofluorescence assay.
PCR and DNA sequence analyzing results showed that the fusion gene was constructed as a single open reading frame and was successfully inserted into bacmid DNA. Moreover, indirect immunofluorescence results showed that the fusion gene was successfully expressed.
Baculovirus expression vector system is valuable to produce M2e based influenza vaccines due to its simple utilization and ease of target gene manipulation. The expressed protein in such systems can improve the evaluating process of new vaccination strategies.
PMCID: PMC3965861  PMID: 24719728
Influenza Vaccines; Baculovirus; Cholera Toxin Subunit B
9.  Human Papillomavirus Type16- L1 VLP Production in Insect Cells 
Objective(s): Infection by high-risk papillomavirus is regarded as the major risk factor in the development of cervical cancer. Recombinant DNA technology allows expression of the L1 major capsid protein of HPV in different expression systems, which has intrinsic capacity to self-assemble into viral-like particles (VLP). VLPS are non-infectious, highly immunogenic and can elicit neutralizing antibodies. VLP-based HPV vaccines can prevent persistent HPV infections and cervical cancer. In this study recombinant HPV-16 L1 protein was produced in Sf9 insect cells and VLP formation was confirmed.
Materials and Methods: Complete HPV-16 L1 gene was inserted into pFast HTa plasmid and transformed into DH10BAC Escherichia coli containing bacmid and helper plasmid. The recombinant Bacmid colonies turned to white and non-recombinant colonies harboring L1 gene remained blue in the presence of X-gal and IPTG in colony selection strategy. To confirm the recombinant bacmid production, PCR was applied using specific L1 primers. To produce recombinant baculovirus, the recombinant bacmid DNA was extracted and transfected into Sf9 cells using Cellfectin. The expression of L1 in Sf9 cells was identified through SDS-PAGE and western blot analysis using specific L1 monoclonal antibody. Self-assembled HPV16L-VLPs in Sf9 cells was confirmed by electron microscopy.
Results: The recombinant protein L1 was predominantly ~60 KD in SDS-PAGE with distinct immunoreactivity in western blot analysis and formed VLPS as confirmed by electron microscopy.
Conclusion: Application of recombinant baculovirus containing HPV-16 L1 gene will certainly prove to be a constructive tool in production of VLPs for prophylactic vaccine development as well as diagnostic tests.
PMCID: PMC3786099  PMID: 24106591
Baculovirus; Cervical cancer; HPV16- L1 VLP
10.  Determining Influenza Virus Shedding at Different Time Points in Madin-Darby Canine Kidney Cell Line 
Cell Journal (Yakhteh)  2013;15(2):130-135.
Monitoring of influenza virus shedding and optimization of multiplicities of infection (MOI) is important in the investigation of a virus one step growth cycle and for obtaining a high yield of virus in vaccine development and conventional basic diagnostic methods. However, eluted infectious viruses may still be present immediately after virus inoculation and when cells are washed following virus cultivation which may lead to a false positive virus infectivity assay.
Materials and Methods:
In this experimental study, we investigated influenza virus progeny production in Madin-Darby canine kidney (MDCK) cells with five different MOI at determined time points. The results were analyzed by end point titration tests and immunofluorescence assay.
Higher titers of eluted virus were observed following a high MOI inoculation of virus in cell culture. Most probably, this was the result of sialic acid residues from viral hemagglutin in proteins that were cleaved by neuraminidase glycoproteins on the surface of the influenza virus, which promoted viral spread from the host cell to the culture supernatant or during endocytosis, where viruses recycle to the cell surface by recycling endosomes which culminated in virus shedding without replication.
We demonstrated that the pattern of influenza virus progeny production was dose-dependent and not uniform. This production was influenced by several factors, particularly MOI. Understanding the exact features of viral particle propagation has a major impact in producing high virus yields in the development of vaccines. Use of lower MOI (0.01) could result in accurate, precise quantitative assays in virus diagnosis and titration methods.
PMCID: PMC3712773  PMID: 23862114
Influenza Virus; Virus Shedding; Endosome; MDCK Cells
11.  Reconstruction of H3N2 influenza virus based virosome in-vitro 
Iranian Journal of Microbiology  2013;5(2):166-171.
Background and Objectives
Virosomes are Virus Like Particles (VLP) assembled in-vitro. Influenza virosomes maintain the cell binding and membrane fusion activity of the wild type virus but are devoid of viral genetic material or internal proteins. Influenza virosomes mimic the natural antigen presentation route of the influenza virus.
Virosomes were prepared by membrane solubilization and reconstitution. Briefly, the Madine-Darby Canine kidney (MDCK) cell line was cultivated on microcarrier beads inoculated with influenza virus strain A/X-47 (H3N2). The culture medium was harvested and clarified. Subsequently, virus was concentrated and purified by ultrafiltration and ultracentrifugation. The purified viral membrane was dissolved by adding 375 µl of 200 mM 1, 2-dicaproyl-sn-glycero-3-phosphocholine (DCPC) in HEPES-buffered saline (HBS). Nucleocapsid was removed by ultracentrifugation. The supernatant consisting of phospholipids and glycoproteins of the influenza virus was reconstituted by removal of DCPC using overnight dialysis against Hank's Buffered Saline (HBS) solution at 4°C. After dialysis, crude virosome preparation was layered over a discontinuous sucrose gradient in order to separate non-incorporated material from the reconstituted virus membranes.
The virosome harvested from the boundary of the two sucrose layers successfully was identified by the Hemagglutination assay and western blotting.
Use of a dialyzable short-chain phospholipid (DCPC) is an efficient procedure for solubilization and reconstitution of influenza virus virosomes and has not caused structural changes in a major envelope glycoprotein (hemagglutinin protein) on the surface of virosome.
PMCID: PMC3696854  PMID: 23825736
Virosomes; Influenza virus; Reconstruction
12.  Localization of Herpes Simplex Virus Type 1 DNA in Latently Infected BALB/c Mice Neurons Using in situ Polymerase Chain Reaction 
Iranian Biomedical Journal  2010;14(3):83-88.
Background: Herpes simplex virus type-1 (HSV-1) establishes a lifelong latent infection in neurons following primary infection. The existence of latent HSV-1 DNA in the trigeminal ganglia of infected BALB/c mice was examined using a direct in situ PCR technique, based on Digoxigenin-11-dUTP detection system with anti-digoxigenin-peroxidase and 3,3'-diaminobenzidine (DAB) substrate. Methods: Eight-week-old male BALB/c mice were inoculated via the eye by 104 plaque forming unit of wild type Iranian isolates of HSV-1. After establishment of latency, trigeminal ganglia were removed and examined using in situ PCR to detect HSV-1 genome. Finally, the results of in situ PCR were verified by a two-round PCR method, using amplification cocktail of in situ reaction, as a template for a conventional gel base PCR. Results and Conclusion: The results suggest that a direct in situ PCR method using a peroxidase and DAB detection system is a useful means for detection of latent HSV-1 DNA in the latently infected ganglia.
PMCID: PMC3904058  PMID: 21079658
Herpes simplex virus-1; Latency; In situ PCR; two-round PCR; Trigeminal ganglia
13.  Recombinant λ-phage nanobioparticles for tumor therapy in mice models 
Lambda phages have considerable potential as gene delivery vehicles due to their genetic tractability, low cost, safety and physical characteristics in comparison to other nanocarriers and gene porters. Little is known concerning lambda phage-mediated gene transfer and expression in mammalian hosts. We therefore performed experiments to evaluate lambda-ZAP bacteriophage-mediated gene transfer and expression in vitro. For this purpose, we constructed recombinant λ-phage nanobioparticles containing a mammalian expression cassette encoding enhanced green fluorescent protein (EGFP) and E7 gene of human papillomavirus type 16 (λ-HPV-16 E7) using Lambda ZAP- CMV XR vector. Four cell lines (COS-7, CHO, TC-1 and HEK-239) were transduced with the nanobioparticles. We also characterized the therapeutic anti-tumor effects of the recombinant λ-HPV-16 E7 phage in C57BL/6 tumor mice model as a cancer vaccine. Obtained results showed that delivery and expression of these genes in fibroblastic cells (COS-7 and CHO) are more efficient than epithelial cells (TC-1 and HEK-239) using these nanobioparticles. Despite the same phage M.O.I entry, the internalizing titers of COS-7 and CHO cells were more than TC-1 and HEK-293 cells, respectively. Mice vaccinated with λ-HPV-16 E7 are able to generate potent therapeutic antitumor effects against challenge with E7- expressing tumor cell line, TC-1 compared to group treated with the wild phage. The results demonstrated that the recombinant λ-phages, due to their capabilities in transducing mammalian cells, can also be considered in design and construction of novel and safe phage-based nanomedicines.
PMCID: PMC2890663  PMID: 20459865
14.  Acute Morphine Administration Reduces Cell-Mediated Immunity and Induces Reactivation of Latent Herpes Simplex Virus Type 1 in BALB/c Mice 
Acute morphine administration is known to alter the course of herpes simplex virus infection. In this study, the effect of acute morphine administration on the reactivation of latent herpes was investigated in a mouse model. Because of the important role of cytolytic T lymphocyte (CTL) activity in the inhibition of herpes simplex virus type 1 (HSV-1) reactivation, the effect of acute morphine administration on CTL responses was also evaluated. Furthermore, lymphocyte proliferation and IFN-γ production were evaluated for their roles in the induction of the CTL response. The findings showed that acute morphine administration significantly reduced CTL responses, lymphocyte proliferation, and IFN-γ production. Furthermore, acute morphine administration has been shown to reactivate latent HSV-1. Previous studies have shown that cellular immune responses have important roles in the inhibition of HSV reactivation. These findings suggest that suppression of a portion of the cellular immune response after acute morphine administration may constitute one part of the mechanism that induces HSV reactivation.
PMCID: PMC4002647  PMID: 19403060
acute morphine; herpes simplex virus-1 reactivation; cell-mediated immunity

Results 1-14 (14)