Search tips
Search criteria


Important Notice

PubMed Central Canada to be taken offline in February 2018

On February 23, 2018, PubMed Central Canada (PMC Canada) will be taken offline permanently. No author manuscripts will be deleted, and the approximately 2,900 manuscripts authored by Canadian Institutes of Health Research (CIHR)-funded researchers currently in the archive will be copied to the National Research Council’s (NRC) Digital Repository over the coming months. These manuscripts along with all other content will also remain publicly searchable on PubMed Central (US) and Europe PubMed Central, meaning such manuscripts will continue to be compliant with the Tri-Agency Open Access Policy on Publications.

Read more

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Canadian Society of Allergy and Clinical Immunology annual scientific meeting 2016 
Alsayegh, Mohammad A. | Alshamali, Hanan | Khadada, Mousa | Ciccolini, Amanda | Ellis, Anne K. | Quint, Diana | Powley, William | Lee, Laurie | Fiteih, Yahya | Baksh, Shairaz | Vliagoftis, Harissios | Gerega, Sebastien K. | Millson, Brad | Charland, Katia | Barakat, Stephane | Sun, Xichun | Jimenez, Ricardo | Waserman, Susan | FitzGerald, Mark J. | Hébert, Jacques | Cognet-Sicé, Josiane | Renahan, Kevin E. | Huq, Saiful | Chooniedass, Rishma | Sawyer, Scott | Pasterkamp, Hans | Becker, Allan | Smith, Steven G. | Zhang, Shiyuan | Jayasundara, Kavisha | Tacon, Claire | Simidchiev, Alex | Nadeau, Gilbert | Gunsoy, Necdet | Mullerova, Hana | Albers, Frank | Kim, Young Woong | Shannon, Casey P. | Singh, Amrit | Neighbour, Helen | Larché, Mark | Tebbutt, Scott J. | Klopp, Annika | Vehling, Lorena | Becker, Allan B. | Subbarao, Padmaja | Mandhane, Piushkumar J. | Turvey, Stuart E. | Sears, Malcolm R. | Azad, Meghan B. | Loewen, Keely | Monchka, Barret | Mahmud, Salaheddin M. | Jong, Geert ‘t | Longo, Cristina | Bartlett, Gillian | Ducharme, Francine M. | Schuster, Tibor | MacGibbon, Brenda | Barnett, Tracie | North, Michelle L. | Brook, Jeff | Lee, Elizabeth | Omana, Vanessa | Thiele, Jenny | Steacy, Lisa M. | Evans, Greg | Diamond, Miriam | Sussman, Gordon L. | Amistani, Yann | Abiteboul, Kathy | Tenn, Mark W. | Yang, ChenXi | Carlsten, Christopher | Conway, Edward M. | Mack, Douglas | Othman, Yasmin | Barber, Colin M. | Kalicinsky, Chrystyna | Burke, Andrea E. | Messieh, Mary | Nair, Parameswaran | Che, Chun T. | Douglas, Lindsay | Liem, Joel | Duan, Lucy | Miller, Charlotte | Dupuis, Pascale | Connors, Lori A. | Fein, Michael N. | Shuster, Joseph | Hadi, Hani | Polk, Brooke | Raje, Nikita | Labrosse, Roxane | Bégin, Philippe | Paradis, Louis | Roches, Anne Des | Lacombe-Barrios, Jonathan | Mishra, Sanju | Lacuesta, Gina | Chiasson, Meredith | Haroon, Babar | Robertson, Kara | Issekutz, Thomas | Leddin, Desmond | Couban, Stephen | Connors, Lori | Roos, Adrienne | Kanani, Amin | Chan, Edmond S. | Schellenberg, Robert | Rosenfield, Lana | Cvetkovic, Anna | Woodward, Kevin | Quirt, Jaclyn | Watson, Wade T. A. | Castilho, Edson | Sullivan, Jennifer A. | Temple, Beverley | Martin, Donna | Cook, Victoria E. | Mills, Christopher | Portales-Casamar, Elodie | Fu, Lisa W. | Ho, Alexander | Zaltzman, Jeffrey | Chen, Lucy | Vadas, Peter | Gabrielli, Sofianne | Clarke, Ann | Eisman, Harley | Morris, Judy | Joseph, Lawrence | LaVieille, Sebastien | Ben-Shoshan, Moshe | Graham, François | Barnes, Charles | Portnoy, Jay | Stagg, Vincent | Simons, Elinor | Lefebvre, Diana | Dai, David | Mandhane, Piushkumar | Sears, Malcolm | Tam, Herman | Simons, F. Estelle R. | Alotaibi, Dhaifallah | Dawod, Bassel | Tunis, Matthew C. | Marshall, Jean | Desjardins, Marylin | Béland, Marianne | Lejtenyi, Duncan | Drolet, Jean-Phillipe | Lemire, Martine | Tsoukas, Christos | Noya, Francisco J.D. | Alizadehfar, Reza | McCusker, Christine T. | Mazer, Bruce D. | Maestre-Batlle, Danay | Gunawan, Evelyn | Rider, Christopher F. | Bølling, Anette K. | Pena, Olga M. | Suez, Daniel | Melamed, Isaac | Hussain, Iftikhar | Stein, Mark | Gupta, Sudhir | Paris, Kenneth | Fritsch, Sandor | Bourgeois, Christelle | Leibl, Heinz | McCoy, Barbara | Noel, Martin | Yel, Leman | Scott, Ori | Reid, Brenda | Atkinson, Adelle | Kim, Vy Hong-Diep | Roifman, Chaim M. | Grunebaum, Eyal | AlSelahi, Eiman | Aleman, Fernando | Oberle, Amber | Trus, Mike | Sussman, Gordon | Kanani, Amin S. | Chambenoi, Olivier | Chiva-Razavi, Sima | Grodecki, Savannah | Joshi, Nikhil | Menikefs, Peter | Holt, David | Pun, Teresa | Tworek, Damian | Hanna, Raphael | Heroux, Delia | Rosenberg, Elli | Stiemsma, Leah | Turvey, Stuart | Denburg, Judah | Mill, Christopher | Teoh, Timothy | Zimmer, Preeti | Avinashi, Vishal | Paina, Mihaela | Darwish Hassan, Ahmed A. | Oliveria, John Paul | Olesovsky, Chris | Gauvreau, Gail | Pedder, Linda | Keith, Paul K. | Plunkett, Greg | Bolner, Michelle | Pourshahnazari, Persia | Stark, Donald | Vostretsova, Kateryna | Moses, Andrew | Wakeman, Andrew | Singer, Alexander | Gerstner, Thomas | Abrams, Elissa | Johnson, Sara F. | Woodgate, Roberta L.
PMCID: PMC5390240
2.  Novel flow cytometry approach to identify bronchial epithelial cells from healthy human airways 
Scientific Reports  2017;7:42214.
Sampling various compartments within the lower airways to examine human bronchial epithelial cells (HBEC) is essential for understanding numerous lung diseases. Conventional methods to identify HBEC in bronchoalveolar lavage (BAL) and wash (BW) have throughput limitations in terms of efficiency and ensuring adequate cell numbers for quantification. Flow cytometry can provide high-throughput quantification of cell number and function in BAL and BW samples, while requiring low cell numbers. To date, a flow cytometric method to identify HBEC recovered from lower human airway samples is unavailable. In this study we present a flow cytometric method identifying HBEC as CD45 negative, EpCAM/pan-cytokeratin (pan-CK) double-positive population after excluding debris, doublets and dead cells from the analysis. For validation, the HBEC panel was applied to primary HBEC resulting in 98.6% of live cells. In healthy volunteers, HBEC recovered from BAL (2.3% of live cells), BW (32.5%) and bronchial brushing samples (88.9%) correlated significantly (p = 0.0001) with the manual microscopy counts with an overall Pearson correlation of 0.96 across the three sample types. We therefore have developed, validated, and applied a flow cytometric method that will be useful to interrogate the role of the respiratory epithelium in multiple lung diseases.
PMCID: PMC5292697  PMID: 28165060
3.  An inhaled dose of budesonide induces genes involved in transcription and signaling in the human airways: enhancement of anti‐ and proinflammatory effector genes 
Although inhaled glucocorticoids, or corticosteroids (ICS), are generally effective in asthma, understanding their anti‐inflammatory actions in vivo remains incomplete. To characterize glucocorticoid‐induced modulation of gene expression in the human airways, we performed a randomized placebo‐controlled crossover study in healthy male volunteers. Six hours after placebo or budesonide inhalation, whole blood, bronchial brushings, and endobronchial biopsies were collected. Microarray analysis of biopsy RNA, using stringent (≥2‐fold, 5% false discovery rate) or less stringent (≥1.25‐fold, P ≤ 0.05) criteria, identified 46 and 588 budesonide‐induced genes, respectively. Approximately two third of these genes are transcriptional regulators (KLF9, PER1, TSC22D3, ZBTB16), receptors (CD163, CNR1, CXCR4, LIFR, TLR2), or signaling genes (DUSP1, NFKBIA, RGS1, RGS2, ZFP36). Listed genes were qPCR verified. Expression of anti‐inflammatory and other potentially beneficial genes is therefore confirmed and consistent with gene ontology (GO) terms for negative regulation of transcription and gene expression. However, GO terms for transcription, signaling, metabolism, proliferation, inflammatory responses, and cell movement were also associated with the budesonide‐induced genes. The most enriched functional cluster indicates positive regulation of proliferation, locomotion, movement, and migration. Moreover, comparison with the budesonide‐induced expression profile in primary human airway epithelial cells shows considerable cell type specificity. In conclusion, increased expression of multiple genes, including the transcriptional repressor, ZBTB16, that reduce inflammatory signaling and gene expression, occurs in the airways and blood and may contribute to the therapeutic efficacy of ICS. This provides a previously lacking insight into the in vivo effects of ICS and should promote strategies to improve glucocorticoid efficacy in inflammatory diseases.
PMCID: PMC5242176  PMID: 28116096
Anti‐inflammatory; asthma; corticosteroid; gene expression; transactivation
4.  Cytokine-Induced Loss of Glucocorticoid Function: Effect of Kinase Inhibitors, Long-Acting β2-Adrenoceptor Agonist and Glucocorticoid Receptor Ligands 
PLoS ONE  2015;10(1):e0116773.
Acting on the glucocorticoid receptor (NR3C1), glucocorticoids are widely used to treat inflammatory diseases. However, glucocorticoid resistance often leads to suboptimal asthma control. Since glucocorticoid-induced gene expression contributes to glucocorticoid activity, the aim of this study was to use a 2×glucocorticoid response element (GRE) reporter and glucocorticoid-induced gene expression to investigate approaches to combat cytokine-induced glucocorticoid resistance. Pre-treatment with tumor necrosis factor-α (TNF) or interleukin-1β inhibited dexamethasone-induced mRNA expression of the putative anti-inflammatory genes RGS2 and TSC22D3, or just TSC22D3, in primary human airway epithelial and smooth muscle cells, respectively. Dexamethasone-induced DUSP1 mRNA was unaffected. In human bronchial epithelial BEAS-2B cells, dexamethasone-induced TSC22D3 and CDKN1C expression (at 6 h) was reduced by TNF pre-treatment, whereas DUSP1 and RGS2 mRNAs were unaffected. TNF pre-treatment also reduced dexamethasone-dependent 2×GRE reporter activation. This was partially reversed by PS-1145 and c-jun N-terminal kinase (JNK) inhibitor VIII, inhibitors of IKK2 and JNK, respectively. However, neither inhibitor affected TNF-dependent loss of dexamethasone-induced CDKN1C or TSC22D3 mRNA. Similarly, inhibitors of the extracellular signal-regulated kinase, p38, phosphoinositide 3-kinase or protein kinase C pathways failed to attenuate TNF-dependent repression of the 2×GRE reporter. Fluticasone furoate, fluticasone propionate and budesonide were full agonists relative to dexamethasone, while GSK9027, RU24858, des-ciclesonide and GW870086X were partial agonists on the 2×GRE reporter. TNF reduced reporter activity in proportion with agonist efficacy. Full and partial agonists showed various degrees of agonism on RGS2 and TSC22D3 expression, but were equally effective at inducing CDKN1C and DUSP1, and did not affect the repression of CDKN1C or TSC22D3 expression by TNF. Finally, formoterol-enhanced 2×GRE reporter activity was also proportional to agonist efficacy and functionally reversed repression by TNF. As similar effects were apparent on glucocorticoid-induced gene expression, the most effective strategy to overcome glucocorticoid resistance in this model was addition of formoterol to high efficacy NR3C1 agonists.
PMCID: PMC4308083  PMID: 25625944
5.  Glucocorticoid Repression of Inflammatory Gene Expression Shows Differential Responsiveness by Transactivation- and Transrepression-Dependent Mechanisms 
PLoS ONE  2013;8(1):e53936.
Binding of glucocorticoid to the glucocorticoid receptor (GR/NR3C1) may repress inflammatory gene transcription via direct, protein synthesis-independent processes (transrepression), or by activating transcription (transactivation) of multiple anti-inflammatory/repressive factors. Using human pulmonary A549 cells, we showed that 34 out of 39 IL-1β-inducible mRNAs were repressed to varying degrees by the synthetic glucocorticoid, dexamethasone. Whilst these repressive effects were GR-dependent, they did not correlate with either the magnitude of IL-1β-inducibility or the NF-κB-dependence of the inflammatory genes. This suggests that induction by IL-1β and repression by dexamethasone are independent events. Roles for transactivation were investigated using the protein synthesis inhibitor, cycloheximide. However, cycloheximide reduced the IL-1β-dependent expression of 13 mRNAs, which, along with the 5 not showing repression by dexamethasone, were not analysed further. Of the remaining 21 inflammatory mRNAs, cycloheximide significantly attenuated the dexamethasone-dependent repression of 11 mRNAs that also showed a marked time-dependence to their repression. Such effects are consistent with repression occurring via the de novo synthesis of a new product, or products, which subsequently cause repression (i.e., repression via a transactivation mechanism). Conversely, 10 mRNAs showed completely cycloheximide-independent, and time-independent, repression by dexamethasone. This is consistent with direct GR transrepression. Importantly, the inflammatory mRNAs showing attenuated repression by dexamethasone in the presence of cycloheximide also showed a significantly greater extent of repression and a higher potency to dexamethasone compared to those mRNAs showing cycloheximide-independent repression. This suggests that the repression of inflammatory mRNAs by GR transactivation-dependent mechanisms accounts for the greatest levels of repression and the most potent repression by dexamethasone. In conclusion, our data indicate roles for both transrepression and transactivation in the glucocorticoid-dependent repression of inflammatory gene expression. However, transactivation appears to account for the more potent and efficacious mechanism of repression by glucocorticoids on these IL-1β-induced genes.
PMCID: PMC3545719  PMID: 23349769
6.  Inhibition of NF-κB-dependent Transcription by MKP-1 
The Journal of Biological Chemistry  2009;284(39):26803-26815.
Acting via the glucocorticoid receptor (GR), glucocorticoids exert potent anti-inflammatory effects partly by repressing inflammatory gene transcription occurring via factors such as NF-κB. In the present study, the synthetic glucocorticoid, dexamethasone, induces expression of MKP-1 (mitogen-activated protein kinase (MAPK) phosphatase-1) in human bronchial epithelial (BEAS-2B) and pulmonary (A549) cells. This correlates with reduced TNFα-stimulated p38 MAPK phosphorylation. Since NF-κB-dependent transcription and IL-8 protein, mRNA, and unspliced RNA (a surrogate of transcription rate) are sensitive to p38 MAPK inhibitors (SB203580 and SB239063), we explored the role of MKP-1 in repression of these outputs. Repression of TNFα-induced p38 MAPK phosphorylation, NF-κB-dependent transcription, and IL-8 expression by dexamethasone are sensitive to transcriptional or translational inhibitors. This indicates a role for de novo gene synthesis. Adenoviral expression of MKP-1 profoundly reduces p38 MAPK phosphorylation and IL-8 expression. Similarly, NF-κB-dependent transcription is significantly reduced to levels consistent with maximal p38 MAPK inhibition. Thus, MKP-1 attenuates TNFα-dependent activation of p38 MAPK, induction of IL-8 expression, and NF-κB-dependent transcription. Small interfering RNA knockdown of dexamethasone-induced MKP-1 expression partially reverses the repression of TNFα-activated p38 MAPK, demonstrating that MKP-1 participates in the dexamethasone-dependent repression of this pathway. In the presence of MKK6 (MAPK kinase 6), a p38 MAPK activator, dexamethasone dramatically represses TNFα-induced NF-κB-dependent transcription, and this is significantly reversed by MKP-1-targeting small interfering RNA. This reveals an important and novel role for transcriptional activation (transactivation) of MKP-1 in the repression of NF-κB-dependent transcription by glucocorticoids. We conclude that GR transactivation is essential to the anti-inflammatory properties of GR ligands.
PMCID: PMC2785369  PMID: 19648110

Results 1-6 (6)