PMCC PMCC

Search tips
Search criteria

Advanced

Important Notice

PubMed Central Canada to be taken offline in February 2018

On February 23, 2018, PubMed Central Canada (PMC Canada) will be taken offline permanently. No author manuscripts will be deleted, and the approximately 2,900 manuscripts authored by Canadian Institutes of Health Research (CIHR)-funded researchers currently in the archive will be copied to the National Research Council’s (NRC) Digital Repository over the coming months. These manuscripts along with all other content will also remain publicly searchable on PubMed Central (US) and Europe PubMed Central, meaning such manuscripts will continue to be compliant with the Tri-Agency Open Access Policy on Publications.

Read more

Results 1-25 (48)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Adjuvant treatment of resectable biliary tract cancer with cisplatin plus gemcitabine: A prospective single center phase II study 
BMC Cancer  2018;18:72.
Background
Biliary tract cancer (BTC) is a dismal disease, even after curative intent surgery. We conducted this prospective, non-randomized phase II study to evaluate the feasibility and efficacy of cisplatin and gemcitabine as adjuvant treatment in patients with resected BTC.
Methods
Patients initially received gemcitabine 1000 mg/m2 alone on days 1, 8 and 15 every 28-days for a total of six cycles (single agent cohort), and after protocol amendment a combination therapy with gemcitabine 1000 mg/m2 and cisplatin 25 mg/m2 on days 1 and 8 was administered every 21 days for a total of eight cycles (combined regimen cohort). Treatment was planned to start within eight weeks after curative intent resection. Adverse events, disease-free survival and overall survival were assessed.
Results
Overall 30 patients were enrolled in the study from August 2008 and last patient was enrolled at 2nd December 2014. The follow-up of the patients ended at 31st December 2016. The first 9 patients received single-agent gemcitabine. The interim analysis met the predefined feasibility criteria and, from September 2010 on, the second group of 21 patients received the combination of cisplatin plus gemcitabine. In the single-agent cohort with gemcitabine the median relative dose intensity (RDI) was 100% (IQR 88.3–100). Patients treated with the combination cisplatin-gemcitabine received an overall median RDI of 100% (IQR 50–100) for cisplatin and 100% (IQR 75–100) for gemcitabine respectively. The most significant non-hematological adverse events (grade 3 or 4) were fatigue (20%), infections during neutropenia (10%), and two cases of biliary sepsis (7%). Abnormal liver function was seen in 10% of the patients. One patient died due to infectious complications during treatment with cisplatin and gemcitabine. The median disease-free survival (DFS) was 14.9 months (95% CI 0–33.8) with a corresponding 3-year DFS of 43.1 ± 9.1%. The median overall survival (OS) was 40.6 months (95% CI 18.8–62.3) with a 3-year OS of 55.7 ± 9.2%. No statistically significant differences in survival were seen between the two treatment cohorts.
Conclusion
Adjuvant chemotherapy with gemcitabine with or without cisplatin was well tolerated and resulted in promising survival of the patients.
Trial registration
The study was retrospectively registered on 25th June 2009 at clinicaltrials.gov (NCT01073839).
doi:10.1186/s12885-017-3967-0
PMCID: PMC5765636  PMID: 29325521
Adjuvant chemotherapy; Biliary tract cancer; Cholangiocellular carcinoma; Gallbladder cancer; Cisplatin and gemcitabine; Feasibility
2.  MST4 Phosphorylation of ATG4B Regulates Autophagic Activity, Tumorigenicity, and Radioresistance in Glioblastoma 
Cancer Cell  2017;32(6):840-855.e8.
Summary
ATG4B stimulates autophagy by promoting autophagosome formation through reversible modification of ATG8. We identify ATG4B as a substrate of mammalian sterile20-like kinase (STK) 26/MST4. MST4 phosphorylates ATG4B at serine residue 383, which stimulates ATG4B activity and increases autophagic flux. Inhibition of MST4 or ATG4B activities using genetic approaches or an inhibitor of ATG4B suppresses autophagy and the tumorigenicity of glioblastoma (GBM) cells. Furthermore, radiation induces MST4 expression, ATG4B phosphorylation, and autophagy. Inhibiting ATG4B in combination with radiotherapy in treating mice with intracranial GBM xenograft markedly slows tumor growth and provides a significant survival benefit. Our work describes an MST4-ATG4B signaling axis that influences GBM autophagy and malignancy, and whose therapeutic targeting enhances the anti-tumor effects of radiotherapy.
Graphical Abstract
Highlights
•MST4 kinase regulates the growth, sphere formation, and tumorigenicity of GBM cells•MST4 stimulates autophagy by activating ATG4B through phosphorylation of ATG4B S383•Radiation increases MST4 expression and ATG4B phosphorylation, inducing autophagy•Inhibiting ATG4B enhances the anti-tumor effects of radiotherapy in GBM PDX models
Huang et al. show that radiation induces MST4 expression and that MST4 phosphorylates ATG4B at serine 383, which increases ATG4B activity and autophagic flux. Inhibition of ATG4B reduces autophagy and tumorigenicity of glioblastoma (GBM) cells and improves the impact of radiotherapy on GBM growth in mice.
doi:10.1016/j.ccell.2017.11.005
PMCID: PMC5734934  PMID: 29232556
glioblastoma; glioma stem-like cells; MST4/STK26; ATG4B; phosphorylation; autophagy; tumorigenicity; tumor response to radiation; ATG4B inhibitor NSC185058; combination therapy
3.  Temozolomide chemotherapy versus radiotherapy in high-risk low-grade glioma 
The Lancet. Oncology  2016;17(11):1521-1532.
Background
Outcome of low-grade glioma (LGG, WHO grade II) is highly variable reflecting molecular heterogeneity of the disease. We compared two different single modality treatment strategies: standard radiotherapy (RT) versus primary temozolomide (TMZ) chemotherapy with the aim of tailoring treatment and identifying predictive molecular factors.
Methods
477 patients (2005 – 2012, median FU 48 months) with a low-grade glioma (astrocytoma, oligoastrocytoma, oligodendroglioma, WHO grade II) with at least one high-risk feature (age > 40 years, progressive disease, tumor > 5 cm or crossing the midline, neurological symptoms (e.g. focal or mental deficits, increased intracranial pressure or intractable seizures)) were, after stratification by chromosome 1p-status, randomized to either conformal RT (50.4 Gy/28 fractions) or dose-dense TMZ (75 mg/m2 daily × 21 days, q28 days, max. 12 cycles). Random treatment allocation was performed online using a minimization technique. A planned analysis was performed after 246 progression events. All analyses are intent to treat. Primary clinical endpoint was progression-free survival (PFS), correlative analyses included molecular markers (1p/19q co-deletion, MGMT methylation status, IDH1+2 mutations). The trial has been registered at the European Trials Registry (EudraCT 2004-002714-11) and at ClinicalTrials.gov (NCT00182819).
Findings
Four hundred seventy-seven patients were randomized. Severe hematological toxicity occurred in 14% of TMZ-treated patients, infections in 3% of TMZ-treated patients, and 1% of RT-treated patients. Moderate to severe fatigue was recorded in 3% of patients in the RT group and 7% in the TMZ group.
At a median follow-up of 48 months (IQR:31–56), median PFS was 39 months (IQR:16–46) in the TMZ arm and 46 months (IQR:19–48) in the RT group (hazard ratio 1.16, 95% CI, 0.9–1.5; p=0.22). Median OS has not been reached. Exploratory analyses identified treatment-dependent variation in outcome of molecular LGG subgroups (n=318).
Interpretation
There was no significant difference in outcome of the overall patient population treated with either radiotherapy alone or TMZ chemotherapy alone. Further data maturation is needed for overall survival analyses and evaluation of the full predictive impact of the molecular subtypes for individualized treatment choices.
Funding
Merck & Co, Swiss-Bridge Award 2011, Swiss Cancer League.
doi:10.1016/S1470-2045(16)30313-8
PMCID: PMC5124485  PMID: 27686946
4.  World Congress Integrative Medicine & Health 2017: Part one 
Brinkhaus, Benno | Falkenberg, Torkel | Haramati, Aviad | Willich, Stefan N. | Briggs, Josephine P. | Willcox, Merlin | Linde, Klaus | Theorell, Töres | Wong, Lisa M. | Dusek, Jeffrey | Wu, Darong | Eisenberg, David | Haramati, Aviad | Berger, Bettina | Kemper, Kathi | Stock-Schröer, Beate | Sützl-Klein, Hedda | Ferreri, Rosaria | Kaplan, Gary | Matthes, Harald | Rotter, Gabriele | Schiff, Elad | Arnon, Zahi | Hahn, Eckhard | Luberto, Christina M. | Martin, David | Schwarz, Silke | Tauschel, Diethard | Flower, Andrew | Gramminger, Harsha | Gupta, Hedwig H. | Gupta, S. N. | Kerckhoff, Annette | Kessler, Christian S. | Michalsen, Andreas | Kessler, Christian S. | Kim, Eun S. | Jang, Eun H. | Kim, Rana | Jan, Sae B. | Mittwede, Martin | Mohme, Wiebke | Ben-Arye, Eran | Bonucci, Massimo | Saad, Bashar | Breitkreuz, Thomas | Rossi, Elio | Kebudi, Rejin | Daher, Michel | Razaq, Samaher | Gafer, Nahla | Nimri, Omar | Hablas, Mohamed | Kienle, Gunver Sophia | Samuels, Noah | Silbermann, Michael | Bandelin, Lena | Lang, Anna-Lena | Wartner, Eva | Holtermann, Christoph | Binstock, Maxwell | Riebau, Robert | Mujkanovic, Edin | Cramer, Holger | Lauche, Romy | Michalsen, Andres | Ward, Lesley | Cramer, Holger | Irnich, Dominik | Stör, Wolfram | Burnstock, Geoffrey | Schaible, Hans-Georg | Ots, Thomas | Langhorst, Jost | Lauche, Romy | Sundberg, Tobias | Falkenberg, Torkel | Amarell, Catherina | Amarell, Catherina | Anheyer, Melanie | Eckert, Marion | Eckert, Marion | Ogal, Mercedes | Eckert, Marion | Amarell, Catherina | Schönauer, Annette | Reisenberger, Birgit | Brand, Bernhard | Anheyer, Dennis | Dobos, Gustav | Kroez, Matthias | Martin, David | Matthes, Harald | Ammendola, Aldo | Mao, Jun J. | Witt, Claudia | Yang, Yufei | Dobos, Gustav | Oritz, Miriam | Horneber, Markus | Voiß, Petra | Reisenberger, Birgit | von Rosenstiel, Alexandra | Eckert, Marion | Ogal, Mercedes | Amarell, Catharina | Anheyer, Melanie | Schad, Friedemann | Schläppi, Marc | Kröz, Matthias | Büssing, Arndt | Bar-Sela, Gil | Matthes, Harald | Schiff, Elad | Ben-Arye, Eran | Arnon, Zahi | Avshalomov, David | Attias, Samuel | Schönauer, Annette | Haramati, Aviad | Witt, Claudia | Brinkhaus, Benno | Cotton, Sian | Jong, Miek | Jong, Mats | Scheffer, Christian | Haramati, Aviad | Tauschel, Diethard | Edelhäuser, Friedrich | AlBedah, Abdullah | Lee, Myeong Soo | Khalil, Mohamed | Ogawa, Keiko | Motoo, Yoshiharu | Arimitsu, Junsuke | Ogawa, Masao | Shimizu, Genki | Stange, Rainer | Kraft, Karin | Kuchta, Kenny | Watanabe, Kenji | Bonin, D | Büssing, Arndt | Gruber, Harald | Koch, Sabine | Gruber, Harald | Pohlmann, Urs | Caldwell, Christine | Krantz, Barbara | Kortum, Ria | Martin, Lily | Wieland, Lisa S. | Kligler, Ben | Gould-Fogerite, Susan | Zhang, Yuqing | Wieland, Lisa S. | Riva, John J. | Lumpkin, Michael | Ratner, Emily | Ping, Liu | Jian, Pei | Hamme, Gesa-Meyer | Mao, Xiaosong | Chouping, Han | Schröder, Sven | Hummelsberger, Josef | Wullinger, Michael | Brodzky, Marc | Zalpour, Christoff | Langley, Julia | Weber, Wendy | Mudd, Lanay M. | Wayne, Peter | Witt, Clauda | Weidenhammer, Wolfgang | Fønnebø, Vinjar | Boon, Heather | Steel, Amie | Bugarcic, Andrea | Rangitakatu, Melisa | Steel, Amie | Adams, Jon | Sibbritt, David | Wardle, Jon | Leach, Matthew | Schloss, Janet | Dieze, Helene | Boon, Heather | Ijaz, Nadine | Willcox, Merlin | Heinrich, Michael | Lewith, George | Flower, Andrew | Graz, Bertrand | Adam, Daniela | Grabenhenrich, Linus | Ortiz, Miriam | Binting, Sylvia | Reinhold, Thomas | Brinkhaus, Benno | Andermo, Susanne | Sundberg, Tobias | Falkenberg, Torkel | Nordberg, Johanna Hök | Arman, Maria | Bhasin, Manoj | Fan, Xueyi | Libermann, Towia | Fricchione, Gregory | Denninger, John | Benson, Herbert | Berger, Bettina | Stange, Rainer | Michalsen, Andreas | Martin, David D. | Boers, Inge | Vlieger, Arine | Jong, Miek | Brinkhaus, Benno | Teut, Michael | Ullmann, Alexander | Ortiz, Miriam | Rotter, Gabriele | Binting, Sylvia | Lotz, Fabian | Roll, Stephanie | Canella, Claudia | Mikolasek, Michael | Rostock, Matthias | Beyer, Jörg | Guckenberger, Matthias | Jenewein, Josef | Linka, Esther | Six, Claudia | Stoll, Sarah | Stupp, Roger | Witt, Claudia M. | Chuang, Elisabeth | Kligler, Ben | McKee, Melissa D. | Cramer, Holger | Lauche, Romy | Klose, Petra | Lange, Silke | Langhorst, Jost | Dobos, Gustav | Chung, Vincent C. H. | Wong, Hoi L. C. | Wu, Xin Y. | Wen, Grace Y. G. | Ho, Robin S. T. | Ching, Jessica Y. L. | Wu, Justin C. Y. | Coakley, Amanda | Flanagan, Jane | Annese, Christine | Empoliti, Joanne | Gao, Zishan | Liu, Xugang | Yu, Shuguang | Yan, Xianzhong | Liang, Fanrong | Hohmann, Christoph D. | Steckhan, Nico | Ostermann, Thomas | Paetow, Arion | Hoff, Evelyn | Michalsen, Andreas | Hu, Xiao-Yang | Wu, Ruo-Han | Logue, Martin | Blonde, Clara | Lai, Lily Y. | Stuart, Beth | Flower, Andrew | Fei, Yu-Tong | Moore, Michael | Liu, Jian-Ping | Lewith, George | Hu, Xiao-Yang | Wu, Ruo-Han | Logue, Martin | Blonde, Clara | Lai, Lily Y. | Stuart, Beth | Flower, Andrew | Fei, Yu-Tong | Moore, Michael | Liu, Jian-Ping | Lewith, George | Jeitler, Michael | Zillgen, Hannah | Högl, Manuel | Steckhan, Nico | Stöckigt, Barbara | Seifert, Georg | Michalsen, Andreas | Kessler, Christian | Khadivzadeh, Talat | Bashtian, Maryam Hassanzadeh | Aval, Shapour Badiee | Esmaily, Habibollah | Kim, Jihye | Kim, Keun H. | Klocke, Carina | Joos, Stefanie | Koshak, Abdulrahman | Wie, Li | Koshak, Emad | Wali, Siraj | Alamoudi, Omer | Demerdash, Abdulrahman | Qutub, Majdy | Pushparaj, Peter | Heinrich, Michael | Kruse, Sigrid | Fischer, Isabell | Tremel, Nadine | Rosenecker, Joseph | Leung, Brenda | Takeda, Wendy | Liang, Ning | Feng, Xue | Liu, Jian-ping | Cao, Hui-juan | Luberto, Christina M. | Shinday, Nina | Philpotts, Lisa | Park, Elyse | Fricchione, Gregory L. | Yeh, Gloria | Munk, Niki | Zakeresfahani, Arash | Foote, Trevor R. | Ralston, Rick | Boulanger, Karen | Özbe, Dominik | Gräßel, Elmar | Luttenberger, Katharina | Pendergrass, Anna | Pach, Daniel | Bellmann-Strobl, Judit | Chang, Yinhui | Pasura, Laura | Liu, Bin | Jäger, Sven F. | Loerch, Ronny | Jin, Li | Brinkhaus, Benno | Ortiz, Miriam | Reinhold, Thomas | Roll, Stephanie | Binting, Sylvia | Icke, Katja | Shi, Xuemin | Paul, Friedemann | Witt, Claudia M. | Rütz, Michaela | Lynen, Andreas | Schömitz, Meike | Vahle, Maik | Salomon, Nir | Lang, Alon | Lahat, Adi | Kopylov, Uri | Ben-Horin, Shomron | Har-Noi, Ofir | Avidan, Benjamin | Elyakim, Rami | Gamus, Dorit | NG, Siew | Chang, Jessica | Wu, Justin | Kaimiklotis, John | Schumann, Dania | Buttó, Ludovica | Langhorst, Jost | Dobos, Gustav | Haller, Dirk | Cramer, Holger | Smith, Caroline | de Lacey, Sheryl | Chapman, Michael | Ratcliffe, Julie | Johnson, Neil | Lyttleton, Jane | Boothroyd, Clare | Fahey, Paul | Tjaden, Bram | van Vliet, Marja | van Wietmarschen, Herman | Jong, Miek | Tröger, Wilfried | Vuolanto, Pia | Aarva, Paulina | Sorsa, Minna | Helin, Kaija | Wenzel, Claudia | Zoderer, Iris | Pammer, Patricia | Simon, Patrick | Tucek, Gerhard | Wode, Kathrin | Henriksson, Roger | Sharp, Lena | Stoltenberg, Anna | Nordberg, Johanna Hök | Xiao-ying, Yang | Wang, Li-qiong | Li, Jin-gen | Liang, Ning | Wang, Ying | Liu, Jian-ping | Balneaves, Lynda | Capler, Rielle | Bocci, Chiara | Guffi, Marta | Paolini, Marina | Meaglia, Ilaria | Porcu, Patrizia | Ivaldi, Giovanni B. | Dragan, Simona | Bucuras, Petru | Pah, Ana M. | Badalica-Petrescu, Marius | Buleu, Florina | Hogea-Stoichescu, Gheorghe | Christodorescu, Ruxandra | Kao, Lan | Cho, Yumin | Klafke, Nadja | Mahler, Cornelia | von Hagens, Cornelia | Uhlmann, Lorenz | Bentner, Martina | Schneeweiss, Andreas | Mueller, Andreas | Szecsenyi, Joachim | Joos, Stefanie | Neri, Isabella | Ortiz, Miriam | Schnabel, Katharina | Teut, Michael | Rotter, Gabriele | Binting, Sylvia | Cree, Margit | Lotz, Fabian | Suhr, Ralf | Brinkhaus, Benno | Rossi, Elio | Baccetti, Sonia | Firenzuoli, Fabio | Monechi, Maria V. | Di Stefano, Mariella | Amunni, Gianni | Wong, Wendy | Chen, Bingzhong | Wu, Justin | Amri, Hakima | Haramati, Aviad | Kotlyanskaya, Lucy | Anderson, Belinda | Evans, Roni | Kligler, Ben | Marantz, Paul | Bradley, Ryan | Booth-LaForce, Cathryn | Zwickey, Heather | Kligler, Benjamin | Brooks, Audrey | Kreitzer, Mary J. | Lebensohn, Patricia | Goldblatt, Elisabeth | Esmel-Esmel, Neus | Jiménez-Herrera, Maria | Ijaz, Nadine | Boon, Heather | Jocham, Alexandra | Stock-Schröer, Beate | Berberat, Pascal O. | Schneider, Antonius | Linde, Klaus | Masetti, Morgana | Murakozy, Henriette | Van Vliet, Marja | Jong, Mats | Jong, Miek | Agdal, Rita | Atarzadeh, Fatemeh | Jaladat, Amir M. | Hoseini, Leila | Amini, Fatemeh | Bai, Chen | Liu, Tiegang | Zheng, Zian | Wan, Yuxiang | Xu, Jingnan | Wang, Xuan | Yu, He | Gu, Xiaohong | Daneshfard, Babak | Nimrouzi, Majid | Tafazoli, Vahid | Alorizi, Seyed M. Emami | Saghebi, Seyed A. | Fattahi, Mohammad R. | Salehi, Alireza | Rezaeizadeh, Hossein | Zarshenas, Mohammad M. | Nimrouzi, Majid | Fox, Kealoha | Hughes, John | Kostanjsek, Nenad | Espinosa, Stéphane | Lewith, George | Fisher, Peter | Latif, Abdul | Lefeber, Donald | Paske, William | Öztürk, Ali Ö. | Öztürk, Gizemnur | Boers, Inge | Tissing, Wim | Naafs, Marianne | Busch, Martine | Jong, Miek | Daneshfard, Babak | Sanaye, Mohammad R. | Dräger, Kilian | Fisher, Peter | Kreitzer, Mary J. | Evans, Roni | Leininger, Brent | Shafto, Kate | Breen, Jenny | Sanaye, Mohammad R. | Daneshfard, Babak | Simões-Wüst, Ana P. | Moltó-Puigmartí, Carolina | van Dongen, Martien | Dagnelie, Pieter | Thijs, Carel | White, Shelley | Wiesener, Solveig | Salamonsen, Anita | Stub, Trine | Fønnebø, Vinjar | Abanades, Sergio | Blanco, Mar | Masllorens, Laia | Sala, Roser | Al-Ahnoumy, Shafekah | Han, Dongwoon | He, Luzhu | Kim, Ha Yun | In Choi, Da | Alræk, Terje | Stub, Trine | Kristoffersen, Agnete | von Sceidt, Christel | Michalsen, Andreas | Bruset, Stig | Musial, Frauke | Anheyer, Dennis | Cramer, Holger | Lauche, Romy | Saha, Felix J. | Dobos, Gustav | Anheyer, Dennis | Haller, Heidemarie | Lauche, Romy | Dobos, Gustav | Cramer, Holger | Azizi, Hoda | Khadem, Nayereh | Hassanzadeh, Malihe | Estiri, Nazanin | Azizi, Hamideh | Tavassoli, Fatemeh | Lotfalizadeh, Marzieh | Zabihi, Reza | Esmaily, Habibollah | Azizi, Hoda | Shabestari, Mahmoud Mohammadzadeh | Paeizi, Reza | Azari, Masoumeh Alvandi | Bahrami-Taghanaki, Hamidreza | Zabihi, Reza | Azizi, Hamideh | Esmaily, Habibollah | Baars, Erik | De Bruin, Anja | Ponstein, Anne | Baccetti, Sonia | Di Stefano, Mariella | Rossi, Elio | Firenzuoli, Fabio | Segantini, Sergio | Monechi, Maria Valeria | Voller, Fabio | Barth, Jürgen | Kern, Alexandra | Lüthi, Sebastian | Witt, Claudia | Barth, Jürgen | Zieger, Anja | Otto, Fabius | Witt, Claudia | Beccia, Ariel | Dunlap, Corina | Courneene, Brendan | Bedregal, Paula | Passi, Alvaro | Rodríguez, Alfredo | Chang, Mayling | Gutiérrez, Soledad | Beissner, Florian | Beissner, Florian | Preibisch, Christine | Schweizer-Arau, Annemarie | Popovici, Roxana | Meissner, Karin | Beljanski, Sylvie | Belland, Laura | Rivera-Reyes, Laura | Hwang, Ula | Berger, Bettina | Sethe, Dominik | Hilgard, Dörte | Heusser, Peter | Bishop, Felicity | Al-Abbadey, Miznah | Bradbury, Katherine | Carnes, Dawn | Dimitrov, Borislav | Fawkes, Carol | Foster, Jo | MacPherson, Hugh | Roberts, Lisa | Yardley, Lucy | Lewith, George | Bishop, Felicity | Al-Abbadey, Miznah | Bradbury, Katherine | Carnes, Dawn | Dimitrov, Borislav | Fawkes, Carol | Foster, Jo | MacPherson, Hugh | Roberts, Lisa | Yardley, Lucy | Lewith, George | Bishop, Felicity | Holmes, Michelle | Lewith, George | Yardley, Lucy | Little, Paul | Cooper, Cyrus | Bogani, Patrizia | Maggini, Valentina | Gallo, Eugenia | Miceli, Elisangela | Biffi, Sauro | Mengoni, Alessio | Fani, Renato | Firenzuoli, Fabio | Brands-Guendling, Nadine | Guendling, Peter W. | Bronfort, Gert | Evans, Roni | Haas, Mitch | Leininger, Brent | Schulz, Craig | Bu, Xiangwei | Wang, J. | Fang, T. | Shen, Z. | He, Y. | Zhang, X. | Zhang, Zhengju | Wang, Dali | Meng, Fengxian | Büssing, Arndt | Baumann, Klaus | Frick, Eckhard | Jacobs, Christoph | Büssing, Arndt | Grünther, Ralph-Achim | Lötzke, Désirée | Büssing, Arndt | Jung, Sonny | Lötzke, Désirée | Recchia, Daniela R. | Robens, Sibylle | Ostermann, Thomas | Berger, Bettina | Stankewitz, Josephin | Kröz, Matthias | Jeitler, Mika | Kessler, Christian | Michalsen, Andreas | Cheon, Chunhoo | Jang, Bo H. | Ko, Seong G. | Huang, Ching W. | Sasaki, Yui | Ko, Youme | Cheshire, Anna | Ridge, Damien | Hughes, John | Peters, David | Panagioti, Maria | Simon, Chantal | Lewith, George | Cho, Hyun J. | Han, Dongwoon | Choi, Soo J. | Jung, Young S. | Im, Hyea B | Cooley, Kieran | Tummon-Simmons, Laura | Cotton, Sian | Luberto, Christina M. | Wasson, Rachel | Kraemer, Kristen | Sears, Richard | Hueber, Carly | Derk, Gwendolyn | Lill, JR | An, Ruopeng | Steinberg, Lois | Rodriguez, Lourdes Diaz | la Fuente, Francisca García-de | De la Vega, Miguel | Vargas-Román, Keyla | Fernández-Ruiz, Jonatan | Cantarero-Villanueva, Irene | Rodriguez, Lourdes Diaz | García-De la Fuente, Francisca | Jiménez-Guerrero, Fanny | Vargas-Román, Keyla | Fernández-Ruiz, Jonatan | Galiano-Castillo, Noelia | Diaz-Saez, Gualberto | Torres-Jimenez, José I. | Garcia-Gomez, Olga | Hortal-Muñoz, Luis | Diaz-Diez, Camino | Dicen, Demijon | Diezel, Helene | Adams, Jon | Steel, Amie | Wardle, Jon | Diezel, Helene | Steel, Amie | Frawley, Jane | Wardle, Jon | Broom, Alex | Adams, Jon | Dong, Fei | Yu, He | Liu, Tiegang | Ma, Xueyan | Yan, Liyi | Wan, Yuxiang | Zheng, Zian | Gu, Xiaohong | Dong, Fei | Yu, He | Wu, Liqun | Liu, Tiegang | Ma, Xueyan | Ma, Jiaju | Yan, Liyi | Wan, Yuxiang | Zheng, Zian | Zhen, Jianhua | Gu, Xiaohong | Dubois, Julie | Rodondi, Pierre-Yves | Edelhäuser, Friedrich | Schwartze, Sophia | Trapp, Barbara | Cysarz, Dirk
doi:10.1186/s12906-017-1782-4
PMCID: PMC5498855
5.  Corticosteroids compromise survival in glioblastoma 
Brain  2016;139(5):1458-1471.
Do corticosteroids compromise survival in cases of glioblastoma? In a retrospective analysis of clinical cohorts, Pitter et al. identify dexamethasone (DEX) use during radiotherapy as an independent indicator of shorter survival. Moreover, DEX pretreatment reduces survival in irradiated glioblastoma-bearing mice. Anti-VEGFA antibodies may counter oedema without compromising radiation efficacy.
Do corticosteroids compromise survival in cases of glioblastoma? In a retrospective analysis of clinical cohorts, Pitter et al. identify dexamethasone (DEX) use during radiotherapy as an independent indicator of shorter survival. Moreover, DEX pretreatment reduces survival in irradiated glioblastoma-bearing mice. Anti-VEGFA antibodies may counter oedema without compromising radiation efficacy.
Glioblastoma is the most common and most aggressive primary brain tumour. Standard of care consists of surgical resection followed by radiotherapy and concomitant and maintenance temozolomide (temozolomide/radiotherapy→temozolomide). Corticosteroids are commonly used perioperatively to control cerebral oedema and are frequently continued throughout subsequent treatment, notably radiotherapy, for amelioration of side effects. The effects of corticosteroids such as dexamethasone on cell growth in glioma models and on patient survival have remained controversial. We performed a retrospective analysis of glioblastoma patient cohorts to determine the prognostic role of steroid administration. A disease-relevant mouse model of glioblastoma was used to characterize the effects of dexamethasone on tumour cell proliferation and death, and to identify gene signatures associated with these effects. A murine anti-VEGFA antibody was used in parallel as an alternative for oedema control. We applied the dexamethasone-induced gene signature to The Cancer Genome Atlas glioblastoma dataset to explore the association of dexamethasone exposure with outcome. Mouse experiments were used to validate the effects of dexamethasone on survival in vivo. Retrospective clinical analyses identified corticosteroid use during radiotherapy as an independent indicator of shorter survival in three independent patient cohorts. A dexamethasone-associated gene expression signature correlated with shorter survival in The Cancer Genome Atlas patient dataset. In glioma-bearing mice, dexamethasone pretreatment decreased tumour cell proliferation without affecting tumour cell viability, but reduced survival when combined with radiotherapy. Conversely, anti-VEGFA antibody decreased proliferation and increased tumour cell death, but did not affect survival when combined with radiotherapy. Clinical and mouse experimental data suggest that corticosteroids may decrease the effectiveness of treatment and shorten survival in glioblastoma. Dexamethasone-induced anti-proliferative effects may confer protection from radiotherapy- and chemotherapy-induced genotoxic stress. This study highlights the importance of identifying alternative agents such as vascular endothelial growth factor antagonists for managing oedema in glioblastoma patients. Beyond the established adverse effect profile of protracted corticosteroid use, this analysis substantiates the request for prudent and restricted use of corticosteroids in glioblastoma.
doi:10.1093/brain/aww046
PMCID: PMC5006251  PMID: 27020328
astrocytoma; CNS tumour: surgical treatment; glioma; genetics; neurooncology
6.  Biological activity of tumor-treating fields in preclinical glioma models 
Cell Death & Disease  2017;8(4):e2753-.
Glioblastoma is the most common and aggressive form of intrinsic brain tumor with a very poor prognosis. Thus, novel therapeutic approaches are urgently needed. Tumor-treating fields (TTFields) may represent such a novel treatment option. The aim of this study was to investigate the effects of TTFields on glioma cells, as well as the functional characterization of the underlying mechanisms. Here, we assessed the anti-glioma activity of TTFields in several preclinical models. Applying TTFields resulted in the induction of cell death in a frequency- and intensity-dependent manner in long-term glioma cell lines, as well as glioma-initiating cells. Cell death occurred in the absence of caspase activation, but involved autophagy and necroptosis. Severe alterations in cell cycle progression and aberrant mitotic features, such as poly- and micronucleation, preceded the induction of cell death. Furthermore, exposure to TTFields led to reduced migration and invasion, which are both biological hallmarks of glioma cells. The combination of TTFields with irradiation or the alkylating agent, temozolomide (TMZ), resulted in additive or synergistic effects, and the O6-methyl-guanine DNA methyltransferase status did not influence the efficacy of TTFields. Importantly, TMZ-resistant glioma cells were responsive to TTFields application, highlighting the clinical potential of this therapeutic approach. In summary, our results indicate that TTFields induce autophagy, as well as necroptosis and hamper the migration and invasiveness of glioma cells. These findings may allow for a more detailed clinical evaluation of TTFields beyond the clinical data available so far.
doi:10.1038/cddis.2017.171
PMCID: PMC5477589  PMID: 28425987
7.  PROX1 is a novel pathway-specific prognostic biomarker for high-grade astrocytomas; results from independent glioblastoma cohorts stratified by age and IDH mutation status 
Oncotarget  2016;7(45):72431-72442.
PROX1 is a transcription factor with an essential role in embryonic development and determination of cell fate. In addition, PROX1 has been ascribed suppressive as well as oncogenic roles in several human cancers, including brain tumors. In this study we explored the correlation between PROX1 expression and patient survival in high-grade astrocytomas. For this purpose, we analyzed protein expression in tissue microarrays of tumor samples stratified by patient age and IDH mutation status. We initially screened 86 unselected high-grade astrocytomas, followed by 174 IDH1-R132H1 immunonegative glioblastomas derived from patients aged 60 years and older enrolled in the Nordic phase III trial of elderly patients with newly diagnosed glioblastoma. Representing the younger population of glioblastomas, we studied 80 IDH-wildtype glioblastomas from patients aged 18-60 years. There was no correlation between PROX1 protein and survival for patients with primary glioblastomas included in these cohorts. In contrast, high expression of PROX1 protein predicted shorter survival in the group of patients with IDH-mutant anaplastic astrocytomas and secondary glioblastomas. The prognostic impact of PROX1 in IDH-mutant 1p19q non-codeleted high-grade astrocytomas, as well as the negative findings in primary glioblastomas, was corroborated by gene expression data extracted from the Cancer Genome Atlas. We conclude that PROX1 is a new prognostic biomarker for 1p19q non-codeleted high-grade astrocytomas that have progressed from pre-existing low-grade tumors and harbor IDH mutations.
doi:10.18632/oncotarget.11957
PMCID: PMC5341919  PMID: 27626492
PROX1; malignant astrocytomas; IDH mutations; primary glioblastomas; secondary glioblastomas; Gerotarget
11.  Withholding temozolomide in glioblastoma patients with unmethylated MGMT promoter—still a dilemma? 
Neuro-Oncology  2015;17(11):1425-1427.
doi:10.1093/neuonc/nov198
PMCID: PMC4648310  PMID: 26374690
12.  Development of OXY111A, a novel hypoxia-modifier as a potential antitumor agent in patients with hepato-pancreato-biliary neoplasms - Protocol of a first Ib/IIa clinical trial 
BMC Cancer  2016;16:812.
Background
Solid tumors, such as hepato-pancreato-biliary cancer, develop tumor hypoxia with tumor growth. Despite advances in surgery, a majority of these patients are in an unresectable condition. At this stage standard cytotoxic chemotherapy regimens are applied with limited success. Novel biological treatment options based on an antiangiogenic mechanism of action neglect other hypoxia mediated mechanisms (e.g. epithelial-mesenchymal transition, Warburg effect, and immunological response) leading to an increased invasiveness with a poor outcome.
The novel antihypoxic molecule myo-inositoltrispyrophosphate (ITPP, OXY111A) acts as an allosteric effector of hemoglobin and promotes normoxia in hypoxic tumors. In preclinical studies, tumor growth was reduced and survival prolonged. Additionally, a beneficial side effect profile was observed.
Methods
In this first Ib/IIa clinical trial we will assess safety and tolerability of OXY111A as well as a proof of concept regarding efficacy in patients with non-resectable primary and secondary tumors of the liver, pancreas, and biliary tract. The study design is exploratory, prospective, open-labelled and mono-centric. The study is divided in a dose escalation part with a maximum of 48 subjects and an extension part, in which 21 subjects will be included.
Discussion
The novel antihypoxic compound OXY111A has been tested in several cancer animal models showing beneficial effects for both survival and low side effect profiles. This first in patient application of OXY111A will reveal potential beneficial outcomes if anti-hypoxic therapy is added to standard cytotoxic treatment in patients with primary and secondary hepatopancreatobiliary tumors.
Trial registration
Institution Ethical Board Approval ID: KEK-ZH-Nr. 2014-0374; Swiss regulatory authority Swissmedic (2015DR1009); ClinicalTrials.gov Identifier: NCT02528526, prospectively registered on November 11th, 2014.
doi:10.1186/s12885-016-2855-3
PMCID: PMC5070093  PMID: 27756258
Hypoxia; Hepatopancreatobiliary tumor; Colorectal cancer; Hepatocellular carcinoma; Cholangio carcinoma; Myo-inositol trispyrophosphate; ITPP
13.  ESMO / ASCO Recommendations for a Global Curriculum in Medical Oncology Edition 2016 
Dittrich, Christian | Kosty, Michael | Jezdic, Svetlana | Pyle, Doug | Berardi, Rossana | Bergh, Jonas | El-Saghir, Nagi | Lotz, Jean-Pierre | Österlund, Pia | Pavlidis, Nicholas | Purkalne, Gunta | Awada, Ahmad | Banerjee, Susana | Bhatia, Smita | Bogaerts, Jan | Buckner, Jan | Cardoso, Fatima | Casali, Paolo | Chu, Edward | Close, Julia Lee | Coiffier, Bertrand | Connolly, Roisin | Coupland, Sarah | De Petris, Luigi | De Santis, Maria | de Vries, Elisabeth G E | Dizon, Don S | Duff, Jennifer | Duska, Linda R | Eniu, Alexandru | Ernstoff, Marc | Felip, Enriqueta | Fey, Martin F | Gilbert, Jill | Girard, Nicolas | Glaudemans, Andor W J M | Gopalan, Priya K | Grothey, Axel | Hahn, Stephen M | Hanna, Diana | Herold, Christian | Herrstedt, Jørn | Homicsko, Krisztian | Jones, Dennie V | Jost, Lorenz | Keilholz, Ulrich | Khan, Saad | Kiss, Alexander | Köhne, Claus-Henning | Kunstfeld, Rainer | Lenz, Heinz-Josef | Lichtman, Stuart | Licitra, Lisa | Lion, Thomas | Litière, Saskia | Liu, Lifang | Loehrer, Patrick J | Markham, Merry Jennifer | Markman, Ben | Mayerhoefer, Marius | Meran, Johannes G | Michielin, Olivier | Moser, Elizabeth Charlotte | Mountzios, Giannis | Moynihan, Timothy | Nielsen, Torsten | Ohe, Yuichiro | Öberg, Kjell | Palumbo, Antonio | Peccatori, Fedro Alessandro | Pfeilstöcker, Michael | Raut, Chandrajit | Remick, Scot C | Robson, Mark | Rutkowski, Piotr | Salgado, Roberto | Schapira, Lidia | Schernhammer, Eva | Schlumberger, Martin | Schmoll, Hans-Joachim | Schnipper, Lowell | Sessa, Cristiana | Shapiro, Charles L | Steele, Julie | Sternberg, Cora N | Stiefel, Friedrich | Strasser, Florian | Stupp, Roger | Sullivan, Richard | Tabernero, Josep | Travado, Luzia | Verheij, Marcel | Voest, Emile | Vokes, Everett | Von Roenn, Jamie | Weber, Jeffrey S | Wildiers, Hans | Yarden, Yosef
ESMO Open  2016;1(5):e000097.
The European Society for Medical Oncology (ESMO) and the American Society of Clinical Oncology (ASCO) are publishing a new edition of the ESMO/ASCO Global Curriculum (GC) thanks to contribution of 64 ESMO-appointed and 32 ASCO-appointed authors. First published in 2004 and updated in 2010, the GC edition 2016 answers to the need for updated recommendations for the training of physicians in medical oncology by defining the standard to be fulfilled to qualify as medical oncologists. At times of internationalisation of healthcare and increased mobility of patients and physicians, the GC aims to provide state-of-the-art cancer care to all patients wherever they live. Recent progress in the field of cancer research has indeed resulted in diagnostic and therapeutic innovations such as targeted therapies as a standard therapeutic approach or personalised cancer medicine apart from the revival of immunotherapy, requiring specialised training for medical oncology trainees. Thus, several new chapters on technical contents such as molecular pathology, translational research or molecular imaging and on conceptual attitudes towards human principles like genetic counselling or survivorship have been integrated in the GC. The GC edition 2016 consists of 12 sections with 17 subsections, 44 chapters and 35 subchapters, respectively. Besides renewal in its contents, the GC underwent a principal formal change taking into consideration modern didactic principles. It is presented in a template-based format that subcategorises the detailed outcome requirements into learning objectives, awareness, knowledge and skills. Consecutive steps will be those of harmonising and implementing teaching and assessment strategies.
doi:10.1136/esmoopen-2016-000097
PMCID: PMC5070299  PMID: 27843641
Global curriculum; clinical training; medical oncology; didactic principles; learning objectives
14.  Tumor treating fields: a novel treatment modality and its use in brain tumors 
Neuro-Oncology  2016;18(10):1338-1349.
Tumor treating fields (TTFields) are low-intensity electric fields alternating at an intermediate frequency (200kHz), which have been demonstrated to block cell division and interfere with organelle assembly. This novel treatment modality has shown promise in a variety of tumor types. It has been evaluated in randomized phase 3 trials in glioblastoma (GBM) and demonstrated to prolong progression-free survival (PFS) and overall survival (OS) when administered together with standard maintenance temozolomide (TMZ) chemotherapy in patients with newly diagnosed GBM. TTFields are continuously delivered by 4 transducer arrays consisting each of 9 insulated electrodes that are placed on the patient’s shaved scalp and connected to a portable device. Here we summarize the preclinical data and mechanism of action, the available clinical data, and further outlook of this treatment modality in brain tumors and other cancer indications.
doi:10.1093/neuonc/now182
PMCID: PMC5035531  PMID: 27664860
15.  Does Valproic Acid or Levetiracetam Improve Survival in Glioblastoma? A Pooled Analysis of Prospective Clinical Trials in Newly Diagnosed Glioblastoma 
Journal of Clinical Oncology  2016;34(7):731-739.
Purpose
Symptomatic epilepsy is a common complication of glioblastoma and requires pharmacotherapy. Several uncontrolled retrospective case series and a post hoc analysis of the registration trial for temozolomide indicated an association between valproic acid (VPA) use and improved survival outcomes in patients with newly diagnosed glioblastoma.
Patients and Methods
To confirm the hypothesis suggested above, a combined analysis of survival association of antiepileptic drug use at the start of chemoradiotherapy with temozolomide was performed in the pooled patient cohort (n = 1,869) of four contemporary randomized clinical trials in newly diagnosed glioblastoma: AVAGlio (Avastin in Glioblastoma; NCT00943826), CENTRIC (Cilengitide, Temozolomide, and Radiation Therapy in Treating Patients With Newly Diagnosed Glioblastoma and Methylated Gene Promoter Status; NCT00689221), CORE (Cilengitide, Temozolomide, and Radiation Therapy in Treating Patients With Newly Diagnosed Glioblastoma and Unmethylated Gene Promoter Status; NCT00813943), and Radiation Therapy Oncology Group 0825 (NCT00884741). Progression-free survival (PFS) and overall survival (OS) were compared between: (1) any VPA use and no VPA use at baseline or (2) VPA use both at start of and still after chemoradiotherapy. Results of Cox regression models stratified by trial and adjusted for baseline prognostic factors were analyzed. The same analyses were performed with levetiracetam (LEV).
Results
VPA use at start of chemoradiotherapy was not associated with improved PFS or OS compared with all other patients pooled (PFS: hazard ratio [HR], 0.91; 95% CI, 0.77 to 1.07; P = .241; OS: HR, 0.96; 95% CI, 0.80 to 1.15; P = .633). Furthermore, PFS and OS of patients taking VPA both at start of and still after chemoradiotherapy were not different from those without antiepileptic drug use at both time points (PFS: HR, 0.92; 95% CI, 0.74 to 1.15; P = .467; OS: HR, 1.10; 95% CI, 0.86 to 1.40; P = .440). Similarly, no association with improved outcomes was observed for LEV use.
Conclusion
The results of this analysis do not justify the use of VPA or LEV for reasons other than seizure control in patients with newly diagnosed glioblastoma outside clinical trials.
doi:10.1200/JCO.2015.63.6563
PMCID: PMC5070573  PMID: 26786929
16.  Cilengitide in newly diagnosed glioblastoma: biomarker expression and outcome 
Oncotarget  2016;7(12):15018-15032.
Integrins αvβ3 and αvβ5 regulate angiogenesis and invasiveness in cancer, potentially by modulating activation of the transforming growth factor (TGF)-β pathway. The randomized phase III CENTRIC and phase II CORE trials explored the integrin inhibitor cilengitide in patients with newly diagnosed glioblastoma with versus without O6-methylguanine DNA methyltransferase (MGMT) promoter methylation. These trials failed to meet their primary endpoints.
Immunohistochemistry was used to assess the levels of the target integrins of cilengitide, αvβ3 and αvβ5 integrins, of αvβ8 and of their putative target, phosphorylation of SMAD2, in tumor tissues from CENTRIC (n=274) and CORE (n=224).
αvβ3 and αvβ5 expression correlated well in tumor and endothelial cells, but showed little association with αvβ8 or pSMAD2 levels. In CENTRIC, there was no interaction between the biomarkers and treatment for prediction of outcome. In CORE, higher αvβ3 levels in tumor cells were associated with improved progression-free survival by central review and with improved overall survival in patients treated with cilengitide.
Integrins αvβ3, αvβ5 and αvβ8 are differentially expressed in glioblastoma. Integrin levels do not correlate with the activation level of the canonical TGF-β pathway. αvβ3 integrin expression may predict benefit from integrin inhibition in patients with glioblastoma lacking MGMT promoter methylation.
doi:10.18632/oncotarget.7588
PMCID: PMC4924768  PMID: 26918452
glioblastoma; integrin; pSmad; TGF-β; biomarker
17.  AT-26CLINICAL MANAGEMENT AND OUTCOME OF HISTOLOGICALLY VERIFIED ADULT BRAINSTEM GLIOMAS IN SWITZERLAND: A RETROSPECTIVE ANALYSIS OF 21 PATIENTS 
Neuro-Oncology  2014;16(Suppl 5):v14.
BACKGROUND: Because of low incidence, mixed study populations and paucity of clinical and histological data, the management of adult brainstem gliomas remains non-standardized. We here describe characteristics, treatment and outcome of patients with exclusively histologically confirmed adult brainstem gliomas. METHODS: A retrospective chart review of adults (> age 18 years) was conducted. Brainstem glioma was defined as a glial tumor located in the midbrain, pons or medulla. Characteristics, management and outcome were analyzed. RESULTS: 21 patients (17 males; median age 41 years) were diagnosed between 2004 and 2012 by biopsy (n = 15), partial (n = 4) or complete resection (n = 2). Diagnoses were glioblastoma (WHO grade IV, n = 6), anaplastic astrocytoma (WHO grade III, n = 7), diffuse astrocytoma (WHO grade II, n = 6) and pilocytic astrocytoma (WHO grade I, n = 2). Diffuse gliomas were mainly located in the pons and frequently showed MRI contrast enhancement. Endophytic growth was common (16 versus 5). Postoperative therapy in low-grade (WHO grade I/II) and high-grade gliomas (WHO grade III/IV) consisted of radiotherapy alone (3 in each group), radiochemotherapy (2 versus 6), chemotherapy alone (0 versus 2) or no postoperative therapy (3 versus 1). Median PFS (24.1 versus 5.8 months; log-rank, p = 0.009) and mOS (30.5 versus 11.5 months; log-rank, p = 0.028) was significantly better in WHO grade II than in WHO grade III/IV tumors. Second-line therapy considerably varied. CONCLUSIONS: Histologically verification of adult brainstem glioma is feasible and has an impact on postoperative treatment. Low-grade gliomas can simple be followed or treated with radiotherapy alone. Radiochemotherapy with temozolomide can safely be prescribed for high-grade gliomas without additional CNS toxicities.
doi:10.1093/neuonc/nou237.26
PMCID: PMC4217804
18.  AT-43MULTI-CENTRE, RANDOMIZED, DOUBLE-BLIND PHASE II STUDY COMPARING CEDIRANIB (AZD2171) PLUS GEFITINIB (IRESSA, ZD1839) WITH CEDIRANIB PLUS PLACEBO IN SUBJECTS WITH RECURRENT/PROGRESSIVE GLIOBLASTOMA 
Neuro-Oncology  2014;16(Suppl 5):v18.
BACKGROUND: The vascular endothelial growth factor receptor (VEGFR) 2 tyrosine kinase inhibitor cediranib failed to improve outcome in recurrent glioblastoma in a randomized phase III trial (Batchelor et al.). One resistance mechanism for cediranib is through up-regulation of epidermal growth factor receptor (EGFR). This study was designed to test if the efficacy of cediranib is improved with the addition of gefitinib (an EGFR inhibitor). METHODS: We planned to 1:1 randomize 112 subjects with recurrent/progressive glioblastoma to cediranib + gefitinib (C + G) or cediranib + placebo (C + P) (NCT01310855), with PFS as the primary endpoint. Secondary end-points: OS, radiographic response rate, PFS rate at 6 months, 12 months survival rate, steroid use, time to deterioration of neurological status, safety and tolerability. Recruitment was discontinued early following AstraZeneca's suspension of the cediranib programme. RESULTS: 38 subjects were randomized, the interim results on 34 subjects (17 in each arm) are currently available. 24 male and 10 female. Mean age 54 (range 30-71). KPS ≤80 (35%), >80 (65%). The base-line characteristics for subjects in the 2 arms of the study were well balanced. Median PFS (95% CI) C + G 4.0 mo (2.7, *n/c), C + P 4.1 mo (2.0, 7.3); 6 month PFS C + G 40%, C + P 26%; 12 month PFS n/c; C + G vs C + P HR = 0.49, 95% CI (0.22, 1.11, p = 0.15). OS (mo): Median C + G 7.7 (95% CI 3.8, n/c), C + P 5.5 (95% CI 2.5, 7.3); 12 month n/c; C + G vs C + P HR = 0.359, 95% CI (0.12, 1.1; p = 0.076). No safety concerns. CONCLUSIONS: These interim results demonstrate no difference in PFS, however there was a trend (p = 0.08) for improved OS with the combination. The final results of the study for all 38 subjects will be available. *n/c not calculable due to limited data at time of analysis
doi:10.1093/neuonc/nou237.42
PMCID: PMC4217822
19.  BI-12RTOG 0525 RECURSIVE PARTITIONING ANALYSIS BASED ON CLINICAL AND PROTEIN BIOMARKER PARAMETERS 
Neuro-Oncology  2014;16(Suppl 5):v25.
BACKGROUND: The objective was to revise the clinically-based RTOG RPA (cRPA) model for glioblastoma (GBM) through incorporation of protein biomarkers. METHODS: RTOG 0525 patients with adequate specimens were analyzed for up to 22 protein biomarkers representing key pathways putatively associated with treatment resistance and/or adverse clinical outcome. Protein expression levels were quantified using a molecular microscopy-based approach (AQUA) and cytoplasmic versus nuclear expression was determined. Each protein biomarker was analyzed for prognostic significance by uni- and multivariate (UVA, MVA) Cox regression analysis. Proteins significantly associated with survival along with age, KPS, neurologic function, and surgery status were incorporated into the clinical RPA model (cpRPA). RESULTS: 428 samples were analyzed. On stepwise MVA (n = 164), nuclear MGMT (p = 0.001, HR = 1.84), and cMET (p = 0.001, HR = 1.83) were independently prognostic. The new cpRPA model was developed using 168 patients with all significant protein biomarker data and was comprised of three classes incorporating nuclear MGMT, age, and performance status. The new cpRPA model showed greater separation of prognostic classes of GBM relative to the currently used cRPA model (Median overall-survival for Classes III, IV, and V are 30.0, 16.1, and 11.4 months for cRPA and 21.1, 11.3, and 4.8 months for the cpRPA based on three new cpRPA classes (I-III) (p < 0.001). CONCLUSIONS: Incorporating protein biomarkers with variables in the existing cRPA produces greater separation of the survival curves, suggesting a role for further validation studies. This project was supported by grants U10CA21661, U10CA180868, U10CA180822, U10 CA37422, U24CA180803, RO1CA108633 (To AC), 1RC2CA148190 (To AC) U10CA180850-01 (To AC), 1R01CA169368 (To AC) from the National Cancer Institute (NCI), Brain Tumor Funders Collaborative Grant (To AC), Ohio State University Comprehensive Cancer Center Award (To AC) and Merck & Co.
doi:10.1093/neuonc/nou239.12
PMCID: PMC4217879
20.  EG-05COMBINATION OF GENE COPY GAIN AND EPIGENETIC DEREGULATION ARE ASSOCIATED WITH THE ABERRANT EXPRESSION OF A STEM CELL RELATED HOX-SIGNATURE IN GLIOBLASTOMA 
Neuro-Oncology  2014;16(Suppl 5):v75-v76.
We previously reported a stem cell related HOX gene signature associated with resistance to chemo-radiotherapy (TMZ/RT- > TMZ) in glioblastoma. However, underlying mechanisms triggering overexpression remain mostly elusive. Interestingly, HOX genes are neither involved in the developing brain, nor expressed in normal brain, suggestive of an acquired gene expression signature during gliomagenesis. HOXA genes are located on CHR 7 that displays trisomy in most glioblastoma which strongly impacts gene expression on this chromosome, modulated by local regulatory elements. Furthermore we observed more pronounced DNA methylation across the HOXA locus as compared to non-tumoral brain (Human methylation 450K BeadChip Illumina; 59 glioblastoma, 5 non-tumoral brain sampes). CpG probes annotated for HOX-signature genes, contributing most to the variability, served as input into the analysis of DNA methylation and expression to identify key regulatory regions. The structural similarity of the observed correlation matrices between DNA methylation and gene expression in our cohort and an independent data-set from TCGA (106 glioblastoma) was remarkable (RV-coefficient, 0.84; p-value < 0.0001). We identified a CpG located in the promoter region of the HOXA10 locus exerting the strongest mean negative correlation between methylation and expression of the whole HOX-signature. Applying this analysis the same CpG emerged in the external set. We then determined the contribution of both, gene copy aberration (CNA) and methylation at the selected probe to explain expression of the HOX-signature using a linear model. Statistically significant results suggested an additive effect between gene dosage and methylation at the key CpG identified. Similarly, such an additive effect was also observed in the external data-set. Taken together, we hypothesize that overexpression of the stem-cell related HOX signature is triggered by gain of trisomy 7 and escape from compensatory DNA methylation at positions controlling the effect of enhanced gene dose on expression.
doi:10.1093/neuonc/nou254.5
PMCID: PMC4218099
21.  IT-28VACCINATION AGAINST EPIDERMAL GROWTH FACTOR RECEPTOR VARIANT III IN GLIOBLASTOMA: THE RINDOPEPIMUT COMPASSIONATE USE EXPERIENCE 
Neuro-Oncology  2014;16(Suppl 5):v115-v116.
The tumor-specific epidermal growth factor receptor variant III mutation (EGFRvIII) is widely expressed in glioblastoma and thus represents an attractive target for immunotherapeutic approaches. The investigational vaccine rindopepimut is an EGFRvIII peptide sequence conjugated to keyhole limpet hemocyanin and is administered intradermally with GM-CSF. Previous single-arm studies of rindopepimut in newly diagnosed, resected, EGFRvIII+ glioblastoma have shown encouraging PFS and OS. This compassionate use program provided rindopepimut to 61 EGFRvIII+ glioblastoma patients who were ineligible for ongoing clinical trials. Data are currently available on 42 patients, 12 (29%) with newly diagnosed glioblastoma (resected or inoperable) and 30 (71%) with recurrent disease. MGMT methylation was seen in 9/17, while all tested patients were negative for IDH1 (12/12) and IDH2 (7/7). Median age was 53 years (15-70) and median time from diagnosis was 14.5 months (2.7-58.7). Rindopepimut, administered in combination with temozolomide (57%), bevacizumab (57%), and/or other (17%), was well tolerated, with frequent mild injection site reactions and one potentially treatment-related, serious event of cerebral edema. Median peak rindopepimut-induced anti-EGFRvIII titer was 1:1,200 (<1:100-1:6,553,600). Median treatment duration is currently 3.7 (0.03-60.1) months. Tumor response (>50% shrinkage in measurable disease) was observed in six patients receiving rindopepimut with other agents. One inoperable glioblastoma patient experienced a CR during treatment with rindopepimut, erlotinib, temozolomide, and bevacizumab, and has continued rindopepimut for >5 years without significant toxicity or disease recurrence. Biopsy at recurrence showed EGFRvIII was eliminated in a patient who received rindopepimut and temozolomide for ∼9 months. In patients with newly diagnosed and recurrent glioblastoma, respectively, median PFS was 9.1 and 2.5 months, and median OS was 15.7 and 8.7 months from first vaccination. In conclusion, rindopepimut in combination with various anticancer therapies resulted in robust anti-EGFRvIII humoral response with minimal toxicity. PFS and OS appear promising in this heterogeneous, poor prognosis population.
doi:10.1093/neuonc/nou258.26
PMCID: PMC4218245
22.  Genome-wide DNA methylation detection by MethylCap-seq and Infinium HumanMethylation450 BeadChips: an independent large-scale comparison 
Scientific Reports  2015;5:15375.
Two cost-efficient genome-scale methodologies to assess DNA-methylation are MethylCap-seq and Illumina’s Infinium HumanMethylation450 BeadChips (HM450). Objective information regarding the best-suited methodology for a specific research question is scant. Therefore, we performed a large-scale evaluation on a set of 70 brain tissue samples, i.e. 65 glioblastoma and 5 non-tumoral tissues. As MethylCap-seq coverages were limited, we focused on the inherent capacity of the methodology to detect methylated loci rather than a quantitative analysis. MethylCap-seq and HM450 data were dichotomized and performances were compared using a gold standard free Bayesian modelling procedure. While conditional specificity was adequate for both approaches, conditional sensitivity was systematically higher for HM450. In addition, genome-wide characteristics were compared, revealing that HM450 probes identified substantially fewer regions compared to MethylCap-seq. Although results indicated that the latter method can detect more potentially relevant DNA-methylation, this did not translate into the discovery of more differentially methylated loci between tumours and controls compared to HM450. Our results therefore indicate that both methodologies are complementary, with a higher sensitivity for HM450 and a far larger genome-wide coverage for MethylCap-seq, but also that a more comprehensive character does not automatically imply more significant results in biomarker studies.
doi:10.1038/srep15375
PMCID: PMC4612737  PMID: 26482909
23.  GENETIC AND EPIGENETIC DEREGULATION ARE ASSOCIATED WITH THE ABERRANT EXPRESSION OF A STEM CELL RELATED HOX GENE SIGNATURE IN GLIOBLASTOMA 
Neuro-Oncology  2014;16(Suppl 3):iii8.
BACKGROUND: (blind field). METHODS: Multidimensional molecular profiles of 70 gliobalstoma and 4 non-tumoral brain samples were obtained, comprising gene expression, DNA methylation, and gene copy number alterations. Validation datasets were downloaded from the public domain including The Cancer Genome Atlas (TCGA) Project. For 4 glioma-derived sphere lines marks for active and inactive chromatin were sought by ChIP-PCR. RESULTS: Prominent DNA methylation was observed in the HOXA gene cluster in glioblastoma and respective glioma-derived spheres, in contrast to non tumoral brain. High concordance of correlations between CpG methylation in the HOXA cluster and expression of the HOX-signature was observed with external datasets (RV 0.68 and 0.84). In search of the regulatory region explaining the overexpression of the HOX signature we identified a CpG island encompassing a promoter region in the HOXA locus with strong negative correlation of CpG methylation and expression. A model was constructed explaining the probability of HOX-high in glioblastoma by combining information on gene dosage and methylation at the CpGs identified. The model was successful validated in external datasets. Further experimental evidence supportive for the relevance of epigenetic modulation at this site came from concordance between the methylation status and the presence of marks for active or inactive chromatin, respectively, in HOX-high versus HOX-low sphere lines. CONCLUSIONS: The acquired overexpression of the stem-cell related HOX signature in glioblastoma is in accordance with aberrant de-repression of HOX genes mediated at least in part by increased gene dosage attenuated by DNA methylation. SECONDARY CATEGORY: Tumor Biology.
doi:10.1093/neuonc/nou206.26
PMCID: PMC4144491
24.  Questions regarding the optimal use of bevacizumab in glioblastoma: a moving target 
Neuro-Oncology  2014;16(6):765-767.
doi:10.1093/neuonc/nou092
PMCID: PMC4022233  PMID: 24826844
25.  Reply to M.C. Chamberlain 
Journal of Clinical Oncology  2014;32(15):1634-1635.
doi:10.1200/JCO.2013.54.9717
PMCID: PMC4026583  PMID: 24752060

Results 1-25 (48)