PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  All-trans retinoic acid modulates the retinoic acid receptor-alpha in promyelocytic cells. 
Journal of Clinical Investigation  1991;88(6):2150-2154.
We have recently demonstrated that all-trans retinoic acid (RA), the active metabolite of vitamin A, is an efficient alternative to chemotherapy in the treatment of acute promyelocytic leukemia (AML3). We have further shown that, in these AML3 cells, the gene of the retinoic acid receptor-alpha (RAR alpha) is translocated from chromosome 17 to chromosome 15, and fused to a new gene, PLM. This results in the expression of both normal and chimeric RAR alpha transcripts in AML3 cells. The PLM-RAR alpha protein may account for the impairment of differentiation and thus leukemogenesis, but not for the paradoxical efficacy of RA in these cells. In an attempt to elucidate RA's differentiative effect in AML3 patients, the present work examined the in vitro and in vivo modulation of the normal RAR alpha transcripts by all-trans RA in seven cases of AML3. In all samples, Northern blot analysis revealed a low expression of the two normal RAR alpha transcripts compared with other human myeloid leukemic cells. No modulation was observed after 4-8 d of in vivo therapy with all-trans RA 45 mg/m2 per d. In vitro incubation with all-trans RA, however, increased the level of expression of the normal RAR alpha transcripts in AML3 cells but not in other AML leukemic subtypes. This modulation of the two normal RAR alpha transcripts appeared to be an early and primary event of RA's differentiating effect. We therefore suggest that up-regulation of the normal RAR alpha gene expression by pharmacological concentrations of all-trans RA may restore the normal differentiation pathway in these cells.
Images
PMCID: PMC295826  PMID: 1661301
2.  The MLL recombinome of acute leukemias in 2013 
Leukemia  2013;27(11):2165-2176.
Chromosomal rearrangements of the human MLL (mixed lineage leukemia) gene are associated with high-risk infant, pediatric, adult and therapy-induced acute leukemias. We used long-distance inverse-polymerase chain reaction to characterize the chromosomal rearrangement of individual acute leukemia patients. We present data of the molecular characterization of 1590 MLL-rearranged biopsy samples obtained from acute leukemia patients. The precise localization of genomic breakpoints within the MLL gene and the involved translocation partner genes (TPGs) were determined and novel TPGs identified. All patients were classified according to their gender (852 females and 745 males), age at diagnosis (558 infant, 416 pediatric and 616 adult leukemia patients) and other clinical criteria. Combined data of our study and recently published data revealed a total of 121 different MLL rearrangements, of which 79 TPGs are now characterized at the molecular level. However, only seven rearrangements seem to be predominantly associated with illegitimate recombinations of the MLL gene (∼90%): AFF1/AF4, MLLT3/AF9, MLLT1/ENL, MLLT10/AF10, ELL, partial tandem duplications (MLL PTDs) and MLLT4/AF6, respectively. The MLL breakpoint distributions for all clinical relevant subtypes (gender, disease type, age at diagnosis, reciprocal, complex and therapy-induced translocations) are presented. Finally, we present the extending network of reciprocal MLL fusions deriving from complex rearrangements.
doi:10.1038/leu.2013.135
PMCID: PMC3826032  PMID: 23628958
MLL; chromosomal translocations; translocation partner genes; acute leukemia; ALL; AML

Results 1-3 (3)