PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (51)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
Document Types
1.  31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016): part one 
Lundqvist, Andreas | van Hoef, Vincent | Zhang, Xiaonan | Wennerberg, Erik | Lorent, Julie | Witt, Kristina | Sanz, Laia Masvidal | Liang, Shuo | Murray, Shannon | Larsson, Ola | Kiessling, Rolf | Mao, Yumeng | Sidhom, John-William | Bessell, Catherine A. | Havel, Jonathan | Schneck, Jonathan | Chan, Timothy A. | Sachsenmeier, Eliot | Woods, David | Berglund, Anders | Ramakrishnan, Rupal | Sodre, Andressa | Weber, Jeffrey | Zappasodi, Roberta | Li, Yanyun | Qi, Jingjing | Wong, Philip | Sirard, Cynthia | Postow, Michael | Newman, Walter | Koon, Henry | Velcheti, Vamsidhar | Callahan, Margaret K. | Wolchok, Jedd D. | Merghoub, Taha | Lum, Lawrence G. | Choi, Minsig | Thakur, Archana | Deol, Abhinav | Dyson, Gregory | Shields, Anthony | Haymaker, Cara | Uemura, Marc | Murthy, Ravi | James, Marihella | Wang, Daqing | Brevard, Julie | Monaghan, Catherine | Swann, Suzanne | Geib, James | Cornfeld, Mark | Chunduru, Srinivas | Agrawal, Sudhir | Yee, Cassian | Wargo, Jennifer | Patel, Sapna P. | Amaria, Rodabe | Tawbi, Hussein | Glitza, Isabella | Woodman, Scott | Hwu, Wen-Jen | Davies, Michael A. | Hwu, Patrick | Overwijk, Willem W. | Bernatchez, Chantale | Diab, Adi | Massarelli, Erminia | Segal, Neil H. | Ribrag, Vincent | Melero, Ignacio | Gangadhar, Tara C. | Urba, Walter | Schadendorf, Dirk | Ferris, Robert L. | Houot, Roch | Morschhauser, Franck | Logan, Theodore | Luke, Jason J. | Sharfman, William | Barlesi, Fabrice | Ott, Patrick A. | Mansi, Laura | Kummar, Shivaani | Salles, Gilles | Carpio, Cecilia | Meier, Roland | Krishnan, Suba | McDonald, Dan | Maurer, Matthew | Gu, Xuemin | Neely, Jaclyn | Suryawanshi, Satyendra | Levy, Ronald | Khushalani, Nikhil | Wu, Jennifer | Zhang, Jinyu | Basher, Fahmin | Rubinstein, Mark | Bucsek, Mark | Qiao, Guanxi | MacDonald, Cameron | Hylander, Bonnie | Repasky, Elizabeth | Chatterjee, Shilpak | Daenthanasanmak, Anusara | Chakraborty, Paramita | Toth, Kyle | Meek, Megan | Garrett-Mayer, Elizabeth | Nishimura, Michael | Paulos, Chrystal | Beeson, Craig | Yu, Xuezhong | Mehrotra, Shikhar | Zhao, Fei | Evans, Kathy | Xiao, Christine | Holtzhausen, Alisha | Hanks, Brent A. | Scharping, Nicole | Menk, Ashley V. | Moreci, Rebecca | Whetstone, Ryan | Dadey, Rebekah | Watkins, Simon | Ferris, Robert | Delgoffe, Greg M. | Peled, Jonathan | Devlin, Sean | Staffas, Anna | Lumish, Melissa | Rodriguez, Kori Porosnicu | Ahr, Katya | Perales, Miguel | Giralt, Sergio | Taur, Ying | Pamer, Eric | van den Brink, Marcel R. M. | Jenq, Robert | Annels, Nicola | Pandha, Hardev | Simpson, Guy | Mostafid, Hugh | Harrington, Kevin | Melcher, Alan | Grose, Mark | Davies, Bronwyn | Au, Gough | Karpathy, Roberta | Shafren, Darren | Ricca, Jacob | Merghoub, Taha | Wolchok, Jedd D. | Zamarin, Dmitriy | Batista, Luciana | Marliot, Florence | Vasaturo, Angela | Carpentier, Sabrina | Poggionovo, Cécile | Frayssinet, Véronique | Fieschi, Jacques | Van den Eynde, Marc | Pagès, Franck | Galon, Jérôme | Hermitte, Fabienne | Smith, Sean G. | Nguyen, Khue | Ravindranathan, Sruthi | Koppolu, Bhanu | Zaharoff, David | Schvartsman, Gustavo | Bassett, Roland | McQuade, Jennifer L. | Haydu, Lauren E. | Davies, Michael A. | Tawbi, Hussein | Glitza, Isabella | Kline, Douglas | Chen, Xiufen | Fosco, Dominick | Kline, Justin | Overacre, Abigail | Chikina, Maria | Brunazzi, Erin | Shayan, Gulidanna | Horne, William | Kolls, Jay | Ferris, Robert L. | Delgoffe, Greg M. | Bruno, Tullia C. | Workman, Creg | Vignali, Dario | Adusumilli, Prasad S. | Ansa-Addo, Ephraim A | Li, Zihai | Gerry, Andrew | Sanderson, Joseph P. | Howe, Karen | Docta, Roslin | Gao, Qian | Bagg, Eleanor A. L. | Tribble, Nicholas | Maroto, Miguel | Betts, Gareth | Bath, Natalie | Melchiori, Luca | Lowther, Daniel E. | Ramachandran, Indu | Kari, Gabor | Basu, Samik | Binder-Scholl, Gwendolyn | Chagin, Karen | Pandite, Lini | Holdich, Tom | Amado, Rafael | Zhang, Hua | Glod, John | Bernstein, Donna | Jakobsen, Bent | Mackall, Crystal | Wong, Ryan | Silk, Jonathan D. | Adams, Katherine | Hamilton, Garth | Bennett, Alan D. | Brett, Sara | Jing, Junping | Quattrini, Adriano | Saini, Manoj | Wiedermann, Guy | Gerry, Andrew | Jakobsen, Bent | Binder-Scholl, Gwendolyn | Brewer, Joanna | Duong, MyLinh | Lu, An | Chang, Peter | Mahendravada, Aruna | Shinners, Nicholas | Slawin, Kevin | Spencer, David M. | Foster, Aaron E. | Bayle, J. Henri | Bergamaschi, Cristina | Ng, Sinnie Sin Man | Nagy, Bethany | Jensen, Shawn | Hu, Xintao | Alicea, Candido | Fox, Bernard | Felber, Barbara | Pavlakis, George | Chacon, Jessica | Yamamoto, Tori | Garrabrant, Thomas | Cortina, Luis | Powell, Daniel J. | Donia, Marco | Kjeldsen, Julie Westerlin | Andersen, Rikke | Westergaard, Marie Christine Wulff | Bianchi, Valentina | Legut, Mateusz | Attaf, Meriem | Dolton, Garry | Szomolay, Barbara | Ott, Sascha | Lyngaa, Rikke | Hadrup, Sine Reker | Sewell, Andrew Kelvin | Svane, Inge Marie | Fan, Aaron | Kumai, Takumi | Celis, Esteban | Frank, Ian | Stramer, Amanda | Blaskovich, Michelle A. | Wardell, Seth | Fardis, Maria | Bender, James | Lotze, Michael T. | Goff, Stephanie L. | Zacharakis, Nikolaos | Assadipour, Yasmine | Prickett, Todd D. | Gartner, Jared J. | Somerville, Robert | Black, Mary | Xu, Hui | Chinnasamy, Harshini | Kriley, Isaac | Lu, Lily | Wunderlich, John | Robbins, Paul F. | Rosenberg, Steven | Feldman, Steven A. | Trebska-McGowan, Kasia | Kriley, Isaac | Malekzadeh, Parisa | Payabyab, Eden | Sherry, Richard | Rosenberg, Steven | Goff, Stephanie L. | Gokuldass, Aishwarya | Blaskovich, Michelle A. | Kopits, Charlene | Rabinovich, Brian | Lotze, Michael T. | Green, Daniel S. | Kamenyeva, Olena | Zoon, Kathryn C. | Annunziata, Christina M. | Hammill, Joanne | Helsen, Christopher | Aarts, Craig | Bramson, Jonathan | Harada, Yui | Yonemitsu, Yoshikazu | Helsen, Christopher | Hammill, Joanne | Mwawasi, Kenneth | Denisova, Galina | Bramson, Jonathan | Giri, Rajanish | Jin, Benjamin | Campbell, Tracy | Draper, Lindsey M. | Stevanovic, Sanja | Yu, Zhiya | Weissbrich, Bianca | Restifo, Nicholas P. | Trimble, Cornelia L. | Rosenberg, Steven | Hinrichs, Christian S. | Tsang, Kwong | Fantini, Massimo | Hodge, James W. | Fujii, Rika | Fernando, Ingrid | Jochems, Caroline | Heery, Christopher | Gulley, James | Soon-Shiong, Patrick | Schlom, Jeffrey | Jing, Weiqing | Gershan, Jill | Blitzer, Grace | Weber, James | McOlash, Laura | Johnson, Bryon D. | Kiany, Simin | Gangxiong, Huang | Kleinerman, Eugenie S. | Klichinsky, Michael | Ruella, Marco | Shestova, Olga | Kenderian, Saad | Kim, Miriam | Scholler, John | June, Carl H. | Gill, Saar | Moogk, Duane | Zhong, Shi | Yu, Zhiya | Liadi, Ivan | Rittase, William | Fang, Victoria | Dougherty, Janna | Perez-Garcia, Arianne | Osman, Iman | Zhu, Cheng | Varadarajan, Navin | Restifo, Nicholas P. | Frey, Alan | Krogsgaard, Michelle | Landi, Daniel | Fousek, Kristen | Mukherjee, Malini | Shree, Ankita | Joseph, Sujith | Bielamowicz, Kevin | Byrd, Tiara | Ahmed, Nabil | Hegde, Meenakshi | Lee, Sylvia | Byrd, David | Thompson, John | Bhatia, Shailender | Tykodi, Scott | Delismon, Judy | Chu, Liz | Abdul-Alim, Siddiq | Ohanian, Arpy | DeVito, Anna Marie | Riddell, Stanley | Margolin, Kim | Magalhaes, Isabelle | Mattsson, Jonas | Uhlin, Michael | Nemoto, Satoshi | Villarroel, Patricio Pérez | Nakagawa, Ryosuke | Mule, James J. | Mailloux, Adam W. | Mata, Melinda | Nguyen, Phuong | Gerken, Claudia | DeRenzo, Christopher | Spencer, David M. | Gottschalk, Stephen | Mathieu, Mélissa | Pelletier, Sandy | Stagg, John | Turcotte, Simon | Minutolo, Nicholas | Sharma, Prannda | Tsourkas, Andrew | Powell, Daniel J. | Mockel-Tenbrinck, Nadine | Mauer, Daniela | Drechsel, Katharina | Barth, Carola | Freese, Katharina | Kolrep, Ulrike | Schult, Silke | Assenmacher, Mario | Kaiser, Andrew | Mullinax, John | Hall, MacLean | Le, Julie | Kodumudi, Krithika | Royster, Erica | Richards, Allison | Gonzalez, Ricardo | Sarnaik, Amod | Pilon-Thomas, Shari | Nielsen, Morten | Krarup-Hansen, Anders | Hovgaard, Dorrit | Petersen, Michael Mørk | Loya, Anand Chainsukh | Junker, Niels | Svane, Inge Marie | Rivas, Charlotte | Parihar, Robin | Gottschalk, Stephen | Rooney, Cliona M. | Qin, Haiying | Nguyen, Sang | Su, Paul | Burk, Chad | Duncan, Brynn | Kim, Bong-Hyun | Kohler, M. Eric | Fry, Terry | Rao, Arjun A. | Teyssier, Noam | Pfeil, Jacob | Sgourakis, Nikolaos | Salama, Sofie | Haussler, David | Richman, Sarah A. | Nunez-Cruz, Selene | Gershenson, Zack | Mourelatos, Zissimos | Barrett, David | Grupp, Stephan | Milone, Michael | Rodriguez-Garcia, Alba | Robinson, Matthew K. | Adams, Gregory P. | Powell, Daniel J. | Santos, João | Havunen, Riikka | Siurala, Mikko | Cervera-Carrascón, Víctor | Parviainen, Suvi | Antilla, Marjukka | Hemminki, Akseli | Sethuraman, Jyothi | Santiago, Laurelis | Chen, Jie Qing | Dai, Zhimin | Wardell, Seth | Bender, James | Lotze, Michael T. | Sha, Huizi | Su, Shu | Ding, Naiqing | Liu, Baorui | Stevanovic, Sanja | Pasetto, Anna | Helman, Sarah R. | Gartner, Jared J. | Prickett, Todd D. | Robbins, Paul F. | Rosenberg, Steven A. | Hinrichs, Christian S. | Bhatia, Shailender | Burgess, Melissa | Zhang, Hui | Lee, Tien | Klingemann, Hans | Soon-Shiong, Patrick | Nghiem, Paul | Kirkwood, John M. | Rossi, John M. | Sherman, Marika | Xue, Allen | Shen, Yueh-wei | Navale, Lynn | Rosenberg, Steven A. | Kochenderfer, James N. | Bot, Adrian | Veerapathran, Anandaraman | Gokuldass, Aishwarya | Stramer, Amanda | Sethuraman, Jyothi | Blaskovich, Michelle A. | Wiener, Doris | Frank, Ian | Santiago, Laurelis | Rabinovich, Brian | Fardis, Maria | Bender, James | Lotze, Michael T. | Waller, Edmund K. | Li, Jian-Ming | Petersen, Christopher | Blazar, Bruce R. | Li, Jingxia | Giver, Cynthia R. | Wang, Ziming | Grossenbacher, Steven K. | Sturgill, Ian | Canter, Robert J. | Murphy, William J. | Zhang, Congcong | Burger, Michael C. | Jennewein, Lukas | Waldmann, Anja | Mittelbronn, Michel | Tonn, Torsten | Steinbach, Joachim P. | Wels, Winfried S. | Williams, Jason B. | Zha, Yuanyuan | Gajewski, Thomas F. | Williams, LaTerrica C. | Krenciute, Giedre | Kalra, Mamta | Louis, Chrystal | Gottschalk, Stephen | Xin, Gang | Schauder, David | Jiang, Aimin | Joshi, Nikhil | Cui, Weiguo | Zeng, Xue | Menk, Ashley V. | Scharping, Nicole | Delgoffe, Greg M. | Zhao, Zeguo | Hamieh, Mohamad | Eyquem, Justin | Gunset, Gertrude | Bander, Neil | Sadelain, Michel | Askmyr, David | Abolhalaj, Milad | Lundberg, Kristina | Greiff, Lennart | Lindstedt, Malin | Angell, Helen K. | Kim, Kyoung-Mee | Kim, Seung-Tae | Kim, Sung | Sharpe, Alan D. | Ogden, Julia | Davenport, Anna | Hodgson, Darren R. | Barrett, Carl | Lee, Jeeyun | Kilgour, Elaine | Hanson, Jodi | Caspell, Richard | Karulin, Alexey | Lehmann, Paul | Ansari, Tameem | Schiller, Annemarie | Sundararaman, Srividya | Lehmann, Paul | Hanson, Jodi | Roen, Diana | Karulin, Alexey | Lehmann, Paul | Ayers, Mark | Levitan, Diane | Arreaza, Gladys | Liu, Fang | Mogg, Robin | Bang, Yung-Jue | O’Neil, Bert | Cristescu, Razvan | Friedlander, Philip | Wassman, Karl | Kyi, Chrisann | Oh, William | Bhardwaj, Nina | Bornschlegl, Svetlana | Gustafson, Michael P. | Gastineau, Dennis A. | Parney, Ian F. | Dietz, Allan B. | Carvajal-Hausdorf, Daniel | Mani, Nikita | Velcheti, Vamsidhar | Schalper, Kurt | Rimm, David | Chang, Serena | Levy, Ronald | Kurland, John | Krishnan, Suba | Ahlers, Christoph Matthias | Jure-Kunkel, Maria | Cohen, Lewis | Maecker, Holden | Kohrt, Holbrook | Chen, Shuming | Crabill, George | Pritchard, Theresa | McMiller, Tracee | Pardoll, Drew | Pan, Fan | Topalian, Suzanne | Danaher, Patrick | Warren, Sarah | Dennis, Lucas | White, Andrew M. | D’Amico, Leonard | Geller, Melissa | Disis, Mary L. | Beechem, Joseph | Odunsi, Kunle | Fling, Steven | Derakhshandeh, Roshanak | Webb, Tonya J. | Dubois, Sigrid | Conlon, Kevin | Bryant, Bonita | Hsu, Jennifer | Beltran, Nancy | Müller, Jürgen | Waldmann, Thomas | Duhen, Rebekka | Duhen, Thomas | Thompson, Lucas | Montler, Ryan | Weinberg, Andrew | Kates, Max | Early, Brandon | Yusko, Erik | Schreiber, Taylor H. | Bivalacqua, Trinity J. | Ayers, Mark | Lunceford, Jared | Nebozhyn, Michael | Murphy, Erin | Loboda, Andrey | Kaufman, David R. | Albright, Andrew | Cheng, Jonathan | Kang, S. Peter | Shankaran, Veena | Piha-Paul, Sarina A. | Yearley, Jennifer | Seiwert, Tanguy | Ribas, Antoni | McClanahan, Terrill K. | Cristescu, Razvan | Mogg, Robin | Ayers, Mark | Albright, Andrew | Murphy, Erin | Yearley, Jennifer | Sher, Xinwei | Liu, Xiao Qiao | Nebozhyn, Michael | Lunceford, Jared | Joe, Andrew | Cheng, Jonathan | Plimack, Elizabeth | Ott, Patrick A. | McClanahan, Terrill K. | Loboda, Andrey | Kaufman, David R. | Forrest-Hay, Alex | Guyre, Cheryl A. | Narumiya, Kohei | Delcommenne, Marc | Hirsch, Heather A. | Deshpande, Amit | Reeves, Jason | Shu, Jenny | Zi, Tong | Michaelson, Jennifer | Law, Debbie | Trehu, Elizabeth | Sathyanaryanan, Sriram | Hodkinson, Brendan P. | Hutnick, Natalie A. | Schaffer, Michael E. | Gormley, Michael | Hulett, Tyler | Jensen, Shawn | Ballesteros-Merino, Carmen | Dubay, Christopher | Afentoulis, Michael | Reddy, Ashok | David, Larry | Fox, Bernard | Jayant, Kumar | Agrawal, Swati | Agrawal, Rajendra | Jeyakumar, Ghayathri | Kim, Seongho | Kim, Heejin | Silski, Cynthia | Suisham, Stacey | Heath, Elisabeth | Vaishampayan, Ulka | Vandeven, Natalie | Viller, Natasja Nielsen | O’Connor, Alison | Chen, Hui | Bossen, Bolette | Sievers, Eric | Uger, Robert | Nghiem, Paul | Johnson, Lisa | Kao, Hsiang-Fong | Hsiao, Chin-Fu | Lai, Shu-Chuan | Wang, Chun-Wei | Ko, Jenq-Yuh | Lou, Pei-Jen | Lee, Tsai-Jan | Liu, Tsang-Wu | Hong, Ruey-Long | Kearney, Staci J. | Black, Joshua C. | Landis, Benjamin J. | Koegler, Sally | Hirsch, Brooke | Gianani, Roberto | Kim, Jeffrey | He, Ming-Xiao | Zhang, Bingqing | Su, Nan | Luo, Yuling | Ma, Xiao-Jun | Park, Emily | Kim, Dae Won | Copploa, Domenico | Kothari, Nishi | doo Chang, Young | Kim, Richard | Kim, Namyong | Lye, Melvin | Wan, Ee | Kim, Namyong | Lye, Melvin | Wan, Ee | Kim, Namyong | Lye, Melvin | Wan, Ee | Knaus, Hanna A. | Berglund, Sofia | Hackl, Hubert | Karp, Judith E. | Gojo, Ivana | Luznik, Leo | Hong, Henoch S. | Koch, Sven D. | Scheel, Birgit | Gnad-Vogt, Ulrike | Kallen, Karl-Josef | Wiegand, Volker | Backert, Linus | Kohlbacher, Oliver | Hoerr, Ingmar | Fotin-Mleczek, Mariola | Billingsley, James M. | Koguchi, Yoshinobu | Conrad, Valerie | Miller, William | Gonzalez, Iliana | Poplonski, Tomasz | Meeuwsen, Tanisha | Howells-Ferreira, Ana | Rattray, Rogan | Campbell, Mary | Bifulco, Carlo | Dubay, Christopher | Bahjat, Keith | Curti, Brendan | Urba, Walter | Vetsika, E-K | Kallergi, G. | Aggouraki, Despoina | Lyristi, Z. | Katsarlinos, P. | Koinis, Filippos | Georgoulias, V. | Kotsakis, Athanasios | Martin, Nathan T. | Aeffner, Famke | Kearney, Staci J. | Black, Joshua C. | Cerkovnik, Logan | Pratte, Luke | Kim, Rebecca | Hirsch, Brooke | Krueger, Joseph | Gianani, Roberto | Martínez-Usatorre, Amaia | Jandus, Camilla | Donda, Alena | Carretero-Iglesia, Laura | Speiser, Daniel E. | Zehn, Dietmar | Rufer, Nathalie | Romero, Pedro | Panda, Anshuman | Mehnert, Janice | Hirshfield, Kim M. | Riedlinger, Greg | Damare, Sherri | Saunders, Tracie | Sokol, Levi | Stein, Mark | Poplin, Elizabeth | Rodriguez-Rodriguez, Lorna | Silk, Ann | Chan, Nancy | Frankel, Melissa | Kane, Michael | Malhotra, Jyoti | Aisner, Joseph | Kaufman, Howard L. | Ali, Siraj | Ross, Jeffrey | White, Eileen | Bhanot, Gyan | Ganesan, Shridar | Monette, Anne | Bergeron, Derek | Amor, Amira Ben | Meunier, Liliane | Caron, Christine | Morou, Antigoni | Kaufmann, Daniel | Liberman, Moishe | Jurisica, Igor | Mes-Masson, Anne-Marie | Hamzaoui, Kamel | Lapointe, Rejean | Mongan, Ann | Ku, Yuan-Chieh | Tom, Warren | Sun, Yongming | Pankov, Alex | Looney, Tim | Au-Young, Janice | Hyland, Fiona | Conroy, Jeff | Morrison, Carl | Glenn, Sean | Burgher, Blake | Ji, He | Gardner, Mark | Mongan, Ann | Omilian, Angela R. | Conroy, Jeff | Bshara, Wiam | Angela, Omilian | Burgher, Blake | Ji, He | Glenn, Sean | Morrison, Carl | Mongan, Ann | Obeid, Joseph M. | Erdag, Gulsun | Smolkin, Mark E. | Deacon, Donna H. | Patterson, James W. | Chen, Lieping | Bullock, Timothy N. | Slingluff, Craig L. | Obeid, Joseph M. | Erdag, Gulsun | Deacon, Donna H. | Slingluff, Craig L. | Bullock, Timothy N. | Loffredo, John T. | Vuyyuru, Raja | Beyer, Sophie | Spires, Vanessa M. | Fox, Maxine | Ehrmann, Jon M. | Taylor, Katrina A. | Korman, Alan J. | Graziano, Robert F. | Page, David | Sanchez, Katherine | Ballesteros-Merino, Carmen | Martel, Maritza | Bifulco, Carlo | Urba, Walter | Fox, Bernard | Patel, Sapna P. | De Macedo, Mariana Petaccia | Qin, Yong | Reuben, Alex | Spencer, Christine | Guindani, Michele | Bassett, Roland | Wargo, Jennifer | Racolta, Adriana | Kelly, Brian | Jones, Tobin | Polaske, Nathan | Theiss, Noah | Robida, Mark | Meridew, Jeffrey | Habensus, Iva | Zhang, Liping | Pestic-Dragovich, Lidija | Tang, Lei | Sullivan, Ryan J. | Logan, Theodore | Khushalani, Nikhil | Margolin, Kim | Koon, Henry | Olencki, Thomas | Hutson, Thomas | Curti, Brendan | Roder, Joanna | Blackmon, Shauna | Roder, Heinrich | Stewart, John | Amin, Asim | Ernstoff, Marc S. | Clark, Joseph I. | Atkins, Michael B. | Kaufman, Howard L. | Sosman, Jeffrey | Weber, Jeffrey | McDermott, David F. | Weber, Jeffrey | Kluger, Harriet | Halaban, Ruth | Snzol, Mario | Roder, Heinrich | Roder, Joanna | Asmellash, Senait | Steingrimsson, Arni | Blackmon, Shauna | Sullivan, Ryan J. | Wang, Chichung | Roman, Kristin | Clement, Amanda | Downing, Sean | Hoyt, Clifford | Harder, Nathalie | Schmidt, Guenter | Schoenmeyer, Ralf | Brieu, Nicolas | Yigitsoy, Mehmet | Madonna, Gabriele | Botti, Gerardo | Grimaldi, Antonio | Ascierto, Paolo A. | Huss, Ralf | Athelogou, Maria | Hessel, Harald | Harder, Nathalie | Buchner, Alexander | Schmidt, Guenter | Stief, Christian | Huss, Ralf | Binnig, Gerd | Kirchner, Thomas | Sellappan, Shankar | Thyparambil, Sheeno | Schwartz, Sarit | Cecchi, Fabiola | Nguyen, Andrew | Vaske, Charles | Hembrough, Todd
Journal for Immunotherapy of Cancer  2016;4(Suppl 1):1-106.
doi:10.1186/s40425-016-0172-7
PMCID: PMC5123387
2.  Randomized, Prospective Evaluation Comparing Intensity of Lymphodepletion Before Adoptive Transfer of Tumor-Infiltrating Lymphocytes for Patients With Metastatic Melanoma 
Journal of Clinical Oncology  2016;34(20):2389-2397.
Purpose
Adoptive cell transfer, the infusion of large numbers of activated autologous lymphocytes, can mediate objective tumor regression in a majority of patients with metastatic melanoma (52 of 93; 56%). Addition and intensification of total body irradiation (TBI) to the preparative lymphodepleting chemotherapy regimen in sequential trials improved objective partial and complete response (CR) rates. Here, we evaluated the importance of adding TBI to the adoptive transfer of tumor-infiltrating lymphocytes (TIL) in a randomized fashion.
Patients and Methods
A total of 101 patients with metastatic melanoma, including 76 patients with M1c disease, were randomly assigned to receive nonmyeloablative chemotherapy with or without 1,200 cGy TBI before transfer of tumor-infiltrating lymphcytes. Primary end points were CR rate (as defined by Response Evaluation Criteria in Solid Tumors v1.0) and overall survival (OS). Clinical and laboratory data were analyzed for correlates of response.
Results
CR rates were 24% in both groups (12 of 50 v 12 of 51), and OS was also similar (median OS, 38.2 v 36.6 months; hazard ratio, 1.11; 95% CI, 0.65 to 1.91; P = .71). Thrombotic microangiopathy was an adverse event unique to the TBI arm and occurred in 13 of 48 treated patients. With a median potential follow-up of 40.9 months, only one of 24 patients who achieved a CR recurred.
Conclusion
Adoptive cell transfer can mediate durable complete regressions in 24% of patients with metastatic melanoma, with median survival > 3 years. Results were similar using chemotherapy preparative regimens with or without addition of TBI.
doi:10.1200/JCO.2016.66.7220
PMCID: PMC4981979  PMID: 27217459
3.  Identification of an immunogenic subset of metastatic uveal melanoma 
Purpose
Uveal melanoma (UM) is a rare melanoma variant with no effective therapies once metastases develop. Although durable cancer regression can be achieved in metastatic cutaneous melanoma (CM) with immunotherapies that augment naturally existing anti-tumor T cell responses, the role of these treatments for metastatic UM remains unclear. We sought to define the relative immunogenicity of these two melanoma variants and determine whether endogenous anti-tumor immune responses exist against UM.
Experimental Design
We surgically procured liver metastases from UM (n=16) and CM (n=35) patients and compared the attributes of their respective tumor cell populations and their infiltrating T cells (TIL) using clinical radiology, histopathology, immune assays and whole exomic sequencing.
Results
Despite having common melanocytic lineage, UM and CM metastases differed in their melanin content, tumor differentiation antigen expression, and somatic mutational profile. Immunologic analysis of TIL cultures expanded from these divergent forms of melanoma revealed CM TIL were predominantly composed of CD8+ T cells, while UM TIL were CD4+ dominant. Reactivity against autologous tumor was significantly greater in CM TIL compared to UM TIL. However, we identified TIL from a subset of UM patients which had robust anti-tumor reactivity comparable in magnitude to CM TIL. Interestingly, the absence of melanin pigmentation in the parental tumor strongly correlated with the generation of highly reactive UM TIL.
Conclusions
The discovery of this immunogenic group of UM metastases should prompt clinical efforts to determine whether patients who harbor these unique tumors can benefit from immunotherapies that exploit endogenous anti-tumor T cell populations.
doi:10.1158/1078-0432.CCR-15-2294
PMCID: PMC4854785  PMID: 26712692
Uveal melanoma; cutaneous melanoma; T cells; liver metastases
4.  A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T cell receptor: Long term follow up and correlates with response 
Purpose
Although adoptive cell therapy can be highly effective for the treatment of patients with melanoma, the application of this approach to the treatment of other solid tumors has been limited. The observation that the cancer germline (CG) antigen NY-ESO-1 is expressed in 70–80% and in approximately 25% of patients with synovial cell sarcoma and melanoma, respectively, prompted us to perform this first-in-man clinical trial employing the adoptive transfer of autologous PBMC that were retrovirally transduced with an NY-ESO-1 reactive TCR to heavily pretreated patients bearing these metastatic cancers.
Experimental Design
HLA-*0201 patients with metastatic synovial cell sarcoma or melanoma refractory to standard treatments and whose cancers expressed NY-ESO-1 received autologous TCR-transduced T cells following a lymphodepleting preparative chemotherapy. Response rates using Response Evaluation Criteria in Solid Tumors (RECIST), as well as immunologic correlates of response, are presented in this report.
Results
Eleven of 18 patients with NY-ESO-1+ synovial cell sarcomas (61%) and 11 of 20 patients with NY-ESO-1 positive melanomas (55%) who received autologous T cells transduced with an NY-ESO-1-reactive TCR demonstrated objective clinical responses. The estimated overall three and five year survival rates for patients with synovial cell sarcoma were 38 and 14%, respectively, while the corresponding estimated survival rates for patients with melanoma were both 33%.
Conclusions
The adoptive transfer of autologous T cells transduced with a retrovirus encoding a TCR against an HLA-A*0201 restricted NY-ESO-1 epitope can be an effective therapy for some patients bearing synovial cell sarcomas and melanomas that are refractory to other treatments.
doi:10.1158/1078-0432.CCR-14-2708
PMCID: PMC4361810  PMID: 25538264
5.  Persistence of CTL clones targeting melanocyte differentiation antigens was insufficient to mediate significant melanoma regression in humans 
Purpose
Adoptive transfer of autologous tumor infiltrating lymphocytes (TIL) can mediate durable cancer regression in selected patients with metastatic melanoma. However, the tumor antigens associated with these favorable responses remain unclear. We hypothesized that a clinical strategy involving the iterative adoptive transfer of selected autologous antigen specific T cell clones could help systematically define immunologic targets associated with successful cancer therapy, without the interpretative ambiguity of transferring polyclonal populations. Here, we evaluated the clinical efficacy of CD8+ T cell clones specific for the melanocyte differentiation antigens (MDA), gp100 and MART-1, respectively.
Experimental Design
We conducted two consecutive phase II clinical trials involving the adoptive transfer of highly selected autologous antigen specific CD8+ T cell clones against gp100 and MART-1, respectively. Fifteen HLA-A2+ treatment-refractory metastatic melanoma patients received highly avid MDA specific CD8+ T cell clones specific for either gp100 (n=10) or MART-1 (n=5) with or without intravenous interleukin-2 after a lymphodepleting myeloablative preparative regimen.
Results
Of the fifteen treated patients, we observed immune mediated targeting of skin melanocytes in eleven patients (73%) and clonal engraftment in eight patients (53%) after cell transfer. There were only transient minor tumor regressions observed, but no objective tumor responses based upon RECIST criteria.
Conclusions
Despite successful clonal repopulation and evidence of in vivo antigen targeting, the poor therapeutic efficacy after the adoptive transfer of autologous MDA specific T cells raises significant concerns regarding future immunotherapy efforts targeting this class of tumor antigens.
doi:10.1158/1078-0432.CCR-14-2208
PMCID: PMC4315711  PMID: 25424856
Immunotherapy; CTL clones; melanocyte differentiation antigens; metastatic melanoma
6.  Human Melanoma Metastases Demonstrate Non-Stochastic Site-Specific Antigen Heterogeneity that Correlates with T Cell Infiltration 
Purpose
Metastasis heterogeneity presents a significant obstacle to the development of targeted cancer therapeutics. In this study, we sought to establish from a large series of human melanoma metastases whether there exists a determined pattern in tumor cellular heterogeneity that may guide the development of future targeted immunotherapies.
Experimental Design
From a cohort of 1514 patients with metastatic melanoma, biopsies were procured over a 17 year period from 3086 metastatic tumors involving various anatomic sites. To allow specific tumor cell profiling, we utilized established immunohistochemical methods to perform semi-quantitative assessment for a panel of prototypic melanocyte differentiation antigens (MDAs) including gp100, MART-1, and tyrosinase (TYR). To gain insight into the endogenous host immune response against these tumors, we further characterized tumor cell expression of MHC I and MHC II and, also, the concomitant CD4+ and CD8+ T cell infiltrate.
Results
Tumor cell profiling for MDA expression demonstrated an anatomic site-specific pattern of antigen expression that was highest in brain, intermediate in soft tissues/lymph nodes, and lowest in visceral metastases. Hierarchical clustering analysis supported that melanoma metastases have a phylogenetically determined, rather than a stochastic, pattern of antigen expression that varies by anatomic site. Further, TYR expression was more frequently lost in metastatic sites outside of the brain and was uniquely correlated with both endogenous CD8+ and CD4+ T cell infiltrate.
Conclusion
Site-specific antigen heterogeneity represents a novel attribute for human melanoma metastases that should be considered in future therapy development and when assessing the responsiveness to antigen specific immunotherapies.
doi:10.1158/1078-0432.CCR-13-2690
PMCID: PMC4024351  PMID: 24647571
Melanoma; metastases; antigen; immunoediting
7.  Complete Regression of Metastatic Cervical Cancer After Treatment With Human Papillomavirus–Targeted Tumor-Infiltrating T Cells 
Journal of Clinical Oncology  2015;33(14):1543-1550.
Purpose
Metastatic cervical cancer is a prototypical chemotherapy-refractory epithelial malignancy for which better treatments are needed. Adoptive T-cell therapy (ACT) is emerging as a promising cancer treatment, but its study in epithelial malignancies has been limited. This study was conducted to determine if ACT could mediate regression of metastatic cervical cancer.
Patients and Methods
Patients enrolled onto this protocol were diagnosed with metastatic cervical cancer and had previously received platinum-based chemotherapy or chemoradiotherapy. Patients were treated with a single infusion of tumor-infiltrating T cells selected when possible for human papillomavirus (HPV) E6 and E7 reactivity (HPV-TILs). Cell infusion was preceded by lymphocyte-depleting chemotherapy and was followed by administration of aldesleukin.
Results
Three of nine patients experienced objective tumor responses (two complete responses and one partial response). The two complete responses were ongoing 22 and 15 months after treatment, respectively. One partial response was 3 months in duration. The HPV reactivity of T cells in the infusion product (as measured by interferon gamma production, enzyme-linked immunospot, and CD137 upregulation assays) correlated positively with clinical response (P = .0238 for all three assays). In addition, the frequency of HPV-reactive T cells in peripheral blood 1 month after treatment was positively associated with clinical response (P = .0238).
Conclusion
Durable, complete regression of metastatic cervical cancer can occur after a single infusion of HPV-TILs. Exploratory studies suggest a correlation between HPV reactivity of the infusion product and clinical response. Continued investigation of this therapy is warranted.
doi:10.1200/JCO.2014.58.9093
PMCID: PMC4417725  PMID: 25823737
8.  Somatic mutation of GRIN2A in malignant melanoma results in loss of tumor suppressor activity via aberrant NMDAR complex formation 
The ionotropic glutamate receptors (NMDAR) are composed of large complexes of multi-protein subunits creating ion channels in the cell plasma membranes that allow for influx or efflux of mono- or divalent cations (e.g., Ca2+) important for synaptic transmissions, cellular migration and survival. Recently, we discovered the high prevalence of somatic mutations within one of the ionotropic glutamate receptors, GRIN2A, in malignant melanoma. Functional characterization of a subset of GRIN2A mutants demonstrated a loss of NMDAR complex formation between GRIN1 and GRIN2A, increased anchorage-independent growth in soft agar, and increased migration. Somatic mutation of GRIN2A results in a dominant negative effect inhibiting the tumor suppressive phenotype of wild type GRIN2A in melanoma. Depletion of endogenous GRIN2A in melanoma cells expressing wild-type GRIN2A resulted in increased proliferation compared to control. In contrast, shRNA depletion of GRIN2A in mutant cell lines slightly reduced proliferation. Our data shows that somatic mutation of GRIN2A results in increased survival and is the first such report to demonstrate the functional importance of GRIN2A mutations in melanoma and the significance ionotropic glutamate receptor signaling plays in malignant melanoma.
doi:10.1038/jid.2014.190
PMCID: PMC4134353  PMID: 24739903
10.  Longitudinal study of recurrent metastatic melanoma cell lines underscores the individuality of cancer biology 
Recurrent metastatic melanoma provides a unique opportunity to analyze disease evolution in metastatic cancer. Here, we followed 8 patients with an unusually prolonged history of metastatic melanoma, who developed a total of 26 recurrences over several years. Cell lines derived from each metastasis were analyzed by comparative genomic hybridization and global transcript analysis. We observed that conserved, patient-specific characteristics remain stable in recurrent metastatic melanoma even after years and several recurrences. Differences among individual patients exceeded within-patient lesion variability, both at the DNA copy number (p<0.001) and RNA gene expression level (p<0.001). Conserved patient-specific traits included expression of several cancer/testis antigens and the c-kit proto-oncogene throughout multiple recurrences. Interestingly, subsequent recurrences of different patients did not display consistent or convergent changes toward a more aggressive disease phenotype. Finally, sequential recurrences of the same patient did not descend progressively from each other, as irreversible mutations, such as homozygous deletions were frequently not inherited from previous metastases. This study suggests that the late evolution of metastatic melanoma, which dramatically turns an indolent disease into a lethal phase, is prone to preserve case-specific traits over multiple recurrences and occurs through a series of random events that do not follow a consistent step-wise process.
doi:10.1038/jid.2013.495
PMCID: PMC3989423  PMID: 24270663
11.  Gene expression profiling using Nanostring digital RNA counting to identify potential target antigens for melanoma immunotherapy 
Purpose
The success of immunotherapy for the treatment of metastatic cancer is contingent on the identification of appropriate target antigens. Potential targets must be expressed on tumors but demonstrate restricted expression on normal tissues. To maximize patient eligibility, ideal target antigens should be expressed on a high percentage of tumors within a histology and potentially in multiple different malignancies.
Design
A Nanostring probe set was designed containing 97 genes, 72 of which are considered potential candidate genes for immunotherapy. Five established melanoma cell lines, 59 resected metastatic melanoma tumors and 31 normal tissue samples were profiled and analyzed using Nanostring technology.
Results
Of the 72 potential target genes, 33 were overexpressed in over 20% of studied melanoma tumor samples. Twenty of those genes were identified as differentially expressed between normal tissues and tumor samples by ANOVA analysis. Analysis of normal tissue gene expression identified 7 genes with limited normal tissue expression that warrant further consideration as potential immunotherapy target antigens: CSAG2, MAGEA3, MAGEC2, IL13RA2, PRAME, CSPG4 and SOX10. These genes were highly overexpressed on a large percentage of the studied tumor samples with expression in a limited number of normal tissue samples at much lower levels.
Conclusion
The application of Nanostring RNA counting technology was used to directly quantitate the gene expression levels of multiple potential tumor antigens. Analysis of cell lines, 59 tumors, and normal tissues identified 7 potential immunotherapy targets for the treatment of melanoma that could increase the number of patients potentially eligible for adoptive immunotherapy.
doi:10.1158/1078-0432.CCR-13-1253
PMCID: PMC3778100  PMID: 24021875
Nanostring; immunotherapy; cancer testis antigens; CSPG4; SOX10
12.  Randomized Selection Design Trial Evaluating CD8+-Enriched Versus Unselected Tumor-Infiltrating Lymphocytes for Adoptive Cell Therapy for Patients With Melanoma 
Journal of Clinical Oncology  2013;31(17):2152-2159.
Purpose
Adoptive cell therapy (ACT) with autologous tumor-infiltrating lymphocytes (TILs) and high-dose interleukin-2 (IL-2) administered to lymphodepleted patients with melanoma can cause durable tumor regressions. The optimal TIL product for ACT is unknown.
Patients and Methods
Patients with metastatic melanoma were prospectively assigned to receive unselected young TILs versus CD8+-enriched TILs. All patients received lymphodepleting chemotherapy and high-dose IL-2 therapy and were assessed for response, toxicity, survival, and immunologic end points.
Results
Thirty-four patients received unselected young TILs with a median of 8.0% CD4+ lymphocytes, and 35 patients received CD8+-enriched TILs with a median of 0.3% CD4+ lymphocytes. One month after TIL infusion, patients who received CD8+-enriched TILs had significantly fewer CD4+ peripheral blood lymphocytes (P = .01). Twelve patients responded to therapy with unselected young TILs (according to Response Evaluation Criteria in Solid Tumors [RECIST]), and seven patients responded to CD8+-enriched TILs (35% v 20%; not significant). Retrospective studies showed a significant association between response to treatment and interferon gamma secretion by the infused TILs in response to autologous tumor (P = .04), and in the subgroup of patients who received TILs from subcutaneous tumors, eight of 15 patients receiving unselected young TILs responded but none of eight patients receiving CD8+-enriched TILs responded.
Conclusion
A randomized selection design trial was feasible for improving individualized TIL therapy. Since the evidence indicates that CD8+-enriched TILs are not more potent therapeutically and they are more laborious to prepare, future studies should focus on unselected young TILs.
doi:10.1200/JCO.2012.46.6441
PMCID: PMC3731980  PMID: 23650429
13.  PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors  
The Journal of Clinical Investigation  2014;124(5):2246-2259.
Adoptive transfer of tumor-infiltrating lymphocytes (TILs) can mediate regression of metastatic melanoma; however, TILs are a heterogeneous population, and there are no effective markers to specifically identify and select the repertoire of tumor-reactive and mutation-specific CD8+ lymphocytes. The lack of biomarkers limits the ability to study these cells and develop strategies to enhance clinical efficacy and extend this therapy to other malignancies. Here, we evaluated unique phenotypic traits of CD8+ TILs and TCR β chain (TCRβ) clonotypic frequency in melanoma tumors to identify patient-specific repertoires of tumor-reactive CD8+ lymphocytes. In all 6 tumors studied, expression of the inhibitory receptors programmed cell death 1 (PD-1; also known as CD279), lymphocyte-activation gene 3 (LAG-3; also known as CD223), and T cell immunoglobulin and mucin domain 3 (TIM-3) on CD8+ TILs identified the autologous tumor-reactive repertoire, including mutated neoantigen-specific CD8+ lymphocytes, whereas only a fraction of the tumor-reactive population expressed the costimulatory receptor 4-1BB (also known as CD137). TCRβ deep sequencing revealed oligoclonal expansion of specific TCRβ clonotypes in CD8+PD-1+ compared with CD8+PD-1– TIL populations. Furthermore, the most highly expanded TCRβ clonotypes in the CD8+ and the CD8+PD-1+ populations recognized the autologous tumor and included clonotypes targeting mutated antigens. Thus, in addition to the well-documented negative regulatory role of PD-1 in T cells, our findings demonstrate that PD-1 expression on CD8+ TILs also accurately identifies the repertoire of clonally expanded tumor-reactive cells and reveal a dual importance of PD-1 expression in the tumor microenvironment.
doi:10.1172/JCI73639
PMCID: PMC4001555  PMID: 24667641
16.  Phenotype and Function of T Cells Infiltrating Visceral Metastases from Gastrointestinal Cancers and Melanoma: Implications for Adoptive Cell Transfer Therapy 
Adoptive cell transfer of tumor-infiltrating lymphocytes (TILs) can mediate cancer regression in patients with metastatic melanoma, but whether this approach can be applied to common epithelial malignancies remains unclear. In this study, we compared the phenotype and function of TILs derived from liver and lung metastases from patients with gastrointestinal (GI) cancers (n = 14) or melanoma (n = 42). Fewer CD3+ T cells were found to infiltrate GI compared with melanoma metastases, but the proportions of CD8+ cells, T cell differentiation stage, and expression of costimulatory molecules were similar for both tumor types. Clinical-scale expansion up to ∼50 × 109 T cells on average was obtained for all patients with GI cancer and melanoma. From GI tumors, however, TIL outgrowth in high-dose IL-2 yielded 22 ± 1.4% CD3+CD8+ cells compared with 63 ± 2.4% from melanoma (p < 0.001). IFN-γ ELISA demonstrated MHC class I–mediated reactivity of TIL against autologous tumor in 5 of 7 GI cancer patients tested (9% of 188 distinct TIL cultures) and in 9 of 10 melanoma patients (43% of 246 distinct TIL cultures). In these assays, MHC class I–mediated up-regulation of CD137 (4-1BB) expression on CD8+ cells suggested that 0–3% of TILs expanded from GI cancer metastases were tumor-reactive. This study implies that the main challenge to the development of TIL adoptive cell transfer for metastatic GI cancers may not be the in vitro expansion of bulk TILs, but the ability to select and enrich for tumor-reactive T cells.
doi:10.4049/jimmunol.1300538
PMCID: PMC3748336  PMID: 23904171
17.  Durable Complete Responses in Heavily Pretreated Patients with Metastatic Melanoma Using T Cell Transfer Immunotherapy 
Purpose
Most treatments for patients with metastatic melanoma have a low rate of complete regression and thus overall survival in these patients is poor. We have investigated the ability of adoptive cell transfer utilizing autologous, tumor infiltrating lymphocytes to mediate durable complete regressions in heavily pre-treated patients with metastatic melanoma.
Experimental Design
Ninety-three patients with measurable metastatic melanoma were treated with the adoptive transfer of autologous tumor-infiltrating lymphocytes administered in conjunction with interleukin-2 following a lymphodepleting preparative regimen on three sequential clinical trials. Ninety-five percent of these patients had progressive disease following a prior systemic treatment. Median potential followup was 62 months.
Results
Objective response rates by RECIST criteria in the three trials using lymphodepleting preparative regimens (chemotherapy alone or with 2Gy or 12Gy irradiation) were 49%, 52% and 72%. Twenty of the 93 patients (22%) achieved a complete tumor regression and 19 have ongoing complete regressions beyond three years The actuarial three and five year survivals for the entire group were 36% and 29% respectively but for the 20 complete responders were 100% and 93%. The likelihood of achieving a complete response was similar regardless of prior therapy. Factors associated with objective response included longer telomeres of the infused cells, the number of CD8+ CD27+ cells infused and the persistence of the infused cells in the circulation at one month (all p2<0.001).
Conclusions
Cell transfer therapy with autologous tumor infiltrating can mediate durable complete responses in patients with metastatic melanoma and has similar efficacy irrespective of prior treatment.
doi:10.1158/1078-0432.CCR-11-0116
PMCID: PMC3131487  PMID: 21498393
18.  Minimally invasive liver resection to obtain tumor-infiltrating lymphocytes for adoptive cell therapy in patients with metastatic melanoma 
Background
Adoptive cell therapy (ACT) with tumor-infiltrating lymphocytes (TIL) in patients with metastatic melanoma has been reported to have a 56% overall response rate with 20% complete responders. To increase the availability of this promising therapy in patients with advanced melanoma, a minimally invasive approach to procure tumor for TIL generation is warranted.
Methods
A feasibility study was performed to determine the safety and efficacy of laparoscopic liver resection to generate TIL for ACT. Retrospective review of a prospectively maintained database identified 22 patients with advanced melanoma and visceral metastasis (AJCC Stage M1c) who underwent laparoscopic liver resection between 1 October 2005 and 31 July 2011. The indication for resection in all patients was to receive postoperative ACT with TIL.
Results
Twenty patients (91%) underwent resection utilizing a closed laparoscopic technique, one required hand-assistance and another required conversion to open resection. Median intraoperative blood loss was 100 mL with most cases performed without a Pringle maneuver. Median hospital stay was 3 days. Three (14%) patients experienced a complication from resection with no mortality. TIL were generated from 18 of 22 (82%) patients. Twelve of 15 (80%) TIL tested were found to have in vitro tumor reactivity. Eleven patients (50%) received the intended ACT. Two patients were rendered no evidence of disease after surgical resection, with one undergoing delayed ACT with generated TIL after relapse. Objective tumor response was seen in 5 of 11 patients (45%) who received TIL, with one patient experiencing an ongoing complete response (32+ months).
Conclusions
Laparoscopic liver resection can be performed with minimal morbidity and serve as an effective means to procure tumor to generate therapeutic TIL for ACT to patients with metastatic melanoma.
doi:10.1186/1477-7819-10-113
PMCID: PMC3408344  PMID: 22726267
adoptive cell therapy; advanced melanoma; hepatobiliary; laparoscopy; tumor infiltrating lymphocytes
19.  Assessment of Ovarian Function Following Preparative Chemotherapy and Total Body Radiation for Adoptive Cell Therapy 
To analyze treatment induced gonadal damage and premature ovarian failure after adoptive cell therapy (ACT) following a cytotoxic lymphodepleting preparative regimen. Records of 66 consecutive females who received adoptive cell therapy at the Surgery Branch, National Cancer Institute, NIH (Bethesda, Maryland) were reviewed. Patients received a conditioning regimen of high dose cyclophosphamide (60mg/kg × 2 doses) and fludarabine (25mg/m2 × 5 doses). Some patients also received total body radiation (TBI) at 200 or 600 cGy. Assessment of ovarian function was determined by analysis of monthly FSH levels, menstrual history and symptoms. Among patients with serum available and normal pre-treatment ovarian function, 21 had a preparative regimen with chemotherapy alone and 5 patients had received chemotherapy with total body radiation. 9 (43%) patients in the chemotherapy cohort and all five patients in the chemotherapy plus TBI cohort had persistently elevated FSH levels and were given the diagnosis of premature ovarian failure. 12 (57%) patients had normal FSH levels at six months post treatment. Median age of all patients at treatment was 34 years. Median age of women retaining normal ovarian function was 30 (range, 19 to 45) vs. 41 years (range, 30 to 49) for those who did not regain function. The conditioning regimen of two doses of cyclophosphamide (60mg/kg) and five doses of fludarabine (25mg/m2) may induce gonadal damage and premature ovarian failure. Younger age at treatment was associated with a higher frequency of normal ovarian function post-treatment, whereas adding total body radiation was associated with a high risk of ovarian failure.
doi:10.1097/CJI.0b013e3182187508
PMCID: PMC3090150  PMID: 21499128
Ovarian toxicity; Follicle Stimulating Hormone; Ovarian Recovery; Premature Ovarian Failure; Cyclophosphamide
20.  Tumor Regression in Patients With Metastatic Synovial Cell Sarcoma and Melanoma Using Genetically Engineered Lymphocytes Reactive With NY-ESO-1 
Journal of Clinical Oncology  2011;29(7):917-924.
Purpose
Adoptive immunotherapy using tumor-infiltrating lymphocytes represents an effective cancer treatment for patients with metastatic melanoma. The NY-ESO-1 cancer/testis antigen, which is expressed in 80% of patients with synovial cell sarcoma and approximately 25% of patients with melanoma and common epithelial tumors, represents an attractive target for immune-based therapies. The current trial was carried out to evaluate the ability of adoptively transferred autologous T cells transduced with a T-cell receptor (TCR) directed against NY-ESO-1 to mediate tumor regression in patients with metastatic melanoma and synovial cell sarcoma.
Patients and Methods
A clinical trial was performed in patients with metastatic melanoma or metastatic synovial cell sarcoma refractory to all standard treatments. Patients with NY-ESO-1–positive tumors were treated with autologous TCR-transduced T cells plus 720,000 iU/kg of interleukin-2 to tolerance after preparative chemotherapy. Objective clinical responses were evaluated using Response Evaluation Criteria in Solid Tumors (RECIST).
Results
Objective clinical responses were observed in four of six patients with synovial cell sarcoma and five of 11 patients with melanoma bearing tumors expressing NY-ESO-1. Two of 11 patients with melanoma demonstrated complete regressions that persisted after 1 year. A partial response lasting 18 months was observed in one patient with synovial cell sarcoma.
Conclusion
These observations indicate that TCR-based gene therapies directed against NY-ESO-1 represent a new and effective therapeutic approach for patients with melanoma and synovial cell sarcoma. To our knowledge, this represents the first demonstration of the successful treatment of a nonmelanoma tumor using TCR-transduced T cells.
doi:10.1200/JCO.2010.32.2537
PMCID: PMC3068063  PMID: 21282551
21.  CD8+ enriched “young” tumor infiltrating lymphocytes can mediate regression of metastatic melanoma 
Purpose
Tumor infiltrating lymphocytes (TIL) and interleukin (IL)-2 administered following lymphodepletion can cause the durable complete regression of bulky metastatic melanoma in patients refractory to approved treatments. However, the generation of a unique tumor-reactive TIL culture for each patient may be prohibitively difficult. We therefore investigated the clinical and immunological impact of unscreened, CD8+ enriched “young” TIL.
Experimental Design
Methods were developed for generating TIL that minimized the time in culture and eliminated the individualized tumor-reactivity screening step. Thirty-three patients were treated with these CD8+ enriched young TIL and IL-2 following non-myeloablative lymphodepletion (NMA). Twenty-three additional patients were treated with CD8+ enriched young TIL and IL-2 after lymphodepletion with NMA and 6Gy of total body irradiation (TBI).
Results
Young TIL cultures for therapy were successfully established from 83% of 122 consecutive melanoma patients. Nineteen of 33 patients (58%) treated with CD8+ enriched young TIL and NMA had an objective response (RECIST) including three complete responders. Eleven of 23 patients (48%) treated with TIL and 6Gy TBI had an objective response including two complete responders. At one month after TIL infusion the absolute CD8+ cell numbers in the periphery were highly correlated with response.
Conclusion
This study shows that a rapid and simplified method can be used to reliably generate CD8+ enriched young TIL for administration as an individualized therapy for advanced melanoma, and may allow this potentially effective treatment to be applied at other institutions and to reach additional patients.
doi:10.1158/1078-0432.CCR-10-1297
PMCID: PMC2978753  PMID: 20668005
adoptive immunotherapy; interleukin-2; lymphodepletion; personalized medicine; homeostasis
22.  Selection of CD8+PD-1+ lymphocytes in fresh human melanomas enriches for tumor-reactive T-cells 
CD8+ Tumor infiltrating lymphocyte (TIL) in human melanomas express high levels of PD-1 and are functionally impaired. However, adoptive cell therapy using in vitro-expanded TIL can be a highly effective therapy for patients with advanced melanoma. This discrepancy led us to further analyze the CD8+PD-1+ TILs. We found that the percentage of PD-1 expressing CD8+ T-cells was higher in the tumor digests that generate tumor-reactive TILs after in vitro culture in IL-2 (P=0.0007). Also sorted and expanded CD8+PD-1+ T-cells in tumor digests showed much higher tumor specific IFN-γ production compared with CD8+PD-1- T-cells. These results suggested that tumor-specific CD8+ T-cells in melanoma tumor digests are largely PD-1+, and this population can recover function after culturing in IL-2. PD-1 has been reported as an inhibitory receptor on T-cells. We found that the in vitro functional suppression of cultured-TILs from native levels of PD-L1 expression on melanomas was minimal, and moreover expression level of PD-1 on CD8+ tumor-specific TILs decreased during the culture. As a consequence, the PD-1 receptor can be a useful biomarker for enriching tumor specific T-cells from fresh melanomas.
doi:10.1097/CJI.0b013e3181fad2b0
PMCID: PMC2980947  PMID: 20948441
PD-1; PD-L1; TIL; tumor immunity; melanoma; tumor digest; tumor microenvironment
23.  Frequent Mutations in the MITF Pathway in Melanoma 
Pigment cell & melanoma research  2009;22(4):435-444.
Summary
MITF (Microphthalmia-associated transcription factor) is involved in melanocyte cell development, pigmentation and neoplasia. To determine whether MITF is somatically mutated in melanoma, we compared the sequence of MITF from primary and metastatic lesions to patient matched normal DNA. In the 50 metastatic melanoma tumor lines analyzed, we discovered four samples that had genomic amplifications of MITF and four had MITF mutations in the regions encoding the transactivation, DNA binding or basic, helix-loop-helix domains. Sequence analysis for SOX10, a transcription factor which both acts upstream of MITF and synergizes with MITF, identified an additional three samples with frameshift or nonsense mutations. MITF and SOX10 were found to be mutated in a mutually exclusive fashion, possibly suggesting disruption in a common genetic pathway. Taken together we found that over 20% of the metastatic melanoma cases had alterations in the MITF pathway. We show that the MITF pathway is also altered in primary melanomas: 2/26 demonstrated mutations in MITF and 6/55 demonstrated mutations in SOX10. Our findings suggest that altered MITF function during melanomagenesis can be achieved by MITF amplification, MITF single base substitutions or by mutation of its regulator SOX10.
doi:10.1111/j.1755-148X.2009.00578.x
PMCID: PMC2728363  PMID: 19422606
5-7 MITF; SOX10; melanoma; mutations; p21; sequencing
24.  Analysis of the Tyrosine Kinome in Melanoma Reveals Recurrent Mutations in ERBB4 
Nature genetics  2009;41(10):1127-1132.
Tyrosine phosphorylation is important in signaling pathways underlying tumorigenesis. A mutational analysis of the Protein Tyrosine Kinase (PTK) gene family in cutaneous metastatic melanoma identified 30 somatic mutations in the kinase domain of 19 PTKs. The whole of the coding region of these 19 PTKs was further evaluated for somatic mutations in a total of 79 melanoma samples. This analysis revealed novel ERBB4 mutations in 19% of melanoma patients and that an additional two kinases (FLT1 and PTK2B) are mutated in 10% of melanomas. Seven missense mutations in the most commonly altered PTK (ERBB4) were examined and found to increase kinase activity and transformation ability. Melanoma cells expressing mutant ERBB4 had reduced cell growth after shRNA–mediated knockdown of ERBB4 or treatment with the ERBB inhibitor lapatinib. These studies might lead to personalized therapeutics specifically targeting the kinases that are mutationally altered in individual melanomas.
doi:10.1038/ng.438
PMCID: PMC2897709  PMID: 19718025
25.  Single-Pass, Closed-System Rapid Expansion of Lymphocyte Cultures for Adoptive Cell Therapy 
Journal of immunological methods  2009;345(1-2):90-99.
Adoptive cell therapy (ACT) for metastatic melanoma involves the ex vivo expansion and re-infusion of tumor infiltrating lymphocytes (TIL) obtained from resected specimens. With an overall objective response rate of fifty-six percent, this T-cell immunotherapy provides an appealing alternative to other therapies, including conventional therapies with lower response rates. However, there are significant regulatory and logistical concerns associated with the ex vivo activation and large scale expansion of these cells. The best current practice uses a rapid expansion protocol (REP) consisting of an ex vivo process that occurs in tissue culture flasks (T-flasks) and gas-permeable bags, utilizes OKT3 (anti-CD3 monoclonal antibody), recombinant human interleukin-2, and irradiated peripheral blood mononuclear cells to initiate rapid lymphocyte growth. A major limitation to the widespread delivery of therapy to large numbers of melanoma patients is the open system in which a REP is initiated. To address this problem, we have investigated the initiation, expansion and harvest at clinical scale of TIL in a closed-system continuous perfusion bioreactor. Each cell product met all safety criteria for patient treatment and by head-to-head comparison had a similar potency and phenotype as cells grown in control T-flasks and gas-permeable bags. However, the currently available bioreactor cassettes were limited in the total cell numbers that could be generated. This bioreactor may simplify the process of the rapid expansion of TIL under stringent regulatory conditions thereby enabling other institutions to pursue this form of ACT.
doi:10.1016/j.jim.2009.04.009
PMCID: PMC2700005  PMID: 19389403
Adoptive cell therapy; tumor infiltrating lymphocyte; rapid expansion; closed system bioreactor; rhIL-2

Results 1-25 (51)