PMCC PMCC

Search tips
Search criteria

Advanced

Important Notice

PubMed Central Canada to be taken offline in February 2018

On February 23, 2018, PubMed Central Canada (PMC Canada) will be taken offline permanently. No author manuscripts will be deleted, and the approximately 2,900 manuscripts authored by Canadian Institutes of Health Research (CIHR)-funded researchers currently in the archive will be copied to the National Research Council’s (NRC) Digital Repository over the coming months. These manuscripts along with all other content will also remain publicly searchable on PubMed Central (US) and Europe PubMed Central, meaning such manuscripts will continue to be compliant with the Tri-Agency Open Access Policy on Publications.

Read more

Results 1-23 (23)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
1.  Lymphatic Mapping and Sentinel Lymph Node Biopsy in Women With Squamous Cell Carcinoma of the Vulva: A Gynecologic Oncology Group Study 
Journal of Clinical Oncology  2012;30(31):3786-3791.
Purpose
To determine the safety of sentinel lymph node biopsy as a replacement for inguinal femoral lymphadenectomy in selected women with vulvar cancer.
Patients and Methods
Eligible women had squamous cell carcinoma, at least 1-mm invasion, and tumor size ≥ 2 cm and ≤ 6 cm. The primary tumor was limited to the vulva, and there were no groin lymph nodes that were clinically suggestive of cancer. All women underwent intraoperative lymphatic mapping, sentinel lymph node biopsy, and inguinal femoral lymphadenectomy. Histologic ultra staging of the sentinel lymph node was prescribed.
Results
In all, 452 women underwent the planned procedures, and 418 had at least one sentinel lymph node identified. There were 132 node-positive women, including 11 (8.3%) with false-negative nodes. Twenty-three percent of the true-positive patients were detected by immunohistochemical analysis of the sentinel lymph node. The sensitivity was 91.7% (90% lower confidence bound, 86.7%) and the false-negative predictive value (1-negative predictive value) was 3.7% (90% upper confidence bound, 6.1%). In women with tumor less than 4 cm, the false-negative predictive value was 2.0% (90% upper confidence bound, 4.5%).
Conclusion
Sentinel lymph node biopsy is a reasonable alternative to inguinal femoral lymphadenectomy in selected women with squamous cell carcinoma of the vulva.
doi:10.1200/JCO.2011.41.2528
PMCID: PMC3478573  PMID: 22753905
2.  Management of Endometrial Precancers 
Obstetrics and gynecology  2012;120(5):1160-1175.
In the United States, endometrial cancer is the most commonly diagnosed cancer of the female reproductive system. Strategies to sensitively and accurately diagnose premalignant endometrial lesions are sorely needed. We reviewed studies pertaining to the diagnostic challenges of endometrial precancers, their predictive value, and evidence to support management strategies. Currently, two diagnostic schema are in use; the 4-class WHO94 hyperplasia system, based on morphologic features of architectural complexity and nuclear atypia, and more recently, the 2-class endometrial intraepithelial neoplasia system, which is quantitative. Diagnosis should employ criteria and terminology which distinguish between clinicopathologic entities that can be managed differently. In some instances, such as for women with hereditary nonpolyposis colon cancer (HNPCC), biomarkers may aid in diagnosis, but the clinical utility of biomarkers has yet to be determined. Total hysterectomy is curative for atypical endometrial hyperplasia or endometrial intraepithelial neoplasia, and provides a definitive standard for assessment of a concurrent carcinoma, where clinically appropriate. If hysterectomy is performed for atypical endometrial hyperplasia or endometrial intraepithelial neoplasia, intraoperative assessment of the uterine specimen for occult carcinoma is desirable, but optional. Nonsurgical management may be appropriate for patients who wish to preserve fertility or those for whom surgery is not a viable option. Treatment with progestin therapy may provide a safe alternative to hysterectomy; however, clinical trials of hormonal therapies for atypical endometrial hyperplasia or endometrial intraepithelial neoplasia have not yet established a standard regimen. Future studies will need to determine the optimal non-surgical management of AEH/EIN, standardizing agent, dose, schedule, clinical outcomes, and appropriate follow-up.
PMCID: PMC3800154  PMID: 23090535
3.  Local HPV Recombinant Vaccinia Boost Following Priming with an HPV DNA Vaccine Enhances Local HPV-Specific CD8+ T Cell Mediated Tumor Control in the Genital Tract 
Purpose
Two viral oncoproteins, E6 and E7, are expressed in all human papillomavirus (HPV)-infected cells, from initial infection in the genital tract to metastatic cervical cancer. Intramuscular vaccination of women with high grade cervical intraepithelial neoplasia (CIN2/3) twice with a naked DNA vaccine, pNGVL4a-sig/E7(detox)/HSP70, and a single boost with HPVE6/E7 recombinant vaccinia vaccine (TA-HPV) elicited systemic HPV-specific CD8 T cell responses that could traffic to the lesion and was associated with regression in some patients (NCT00788164).
Experimental Design
Here we examine whether alteration of this vaccination regimen by administration of TA-HPV vaccination in the cervicovaginal tract, rather than IM delivery, can more effectively recruit antigen-specific T cells in an orthotopic syngeneic mouse model of HPV16+ cervical cancer (TC-1 luc).
Results
We found that pNGVL4a-sig/E7(detox)/HSP70 vaccination followed by cervicovaginal vaccination with TA-HPV increased accumulation of total and E7-specific CD8+ T cells in the cervicovaginal tract and better controlled E7-expressing cervicovaginal TC-1 luc tumor than IM administration of TA-HPV. Furthermore, the E7-specific CD8+ T cells in the cervicovaginal tract generated through the cervicovaginal route of vaccination expressed the α4β7 integrin and CCR9, which are necessary for the homing of the E7-specific CD8+ T cells to the cervicovaginal tract. Finally, we show that cervicovaginal vaccination with TA-HPV can induce potent local HPV-16 E7 antigen-specific CD8+ T cell immune responses regardless of whether an HPV DNA vaccine priming vaccination was administered IM or within the cervicovaginal tract.
Conclusions
Our results support future clinical translation using cervicovaginal TA-HPV vaccination.
doi:10.1158/1078-0432.CCR-15-0234
PMCID: PMC4738102  PMID: 26420854
4.  Effectiveness of Screening for Cervical Cancer in an Inpatient Hospital Setting 
Obstetrics and gynecology  2004;103(2):310-316.
OBJECTIVE
To estimate the effectiveness of an inpatient, hospital-based cervical cancer screening program at a single institution.
METHODS
Between January 1999 and December 2002, 1,117 women admitted to the Johns Hopkins Hospital underwent Papanicolaou (Pap) test screening during their hospital stay. In that time period, 111,933 women were screened at all of the combined Hopkins outpatient clinics. We compared rates of abnormal Pap tests in these cohorts (retrospective cohort study). Our main outcome measure was the prevalence of abnormal Pap tests among the screening population by age group, ethnicity, and insurance status compared between our outpatient and inpatient populations.
RESULTS
The prevalence of abnormal Pap tests in the inpatient cohort was twice as high as that in the outpatient setting (15.5% versus 7%). The prevalence of high-grade squamous intraepithelial lesions (HSIL), the immediate precursor lesion to cervical cancer, was nearly 5-fold higher in the inpatient cohort compared with the outpatient cohort (3% versus 0.7%). In multivariable models, younger women had greater risk for all types of abnormal Pap tests, and black women had greater risk for HSIL. Previous abnormal Pap and human immunodeficiency virus-positive status were associated with all abnormal tests and with HSIL results.
CONCLUSIONS
A hospital-based, inpatient Pap test program is an efficient strategy for targeting limited screening funds toward women at high risk of invasive cervical cancer. (Obstet Gynecol 2004;103:310–6.
doi:10.1097/01.AOG.0000109209.93819.d1
PMCID: PMC3139564  PMID: 14754701
5.  Spontaneous Regression of High-Grade Cervical Dysplasia: Effects of Human Papillomavirus Type and HLA Phenotype 
Purpose
Persistent infection with oncogenic human papillomaviruses (HPV) plays a central etiologic role in the development of squamous carcinomas of the cervix and their precursor lesions, cervical intraepithelial neoplasias (CIN). We carried out a prospective observational cohort study evaluating known, quantifiable prognostic variables of clinical behavior in women with high-grade cervical lesions.
Experimental Design
Our study cohort included healthy women with high-grade cervical lesions (CIN2/3) with residual visible lesions after colposcopically directed biopsy. We prospectively followed 100 women over 15 weeks before standard resection. HPV typing was done using PCR and a reverse line blot detection method.
Results
The rate of spontaneous histologic regression, defined as (CIN1 or less at resection) was 28%. The overall rate of HPV infection was 100%. HPV16 was identified in 68% of the lesions. Women with HPV16 only were significantly less likely to regress, compared with women with HPV types other than HPV16 (odds ratio, 0.342; 95% confidence interval, 0.117-0.997; P = 0.049). In the cohort with HPV16 only, patients who had an HLA*A201 allele had similar outcomes to those who did not carry A201. However, among patients with HPV types other than HPV16, the HLA*A201 allele interaction was significant; patients with HLA*A201 were the least likely to resolve.
Conclusions
CIN2/3 lesions associated with HPV16 alone are significantly less likely to resolve spontaneously than those caused by other types. Interactions among HPV type, HLA type, and regression rate support a role for HLA-restricted HPV-specific immune responses in determining disease outcome.
doi:10.1158/1078-0432.CCR-04-2599
PMCID: PMC3132609  PMID: 16000566
6.  Development of therapeutic HPV vaccines 
The lancet oncology  2009;10(10):975-980.
At least 15% of human malignant diseases are attributable to the consequences of persistent viral or bacterial infection. Chronic infection with oncogenic human papillomavirus (HPV) types is a necessary, but insufficient, cause in the development of more cancers than any other virus. Currently available prophylactic vaccines have no therapeutic effect for established infection or for disease. Early disease is characterised by tissue sequestration. However, because a proportion of intraepithelial HPV-associated disease undergoes immune-mediated regression, the development of immunotherapeutic strategies is an opportunity to determine proof-of-principle for therapeutic vaccines. In this Review, we discuss recent progress in this field and priorities for future clinical investigations.
doi:10.1016/S1470-2045(09)70227-X
PMCID: PMC3090037  PMID: 19796749
7.  Human Papillomavirus 16-Associated Cervical Intraepithelial Neoplasia in Humans Excludes CD8 T Cells from Dysplastic Epithelium 
High-grade cervical dysplasia caused by human papillomavirus (HPV) type 16 is a lesion that should be susceptible to an HPV-specific immune response; disease initiation and persistence is predicated on expression of two viral Ags, E6 and E7. In immune-competent subjects, at least 25% of HPV16+ high-grade cervical dysplasia lesions undergo complete regression. However, in the peripheral blood, naturally occurring IFN-γ T cell responses to HPV E6 and E7 are weak, requiring ex vivo sensitization to detect, and are not sufficiently sensitive to predict regression. In this study, we present immunologic data directly assessing cervical lymphocytes from this cohort. We found that nearly all cervical tissue T cells express the mucosal homing receptor, α4β7 surface integrin. T cells isolated from dysplastic mucosa were skewed toward a central memory phenotype compared with normal mucosal resident T cells, and dysplastic lesions expressed transcripts for CCL19 and CCL21, raising the possibility that the tissue itself sustains a response that is not detectable in the blood. Moreover, lesion regression in the study window could retrospectively be predicted at study entry by the ability of CD8+ T cells to gain access to lesional epithelium. Vascular endothelial expression of mucosal addressin cell adhesion molecule-1, the ligand that supports entry of α4β7+ T cells into tissues, colocalized tightly with the distribution of CD8 T cells and was not expressed in persistent dysplastic epithelium. These findings suggest that dysregulated expression of vascular adhesion molecules plays a role in immune evasion very early in the course of HPV disease.
doi:10.4049/jimmunol.1002756
PMCID: PMC3075978  PMID: 21037100
8.  Augmentation of cellular and humoral immune responses to HPV16 and HPV18 E6 and E7 antigens by VGX-3100 
We have previously demonstrated the immunogenicity of VGX-3100, a multicomponent DNA immunotherapy for the treatment of Human Papillomavirus (HPV)16/18-positive CIN2/3 in a phase 1 clinical trial. Here, we report on the ability to boost immune responses with an additional dose of VGX-3100. Patients completing our initial phase 1 trial were offered enrollment into a follow on trial consisting of a single boost dose of VGX-3100. Data show both cellular and humoral immune responses could be augmented above pre-boost levels, including the induction of interferon (IFN)γ production, tumor necrosis factor (TNF)α production, CD8+ T cell activation and the synthesis of lytic proteins. Moreover, observation of antigen-specific regulation of immune-related gene transcripts suggests the induction of a proinflammatory response following the boost. Analysis of T cell receptor (TCR) sequencing suggests the localization of putative HPV-specific T cell clones to the cervical mucosa, which underscores the putative mechanism of action of lesion regression and HPV16/18 elimination noted in our double-blind placebo-controlled phase 2B trial. Taken together, these data indicate that VGX-3100 drives the induction of robust cellular and humoral immune responses that can be augmented by a fourth “booster” dose. These data could be important in the scope of increasing the clinical efficacy rate of VGX-3100.
doi:10.1038/mto.2016.25
PMCID: PMC5147865  PMID: 28054033
9.  A Phase I Trial of a Human Papillomavirus (HPV) DNA Vaccine for HPV16+ Cervical Intraepithelial Neoplasia 2/3 
Purpose:
To evaluate the safety and immunogenicity of a therapeutic HPV16 DNA vaccine administered to women with HPV16+CIN2/3.
Experimental Design:
This phase I trial incorporated the standard ‘3+3” dose escalation design with an additional 6 patients allocated to the maximally tolerated dose (MTD). Healthy adult women with colposcopically-directed biopsy-proven HPV16+ CIN2/3 received three intramuscular (IM) vaccinations (0.5 mg, 1 mg, or 3mg) of a plasmid expressing a Sig-E7(detox)-HSP70 fusion protein on days 0, 28 and 56, and underwent standard therapeutic resection of the cervical squamocolumnar junction at day 105 (week 15). Safety and immunogenicity of the vaccine and histologic outcome based on resection at week 15 were assessed.
Results:
Fifteen patients were evaluable (3 each at 0.5 mg and 1mg, 9 at 3mg). The vaccine was well tolerated: most adverse events were mild transient injection-site discomfort; no dose-limiting toxicities were observed. Although HPVE7-specific T-cell responses to E7 detected by enzyme-linked immunospot assays (IFNγ) were of low frequency and magnitude, detectable increases in response subsequent to vaccination were identified in subjects in the second and third cohorts. Complete histologic regression occurred in 3/9 (33%, CI: 7%-70%)) individuals in the highest dose cohort, Although the difference is not significant, it is slightly higher than would be expected in an unvaccinated cohort (25%).
Conclusions:
This HPV16 DNA vaccine was safe and well tolerated. While it appears possible to elicit HPV-specific T cell responses in patients with established dysplastic lesions, other factors are likely to play a role in lesion regression.
doi:10.1158/1078-0432.CCR-08-1725
PMCID: PMC2865676  PMID: 19118066
10.  31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016): part one 
Lundqvist, Andreas | van Hoef, Vincent | Zhang, Xiaonan | Wennerberg, Erik | Lorent, Julie | Witt, Kristina | Sanz, Laia Masvidal | Liang, Shuo | Murray, Shannon | Larsson, Ola | Kiessling, Rolf | Mao, Yumeng | Sidhom, John-William | Bessell, Catherine A. | Havel, Jonathan | Schneck, Jonathan | Chan, Timothy A. | Sachsenmeier, Eliot | Woods, David | Berglund, Anders | Ramakrishnan, Rupal | Sodre, Andressa | Weber, Jeffrey | Zappasodi, Roberta | Li, Yanyun | Qi, Jingjing | Wong, Philip | Sirard, Cynthia | Postow, Michael | Newman, Walter | Koon, Henry | Velcheti, Vamsidhar | Callahan, Margaret K. | Wolchok, Jedd D. | Merghoub, Taha | Lum, Lawrence G. | Choi, Minsig | Thakur, Archana | Deol, Abhinav | Dyson, Gregory | Shields, Anthony | Haymaker, Cara | Uemura, Marc | Murthy, Ravi | James, Marihella | Wang, Daqing | Brevard, Julie | Monaghan, Catherine | Swann, Suzanne | Geib, James | Cornfeld, Mark | Chunduru, Srinivas | Agrawal, Sudhir | Yee, Cassian | Wargo, Jennifer | Patel, Sapna P. | Amaria, Rodabe | Tawbi, Hussein | Glitza, Isabella | Woodman, Scott | Hwu, Wen-Jen | Davies, Michael A. | Hwu, Patrick | Overwijk, Willem W. | Bernatchez, Chantale | Diab, Adi | Massarelli, Erminia | Segal, Neil H. | Ribrag, Vincent | Melero, Ignacio | Gangadhar, Tara C. | Urba, Walter | Schadendorf, Dirk | Ferris, Robert L. | Houot, Roch | Morschhauser, Franck | Logan, Theodore | Luke, Jason J. | Sharfman, William | Barlesi, Fabrice | Ott, Patrick A. | Mansi, Laura | Kummar, Shivaani | Salles, Gilles | Carpio, Cecilia | Meier, Roland | Krishnan, Suba | McDonald, Dan | Maurer, Matthew | Gu, Xuemin | Neely, Jaclyn | Suryawanshi, Satyendra | Levy, Ronald | Khushalani, Nikhil | Wu, Jennifer | Zhang, Jinyu | Basher, Fahmin | Rubinstein, Mark | Bucsek, Mark | Qiao, Guanxi | MacDonald, Cameron | Hylander, Bonnie | Repasky, Elizabeth | Chatterjee, Shilpak | Daenthanasanmak, Anusara | Chakraborty, Paramita | Toth, Kyle | Meek, Megan | Garrett-Mayer, Elizabeth | Nishimura, Michael | Paulos, Chrystal | Beeson, Craig | Yu, Xuezhong | Mehrotra, Shikhar | Zhao, Fei | Evans, Kathy | Xiao, Christine | Holtzhausen, Alisha | Hanks, Brent A. | Scharping, Nicole | Menk, Ashley V. | Moreci, Rebecca | Whetstone, Ryan | Dadey, Rebekah | Watkins, Simon | Ferris, Robert | Delgoffe, Greg M. | Peled, Jonathan | Devlin, Sean | Staffas, Anna | Lumish, Melissa | Rodriguez, Kori Porosnicu | Ahr, Katya | Perales, Miguel | Giralt, Sergio | Taur, Ying | Pamer, Eric | van den Brink, Marcel R. M. | Jenq, Robert | Annels, Nicola | Pandha, Hardev | Simpson, Guy | Mostafid, Hugh | Harrington, Kevin | Melcher, Alan | Grose, Mark | Davies, Bronwyn | Au, Gough | Karpathy, Roberta | Shafren, Darren | Ricca, Jacob | Merghoub, Taha | Wolchok, Jedd D. | Zamarin, Dmitriy | Batista, Luciana | Marliot, Florence | Vasaturo, Angela | Carpentier, Sabrina | Poggionovo, Cécile | Frayssinet, Véronique | Fieschi, Jacques | Van den Eynde, Marc | Pagès, Franck | Galon, Jérôme | Hermitte, Fabienne | Smith, Sean G. | Nguyen, Khue | Ravindranathan, Sruthi | Koppolu, Bhanu | Zaharoff, David | Schvartsman, Gustavo | Bassett, Roland | McQuade, Jennifer L. | Haydu, Lauren E. | Davies, Michael A. | Tawbi, Hussein | Glitza, Isabella | Kline, Douglas | Chen, Xiufen | Fosco, Dominick | Kline, Justin | Overacre, Abigail | Chikina, Maria | Brunazzi, Erin | Shayan, Gulidanna | Horne, William | Kolls, Jay | Ferris, Robert L. | Delgoffe, Greg M. | Bruno, Tullia C. | Workman, Creg | Vignali, Dario | Adusumilli, Prasad S. | Ansa-Addo, Ephraim A | Li, Zihai | Gerry, Andrew | Sanderson, Joseph P. | Howe, Karen | Docta, Roslin | Gao, Qian | Bagg, Eleanor A. L. | Tribble, Nicholas | Maroto, Miguel | Betts, Gareth | Bath, Natalie | Melchiori, Luca | Lowther, Daniel E. | Ramachandran, Indu | Kari, Gabor | Basu, Samik | Binder-Scholl, Gwendolyn | Chagin, Karen | Pandite, Lini | Holdich, Tom | Amado, Rafael | Zhang, Hua | Glod, John | Bernstein, Donna | Jakobsen, Bent | Mackall, Crystal | Wong, Ryan | Silk, Jonathan D. | Adams, Katherine | Hamilton, Garth | Bennett, Alan D. | Brett, Sara | Jing, Junping | Quattrini, Adriano | Saini, Manoj | Wiedermann, Guy | Gerry, Andrew | Jakobsen, Bent | Binder-Scholl, Gwendolyn | Brewer, Joanna | Duong, MyLinh | Lu, An | Chang, Peter | Mahendravada, Aruna | Shinners, Nicholas | Slawin, Kevin | Spencer, David M. | Foster, Aaron E. | Bayle, J. Henri | Bergamaschi, Cristina | Ng, Sinnie Sin Man | Nagy, Bethany | Jensen, Shawn | Hu, Xintao | Alicea, Candido | Fox, Bernard | Felber, Barbara | Pavlakis, George | Chacon, Jessica | Yamamoto, Tori | Garrabrant, Thomas | Cortina, Luis | Powell, Daniel J. | Donia, Marco | Kjeldsen, Julie Westerlin | Andersen, Rikke | Westergaard, Marie Christine Wulff | Bianchi, Valentina | Legut, Mateusz | Attaf, Meriem | Dolton, Garry | Szomolay, Barbara | Ott, Sascha | Lyngaa, Rikke | Hadrup, Sine Reker | Sewell, Andrew Kelvin | Svane, Inge Marie | Fan, Aaron | Kumai, Takumi | Celis, Esteban | Frank, Ian | Stramer, Amanda | Blaskovich, Michelle A. | Wardell, Seth | Fardis, Maria | Bender, James | Lotze, Michael T. | Goff, Stephanie L. | Zacharakis, Nikolaos | Assadipour, Yasmine | Prickett, Todd D. | Gartner, Jared J. | Somerville, Robert | Black, Mary | Xu, Hui | Chinnasamy, Harshini | Kriley, Isaac | Lu, Lily | Wunderlich, John | Robbins, Paul F. | Rosenberg, Steven | Feldman, Steven A. | Trebska-McGowan, Kasia | Kriley, Isaac | Malekzadeh, Parisa | Payabyab, Eden | Sherry, Richard | Rosenberg, Steven | Goff, Stephanie L. | Gokuldass, Aishwarya | Blaskovich, Michelle A. | Kopits, Charlene | Rabinovich, Brian | Lotze, Michael T. | Green, Daniel S. | Kamenyeva, Olena | Zoon, Kathryn C. | Annunziata, Christina M. | Hammill, Joanne | Helsen, Christopher | Aarts, Craig | Bramson, Jonathan | Harada, Yui | Yonemitsu, Yoshikazu | Helsen, Christopher | Hammill, Joanne | Mwawasi, Kenneth | Denisova, Galina | Bramson, Jonathan | Giri, Rajanish | Jin, Benjamin | Campbell, Tracy | Draper, Lindsey M. | Stevanovic, Sanja | Yu, Zhiya | Weissbrich, Bianca | Restifo, Nicholas P. | Trimble, Cornelia L. | Rosenberg, Steven | Hinrichs, Christian S. | Tsang, Kwong | Fantini, Massimo | Hodge, James W. | Fujii, Rika | Fernando, Ingrid | Jochems, Caroline | Heery, Christopher | Gulley, James | Soon-Shiong, Patrick | Schlom, Jeffrey | Jing, Weiqing | Gershan, Jill | Blitzer, Grace | Weber, James | McOlash, Laura | Johnson, Bryon D. | Kiany, Simin | Gangxiong, Huang | Kleinerman, Eugenie S. | Klichinsky, Michael | Ruella, Marco | Shestova, Olga | Kenderian, Saad | Kim, Miriam | Scholler, John | June, Carl H. | Gill, Saar | Moogk, Duane | Zhong, Shi | Yu, Zhiya | Liadi, Ivan | Rittase, William | Fang, Victoria | Dougherty, Janna | Perez-Garcia, Arianne | Osman, Iman | Zhu, Cheng | Varadarajan, Navin | Restifo, Nicholas P. | Frey, Alan | Krogsgaard, Michelle | Landi, Daniel | Fousek, Kristen | Mukherjee, Malini | Shree, Ankita | Joseph, Sujith | Bielamowicz, Kevin | Byrd, Tiara | Ahmed, Nabil | Hegde, Meenakshi | Lee, Sylvia | Byrd, David | Thompson, John | Bhatia, Shailender | Tykodi, Scott | Delismon, Judy | Chu, Liz | Abdul-Alim, Siddiq | Ohanian, Arpy | DeVito, Anna Marie | Riddell, Stanley | Margolin, Kim | Magalhaes, Isabelle | Mattsson, Jonas | Uhlin, Michael | Nemoto, Satoshi | Villarroel, Patricio Pérez | Nakagawa, Ryosuke | Mule, James J. | Mailloux, Adam W. | Mata, Melinda | Nguyen, Phuong | Gerken, Claudia | DeRenzo, Christopher | Spencer, David M. | Gottschalk, Stephen | Mathieu, Mélissa | Pelletier, Sandy | Stagg, John | Turcotte, Simon | Minutolo, Nicholas | Sharma, Prannda | Tsourkas, Andrew | Powell, Daniel J. | Mockel-Tenbrinck, Nadine | Mauer, Daniela | Drechsel, Katharina | Barth, Carola | Freese, Katharina | Kolrep, Ulrike | Schult, Silke | Assenmacher, Mario | Kaiser, Andrew | Mullinax, John | Hall, MacLean | Le, Julie | Kodumudi, Krithika | Royster, Erica | Richards, Allison | Gonzalez, Ricardo | Sarnaik, Amod | Pilon-Thomas, Shari | Nielsen, Morten | Krarup-Hansen, Anders | Hovgaard, Dorrit | Petersen, Michael Mørk | Loya, Anand Chainsukh | Junker, Niels | Svane, Inge Marie | Rivas, Charlotte | Parihar, Robin | Gottschalk, Stephen | Rooney, Cliona M. | Qin, Haiying | Nguyen, Sang | Su, Paul | Burk, Chad | Duncan, Brynn | Kim, Bong-Hyun | Kohler, M. Eric | Fry, Terry | Rao, Arjun A. | Teyssier, Noam | Pfeil, Jacob | Sgourakis, Nikolaos | Salama, Sofie | Haussler, David | Richman, Sarah A. | Nunez-Cruz, Selene | Gershenson, Zack | Mourelatos, Zissimos | Barrett, David | Grupp, Stephan | Milone, Michael | Rodriguez-Garcia, Alba | Robinson, Matthew K. | Adams, Gregory P. | Powell, Daniel J. | Santos, João | Havunen, Riikka | Siurala, Mikko | Cervera-Carrascón, Víctor | Parviainen, Suvi | Antilla, Marjukka | Hemminki, Akseli | Sethuraman, Jyothi | Santiago, Laurelis | Chen, Jie Qing | Dai, Zhimin | Wardell, Seth | Bender, James | Lotze, Michael T. | Sha, Huizi | Su, Shu | Ding, Naiqing | Liu, Baorui | Stevanovic, Sanja | Pasetto, Anna | Helman, Sarah R. | Gartner, Jared J. | Prickett, Todd D. | Robbins, Paul F. | Rosenberg, Steven A. | Hinrichs, Christian S. | Bhatia, Shailender | Burgess, Melissa | Zhang, Hui | Lee, Tien | Klingemann, Hans | Soon-Shiong, Patrick | Nghiem, Paul | Kirkwood, John M. | Rossi, John M. | Sherman, Marika | Xue, Allen | Shen, Yueh-wei | Navale, Lynn | Rosenberg, Steven A. | Kochenderfer, James N. | Bot, Adrian | Veerapathran, Anandaraman | Gokuldass, Aishwarya | Stramer, Amanda | Sethuraman, Jyothi | Blaskovich, Michelle A. | Wiener, Doris | Frank, Ian | Santiago, Laurelis | Rabinovich, Brian | Fardis, Maria | Bender, James | Lotze, Michael T. | Waller, Edmund K. | Li, Jian-Ming | Petersen, Christopher | Blazar, Bruce R. | Li, Jingxia | Giver, Cynthia R. | Wang, Ziming | Grossenbacher, Steven K. | Sturgill, Ian | Canter, Robert J. | Murphy, William J. | Zhang, Congcong | Burger, Michael C. | Jennewein, Lukas | Waldmann, Anja | Mittelbronn, Michel | Tonn, Torsten | Steinbach, Joachim P. | Wels, Winfried S. | Williams, Jason B. | Zha, Yuanyuan | Gajewski, Thomas F. | Williams, LaTerrica C. | Krenciute, Giedre | Kalra, Mamta | Louis, Chrystal | Gottschalk, Stephen | Xin, Gang | Schauder, David | Jiang, Aimin | Joshi, Nikhil | Cui, Weiguo | Zeng, Xue | Menk, Ashley V. | Scharping, Nicole | Delgoffe, Greg M. | Zhao, Zeguo | Hamieh, Mohamad | Eyquem, Justin | Gunset, Gertrude | Bander, Neil | Sadelain, Michel | Askmyr, David | Abolhalaj, Milad | Lundberg, Kristina | Greiff, Lennart | Lindstedt, Malin | Angell, Helen K. | Kim, Kyoung-Mee | Kim, Seung-Tae | Kim, Sung | Sharpe, Alan D. | Ogden, Julia | Davenport, Anna | Hodgson, Darren R. | Barrett, Carl | Lee, Jeeyun | Kilgour, Elaine | Hanson, Jodi | Caspell, Richard | Karulin, Alexey | Lehmann, Paul | Ansari, Tameem | Schiller, Annemarie | Sundararaman, Srividya | Lehmann, Paul | Hanson, Jodi | Roen, Diana | Karulin, Alexey | Lehmann, Paul | Ayers, Mark | Levitan, Diane | Arreaza, Gladys | Liu, Fang | Mogg, Robin | Bang, Yung-Jue | O’Neil, Bert | Cristescu, Razvan | Friedlander, Philip | Wassman, Karl | Kyi, Chrisann | Oh, William | Bhardwaj, Nina | Bornschlegl, Svetlana | Gustafson, Michael P. | Gastineau, Dennis A. | Parney, Ian F. | Dietz, Allan B. | Carvajal-Hausdorf, Daniel | Mani, Nikita | Velcheti, Vamsidhar | Schalper, Kurt | Rimm, David | Chang, Serena | Levy, Ronald | Kurland, John | Krishnan, Suba | Ahlers, Christoph Matthias | Jure-Kunkel, Maria | Cohen, Lewis | Maecker, Holden | Kohrt, Holbrook | Chen, Shuming | Crabill, George | Pritchard, Theresa | McMiller, Tracee | Pardoll, Drew | Pan, Fan | Topalian, Suzanne | Danaher, Patrick | Warren, Sarah | Dennis, Lucas | White, Andrew M. | D’Amico, Leonard | Geller, Melissa | Disis, Mary L. | Beechem, Joseph | Odunsi, Kunle | Fling, Steven | Derakhshandeh, Roshanak | Webb, Tonya J. | Dubois, Sigrid | Conlon, Kevin | Bryant, Bonita | Hsu, Jennifer | Beltran, Nancy | Müller, Jürgen | Waldmann, Thomas | Duhen, Rebekka | Duhen, Thomas | Thompson, Lucas | Montler, Ryan | Weinberg, Andrew | Kates, Max | Early, Brandon | Yusko, Erik | Schreiber, Taylor H. | Bivalacqua, Trinity J. | Ayers, Mark | Lunceford, Jared | Nebozhyn, Michael | Murphy, Erin | Loboda, Andrey | Kaufman, David R. | Albright, Andrew | Cheng, Jonathan | Kang, S. Peter | Shankaran, Veena | Piha-Paul, Sarina A. | Yearley, Jennifer | Seiwert, Tanguy | Ribas, Antoni | McClanahan, Terrill K. | Cristescu, Razvan | Mogg, Robin | Ayers, Mark | Albright, Andrew | Murphy, Erin | Yearley, Jennifer | Sher, Xinwei | Liu, Xiao Qiao | Nebozhyn, Michael | Lunceford, Jared | Joe, Andrew | Cheng, Jonathan | Plimack, Elizabeth | Ott, Patrick A. | McClanahan, Terrill K. | Loboda, Andrey | Kaufman, David R. | Forrest-Hay, Alex | Guyre, Cheryl A. | Narumiya, Kohei | Delcommenne, Marc | Hirsch, Heather A. | Deshpande, Amit | Reeves, Jason | Shu, Jenny | Zi, Tong | Michaelson, Jennifer | Law, Debbie | Trehu, Elizabeth | Sathyanaryanan, Sriram | Hodkinson, Brendan P. | Hutnick, Natalie A. | Schaffer, Michael E. | Gormley, Michael | Hulett, Tyler | Jensen, Shawn | Ballesteros-Merino, Carmen | Dubay, Christopher | Afentoulis, Michael | Reddy, Ashok | David, Larry | Fox, Bernard | Jayant, Kumar | Agrawal, Swati | Agrawal, Rajendra | Jeyakumar, Ghayathri | Kim, Seongho | Kim, Heejin | Silski, Cynthia | Suisham, Stacey | Heath, Elisabeth | Vaishampayan, Ulka | Vandeven, Natalie | Viller, Natasja Nielsen | O’Connor, Alison | Chen, Hui | Bossen, Bolette | Sievers, Eric | Uger, Robert | Nghiem, Paul | Johnson, Lisa | Kao, Hsiang-Fong | Hsiao, Chin-Fu | Lai, Shu-Chuan | Wang, Chun-Wei | Ko, Jenq-Yuh | Lou, Pei-Jen | Lee, Tsai-Jan | Liu, Tsang-Wu | Hong, Ruey-Long | Kearney, Staci J. | Black, Joshua C. | Landis, Benjamin J. | Koegler, Sally | Hirsch, Brooke | Gianani, Roberto | Kim, Jeffrey | He, Ming-Xiao | Zhang, Bingqing | Su, Nan | Luo, Yuling | Ma, Xiao-Jun | Park, Emily | Kim, Dae Won | Copploa, Domenico | Kothari, Nishi | doo Chang, Young | Kim, Richard | Kim, Namyong | Lye, Melvin | Wan, Ee | Kim, Namyong | Lye, Melvin | Wan, Ee | Kim, Namyong | Lye, Melvin | Wan, Ee | Knaus, Hanna A. | Berglund, Sofia | Hackl, Hubert | Karp, Judith E. | Gojo, Ivana | Luznik, Leo | Hong, Henoch S. | Koch, Sven D. | Scheel, Birgit | Gnad-Vogt, Ulrike | Kallen, Karl-Josef | Wiegand, Volker | Backert, Linus | Kohlbacher, Oliver | Hoerr, Ingmar | Fotin-Mleczek, Mariola | Billingsley, James M. | Koguchi, Yoshinobu | Conrad, Valerie | Miller, William | Gonzalez, Iliana | Poplonski, Tomasz | Meeuwsen, Tanisha | Howells-Ferreira, Ana | Rattray, Rogan | Campbell, Mary | Bifulco, Carlo | Dubay, Christopher | Bahjat, Keith | Curti, Brendan | Urba, Walter | Vetsika, E-K | Kallergi, G. | Aggouraki, Despoina | Lyristi, Z. | Katsarlinos, P. | Koinis, Filippos | Georgoulias, V. | Kotsakis, Athanasios | Martin, Nathan T. | Aeffner, Famke | Kearney, Staci J. | Black, Joshua C. | Cerkovnik, Logan | Pratte, Luke | Kim, Rebecca | Hirsch, Brooke | Krueger, Joseph | Gianani, Roberto | Martínez-Usatorre, Amaia | Jandus, Camilla | Donda, Alena | Carretero-Iglesia, Laura | Speiser, Daniel E. | Zehn, Dietmar | Rufer, Nathalie | Romero, Pedro | Panda, Anshuman | Mehnert, Janice | Hirshfield, Kim M. | Riedlinger, Greg | Damare, Sherri | Saunders, Tracie | Sokol, Levi | Stein, Mark | Poplin, Elizabeth | Rodriguez-Rodriguez, Lorna | Silk, Ann | Chan, Nancy | Frankel, Melissa | Kane, Michael | Malhotra, Jyoti | Aisner, Joseph | Kaufman, Howard L. | Ali, Siraj | Ross, Jeffrey | White, Eileen | Bhanot, Gyan | Ganesan, Shridar | Monette, Anne | Bergeron, Derek | Amor, Amira Ben | Meunier, Liliane | Caron, Christine | Morou, Antigoni | Kaufmann, Daniel | Liberman, Moishe | Jurisica, Igor | Mes-Masson, Anne-Marie | Hamzaoui, Kamel | Lapointe, Rejean | Mongan, Ann | Ku, Yuan-Chieh | Tom, Warren | Sun, Yongming | Pankov, Alex | Looney, Tim | Au-Young, Janice | Hyland, Fiona | Conroy, Jeff | Morrison, Carl | Glenn, Sean | Burgher, Blake | Ji, He | Gardner, Mark | Mongan, Ann | Omilian, Angela R. | Conroy, Jeff | Bshara, Wiam | Angela, Omilian | Burgher, Blake | Ji, He | Glenn, Sean | Morrison, Carl | Mongan, Ann | Obeid, Joseph M. | Erdag, Gulsun | Smolkin, Mark E. | Deacon, Donna H. | Patterson, James W. | Chen, Lieping | Bullock, Timothy N. | Slingluff, Craig L. | Obeid, Joseph M. | Erdag, Gulsun | Deacon, Donna H. | Slingluff, Craig L. | Bullock, Timothy N. | Loffredo, John T. | Vuyyuru, Raja | Beyer, Sophie | Spires, Vanessa M. | Fox, Maxine | Ehrmann, Jon M. | Taylor, Katrina A. | Korman, Alan J. | Graziano, Robert F. | Page, David | Sanchez, Katherine | Ballesteros-Merino, Carmen | Martel, Maritza | Bifulco, Carlo | Urba, Walter | Fox, Bernard | Patel, Sapna P. | De Macedo, Mariana Petaccia | Qin, Yong | Reuben, Alex | Spencer, Christine | Guindani, Michele | Bassett, Roland | Wargo, Jennifer | Racolta, Adriana | Kelly, Brian | Jones, Tobin | Polaske, Nathan | Theiss, Noah | Robida, Mark | Meridew, Jeffrey | Habensus, Iva | Zhang, Liping | Pestic-Dragovich, Lidija | Tang, Lei | Sullivan, Ryan J. | Logan, Theodore | Khushalani, Nikhil | Margolin, Kim | Koon, Henry | Olencki, Thomas | Hutson, Thomas | Curti, Brendan | Roder, Joanna | Blackmon, Shauna | Roder, Heinrich | Stewart, John | Amin, Asim | Ernstoff, Marc S. | Clark, Joseph I. | Atkins, Michael B. | Kaufman, Howard L. | Sosman, Jeffrey | Weber, Jeffrey | McDermott, David F. | Weber, Jeffrey | Kluger, Harriet | Halaban, Ruth | Snzol, Mario | Roder, Heinrich | Roder, Joanna | Asmellash, Senait | Steingrimsson, Arni | Blackmon, Shauna | Sullivan, Ryan J. | Wang, Chichung | Roman, Kristin | Clement, Amanda | Downing, Sean | Hoyt, Clifford | Harder, Nathalie | Schmidt, Guenter | Schoenmeyer, Ralf | Brieu, Nicolas | Yigitsoy, Mehmet | Madonna, Gabriele | Botti, Gerardo | Grimaldi, Antonio | Ascierto, Paolo A. | Huss, Ralf | Athelogou, Maria | Hessel, Harald | Harder, Nathalie | Buchner, Alexander | Schmidt, Guenter | Stief, Christian | Huss, Ralf | Binnig, Gerd | Kirchner, Thomas | Sellappan, Shankar | Thyparambil, Sheeno | Schwartz, Sarit | Cecchi, Fabiola | Nguyen, Andrew | Vaske, Charles | Hembrough, Todd
Journal for Immunotherapy of Cancer  2016;4(Suppl 1):1-106.
doi:10.1186/s40425-016-0172-7
PMCID: PMC5123387
11.  Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial 
Lancet (London, England)  2015;386(10008):2078-2088.
Summary
Background
Despite preventive vaccines for oncogenic human papillomaviruses (HPVs), cervical intraepithelial neoplasia (CIN) is common, and current treatments are ablative and can lead to long-term reproductive morbidity. We assessed whether VGX-3100, synthetic plasmids targeting HPV-16 and HPV-18 E6 and E7 proteins, delivered by electroporation, would cause histopathological regression in women with CIN2/3.
Methods
Efficacy, safety, and immunogenicity of VGX-3100 were assessed in CIN2/3 associated with HPV-16 and HPV-18, in a randomised, double-blind, placebo-controlled phase 2b study. Patients from 36 academic and private gynaecology practices in seven countries were randomised (3:1) to receive 6 mg VGX-3100 or placebo (1 mL), given intramuscularly at 0, 4, and 12 weeks. Randomisation was stratified by age (<25 vs ≥25 years) and CIN2 versus CIN3 by computer-generated allocation sequence (block size 4). Funder and site personnel, participants, and pathologists were masked to treatment. The primary efficacy endpoint was regression to CIN1 or normal pathology 36 weeks after the first dose. Per-protocol and modified intention-to-treat analyses were based on patients receiving three doses without protocol violations, and on patients receiving at least one dose, respectively. The safety population included all patients who received at least one dose. The trial is registered at ClinicalTrials.gov (number NCT01304524) and EudraCT (number 2012-001334-33).
Findings
Between Oct 19, 2011, and July 30, 2013, 167 patients received either VGX-3100 (n=125) or placebo (n=42). In the per-protocol analysis 53 (49.5%) of 107 VGX-3100 recipients and 11 (30.6%) of 36 placebo recipients had histopathological regression (percentage point difference 19.0 [95% CI 1.4–36.6]; p=0.034). In the modified intention-to-treat analysis 55 (48.2%) of 114 VGX-3100 recipients and 12 (30.0%) of 40 placebo recipients had histopathological regression (percentage point difference 18.2 [95% CI 1.3–34.4]; p=0.034). Injection-site reactions occurred in most patients, but only erythema was significantly more common in the VGX-3100 group (98/125, 78.4%) than in the placebo group (24/42, 57.1%; percentage point difference 21.3 [95% CI 5.3–37.8]; p=0.007).
Interpretation
VGX-3100 is the first therapeutic vaccine to show efficacy against CIN2/3 associated with HPV-16 and HPV-18. VGX-3100 could present a non-surgical therapeutic option for CIN2/3, changing the treatment outlook for this common disease.
Funding
Inovio Pharmaceuticals.
doi:10.1016/S0140-6736(15)00239-1
PMCID: PMC4888059  PMID: 26386540
12.  Immunoprevention of human papillomavirus-associated malignancies 
Persistent infection by one of fifteen high risk human papillomavirus (hrHPV) types is a necessary but not sufficient cause of 5% of all human cancers. This provides a remarkable opportunity for cancer prevention via immunization. Since Harald zur Hausen’s pioneering identification of hrHPV types 16 and 18, found in ~50% and ~20% of cervical cancers respectively, two prophylactic HPV vaccines containing virus-like particles (VLP) of each genotype have been widely licensed. These vaccines are beginning to impact infection and HPV-associated neoplasia rates after immunization campaigns in adolescents. Here we review recent progress and opportunities to better prevent HPV-associated cancers, including: broadening immune-protection to cover all hrHPV types, reducing the cost of HPV vaccines especially for developing countries that have the highest rates of cervical cancer, and immune-based treatment of established HPV infections. Screening based upon George Papanicolaou’s cervical cytology testing, and more recently detection of hrHPV DNA/RNA, followed by ablative treatment of high grade cervical intraepithelial neoplasia (CIN2/3) have substantially reduced cervical cancer rates, and we examine their interplay with immune-based modalities for the prevention and eventual elimination of cervical cancer and other HPV-related malignancies.
doi:10.1158/1940-6207.CAPR-14-0311
PMCID: PMC4315720  PMID: 25488410
HPV; vaccines; L1; L2; virus-like particles; immunotherapy; screening; papillomavirus; cervical cancer
13.  Seroepidemiology of Human Papillomavirus 16 (HPV16) L2 and Generation of L2-Specific Human Chimeric Monoclonal Antibodies 
Presently, the seroprevalence of human papillomavirus (HPV) minor capsid antigen L2-reactive antibody is not well understood, and no serologic standard exists for L2-specific neutralizing antibodies. Therefore, we screened a total of 1,078 serum samples for HPV16 L2 reactivity, and these were obtained from four prior clinical studies: a population-based (n = 880) surveillance study with a high-risk HPV DNA prevalence of 10.8%, a cohort study of women (n = 160) with high-grade cervical intraepithelial neoplasia (CIN), and two phase II trials in women with high-grade vulvar intraepithelial neoplasia (VIN) receiving imiquimod therapy combined with either photodynamic therapy (PDT) (n = 19) or vaccination with a fusion protein comprising HPV16 L2, E7, and E6 (TA-CIN) (n = 19). Sera were screened sequentially by HPV16 L2 enzyme-linked immunosorbent assay (ELISA) and then Western blot. Seven of the 1,078 serum samples tested had L2-specific antibodies, but none were detectably neutralizing for HPV16. To develop a standard, we substituted human IgG1 sequences into conserved regions of two rodent monoclonal antibodies (MAbs) specific for neutralizing epitopes at HPV16 L2 residues 17 to 36 and 58 to 64, creating JWW-1 and JWW-2, respectively. These chimeric MAbs retained neutralizing activity and together reacted with 33/34 clinically relevant HPV types tested. In conclusion, our inability to identify an HPV16 L2-specific neutralizing antibody response even in the sera of patients with active genital HPV disease suggests the subdominance of L2 protective epitopes and the value of the chimeric MAbs JWW-1 and JWW-2 as standards for immunoassays to measure L2-specific human antibodies.
doi:10.1128/CVI.00799-14
PMCID: PMC4478527  PMID: 25972404
14.  Disparities in Human Papillomavirus Vaccine Completion Among Vaccine Initiators 
Obstetrics and gynecology  2011;118(1):14-20.
Objective
To estimate rates of completing the full three-dose prophylactic human papillomavirus (HPV) vaccination regimen in patients who initiated the series and to identify variables associated with not completing vaccination.
Methods
This single-institution review identified all patients initiating HPV vaccination at one of four affiliated clinics between January 2007 and June 2008. Vaccination “completers” were defined as patients who had completed all three vaccinations within 12 months of initiating the vaccination series. Logistic regression was used to identify factors associated with vaccine completion. Variables analyzed included age, type of insurance (private compared with public), practice location (urban compared with suburban), practice type (pediatrics, gynecology, or family practice), and race or ethnicity (white or African American and Hispanic).
Results
Of the 1,413 girls and young women who initiated HPV vaccination, 469 (33.2%) completed the vaccine series. Overall, private insurances (odds ratio 1.87, 95% confidence interval 1.26–2.76) and suburban practice locations (odds ratio 1.44, 95% confidence interval 1.04–1.98) were associated with higher vaccine completion rates. African American race was associated with lower completion rates (odds ratio 0.50, 95% confidence interval 0.38–0.65). In multivariable analyses, the combination of younger age (11–17 years) and urban practice location was associated with very low likelihood of completing HPV vaccination (22%; P=.023).
Conclusion
The HPV vaccine completion rate is low. When resources are limited, disparities in HPV vaccine completion should be considered when developing programs to improve vaccine utilization. Urban girls and young women should be targeted as an at-risk population.
doi:10.1097/AOG.0b013e318220ebf3
PMCID: PMC4696007  PMID: 21691158
15.  Impact of payer status on treatment of cervical cancer at a tertiary referral center 
Gynecologic oncology  2011;122(2):324-327.
Objectives
The study aims to determine the impact of payer status on the likelihood of receiving definitive treatment for invasive cervical cancer at a tertiary medical center.
Methods
All consecutive patients presenting to Johns Hopkins Hospital with a diagnosis of invasive cervical cancer between 1/1/95–12/31/08 were retrospectively identified from the tumor registry. Demographic and clinical information were abstracted from the medical record. Payer status was categorized as private, public, no insurance, or unknown. Treatment was defined as surgery, chemo-radiation, chemotherapy, radiation, or no definitive therapy. The likelihood of receiving no definitive therapy was analyzed using Pearson chi-square analysis, univariate and multivariate models.
Results
A total of 306 patients were identified. Median age was 47 and 60% of patients had early stage disease at diagnosis (stages IA–IIA). Fifty-six percent of the cohort had private insurance, 34% had public insurance, and 6% had no insurance. Having no insurance was the single most significant risk factor associated with receiving no standard therapy. While 7% of privately insured and 4% of publicly insured patients did not receive definitive therapy, 16% of uninsured patients did not receive definitive treatment. In multivariate analysis controlling for age, race, stage, histology, and comorbidities, uninsured payer status was a significant and independent predictor of receiving no definitive treatment (OR 8.01, CI 1.265–50.694, p=0.027) than patients with public insurance.
Conclusions
In this study, uninsured payer status was significantly associated with a higher likelihood of not receiving standard therapy for cervical cancer. Additional studies are warranted to characterize specific barriers to care for this at-risk population.
doi:10.1016/j.ygyno.2011.04.038
PMCID: PMC4612589  PMID: 21620446
Cervical cancer; Insurance status; Access; Treatment
16.  HPV Infection-associated cancers: Next-generation Technology for Diagnosis and Treatment 
Cancer immunology research  2014;2(10):937-942.
Disease caused by human papillomavirus (HPV) remains common, despite preventive vaccines and screening strategies. Globally, HPVs cause one-third of infection-associated cancers. The indolent clinical course of the precursor intraepithelial lesions provide an opportunity to understand immunologic obstacles posed by the microenvironment of incipient disease, and how they might be overcome. Results from recent therapeutic HPV vaccine clinical trials suggest that relevant immune responses may be sequestered at the lesion site, and are difficult to detect in the circulation. In this Cancer Immunology at the Crossroads article, we outline current understanding of the risk, diagnosis, and treatment of HPV infection-associated cancers, and suggest that quantitative tissue-based endpoints should be included whenever possible in the evaluation of immune-based therapies.
doi:10.1158/2326-6066.CIR-14-0152
PMCID: PMC4185412  PMID: 25281321
17.  Intramuscular Therapeutic Vaccination Targeting HPV16 Induces T Cell Responses That Localize in Mucosal Lesions 
Science translational medicine  2014;6(221):221ra13.
About 25% of high-grade cervical intraepithelial neoplasias (CIN2/3) caused by human papillomavirus serotype 16 (HPV16) undergo complete spontaneous regression. However, to date, therapeutic vaccination strategies for HPV disease have yielded limited success when measured by their ability to induce robust peripheral blood T cell responses to vaccine antigen. We report marked immunologic changes in the target lesion microenvironment after intramuscular therapeutic vaccination targeting HPV16 E6/E7 antigens, in subjects with CIN2/3 who had modest detectable responses in circulating T lymphocytes. Histologic and molecular changes, including markedly (average threefold) increased intensity of CD8+ T cell infiltrates in both the stromal and epithelial compartments, suggest an effector response to vaccination. Postvaccination cervical tissue immune infiltrates included organized tertiary lymphoid-like structures in the stroma subjacent to residual intraepithelial lesions and, unlike infiltrates in unvaccinated lesions, showed evidence of proliferation induced by recognition of cognate antigen. At a molecular level, these histologic changes in the stroma were characterized by increased expression of genes associated with immune activation (CXCR3) and effector function (Tbet and IFNβ), and were also associated with an immunologic signature in the overlying dysplastic epithelium. High-throughput T cell receptor sequencing of unmanipulated specimens identified clonal expansions in the tissue that were not readily detectable in peripheral blood. Together, these findings indicate that peripheral therapeutic vaccination to HPV antigens can induce a robust tissue-localized effector immune response, and that analyses of immune responses at sites of antigen are likely to be much more informative than analyses of cells that remain in the circulation.
doi:10.1126/scitranslmed.3007323
PMCID: PMC4086631  PMID: 24477000
18.  Karyometry in atypical endometrial hyperplasia: A Gynecologic Oncology Group study 
Gynecologic oncology  2011;125(1):129-135.
Objectives
Treatment for atypical endometrial hyperplasia (AEH) is based on pathologic diagnosis. About 40% of AEH is found to be carcinoma at surgery. This study's objective is to derive an objective characterization of nuclei from cases diagnosed as AEH or superficially invasive endometrial cancer (SIEC).
Methods
Cases from GOG study 167A were classified by a central pathology committee as AEH (n=39) or SIEC (n=39). High resolution digitized images of cell nuclei were recorded. Features of the nuclear chromatin pattern were computed. Classification rules were derived by discriminant analysis.
Results
Nuclei from cases of AEH and SIEC occupy the same range on a progression curve for endometrial lesions. Cases of AEH and SIEC both comprise nuclei of two phenotypes: hyperplastic characteristics and premalignant/neoplastic characteristics. The principal difference between AEH and SIEC is percentage of premalignant/neoplastic nuclei. When this percentage approaches 50-60% superficial invasion is likely. SIEC may develop already from lesions at the low end of the progression curve.
Conclusions
AEH comprises cases which may constitute a low risk group involving <40% of AEH cases. These cases hold a percentage of <20% of nuclei of a preneoplastic phenotype. AEH cases from the central and high end of progression have >40 % of nuclei of preneoplastic phenotype. Nuclei of the preneoplastic phenotype in AEH lesions are almost indistinguishable from nuclei in SIEC, where this percentage exceeds 60%. The percentage of nuclei of the preneoplastic phenotype in AEH lesions might serve as criterion for assessment of risk for the development of invasive disease.
doi:10.1016/j.ygyno.2011.12.422
PMCID: PMC4029110  PMID: 22155796
Atypical endometrial hyperplasia; endometrial cancer; karyometry; risk stratification
19.  Is Bilateral Lymphadenectomy For Midline Squamous Carcinoma Of The Vulva Always Necessary? An Analysis From Gynecologic Oncology Group (GOG) 173 
Gynecologic oncology  2012;128(2):155-159.
Objective
To determine which patients with near midline lesions may safely undergo unilateral groin dissection based on clinical exam and lymphoscintigraphy (LSG) results.
Methods
Patients participating in GOG-173 underwent sentinel lymph node (SLN) localization with blue dye, and radiocolloid with optional LSG before definitive inguinal-femoral lymphadenectomy (LND). This analysis interrogates the reliability of LSG alone relative to primary tumor location in those patients who had an interpretable LSG and at least one SLN identified. Primary tumor location was categorized as lateral (>2 cm from midline), midline, or lateral ambiguous (LA) if located within 2 cm., but not involving the midline.
Results
Two-hundred-thirty-four patients met eligibility criteria. Sixty-four had lateral lesions, and underwent unilateral LND. All patients with LA (N=65) and midline (N=105) tumors underwent bilateral LND. Bilateral drainage by LSG was identified in 14/64 (22%) patients with lateral tumors, 38/65 (58%) with LA tumors and in 73/105 (70%) with midline tumors. At mapping, no SLNs were found in contralateral groins among those patients with LA and midline tumors who had unilateral-only LSGs. However, in these patients groin metastases were found in 4/32 patients with midline tumors undergoing contralateral dissection; none were found in 27 patients with LA tumors.
Conclusion
The likelihood of detectable bilateral drainage using preoperative LSG decreases as a function of distance from midline. Patients with LA primaries and unilateral drainage on LSG may safely undergo unilateral SLN.
doi:10.1016/j.ygyno.2012.11.034
PMCID: PMC3638213  PMID: 23201592
Vulva cancer; sentinel node; lymphadenectomy; lymphoscintigraphy; sentinel node mapping; radiocolloid; vital blue dye
20.  New Technologies for Cervical Cancer Screening 
New technologies for cervical cancer screening seek to provide an accurate, efficient, and cost-effective way of identifying women at risk for cervical cancer. Current screening uses HPV DNA testing combined with cytology and requires multiple visits at a great cost to the patient and the society. New methods for screening include HPV diagnostics (detection of either the presence of HPV or integration of the virus into the host cell), proliferation, and detection of epigenetic changes, either in the host or virus. These methods show promise in changing the way that current cervical cancer screening is undertaken in both low and high-resource settings.
doi:10.1016/j.bpobgyn.2011.11.001
PMCID: PMC3632360  PMID: 22119058
21.  Tc17 CD8 T Cells: Functional Plasticity and Subset Diversity1 
IL-17-secreting CD8 T cells (Tc17) have been described in several settings, but little is known regarding their functional characteristics. While Tc1 cells produced IFN-γ and efficiently killed targets, Tc17 cells lacked lytic function in vitro. Interestingly, the small numbers of IFN-γ-positive or IL-17/IFN-γ-double-positive cells generated under Tc17 conditions also lacked lytic activity and expressed a similar pattern of cell surface proteins to IL-17-producing cells. As is the case for Th17 (CD4) cells, STAT3 is important for Tc17 polarization, both in vitro and in vivo. Adoptive transfer of highly purified, Ag-specific IL-17-secreting Tc17 cells into Ag-bearing hosts resulted in near complete conversion to an IFN-γ-secreting phenotype and substantial pulmonary pathology, demonstrating functional plasticity. Tc17 also accumulated to a greater extent than did Tc1 cells, suggesting that adoptive transfer of CD8 T cells cultured in Tc17 conditions may have therapeutic potential for diseases in which IFN-γ-producing cells are desired.
doi:10.4049/jimmunol.0900368
PMCID: PMC3082359  PMID: 19917680
22.  Active and Passive Cigarette Smoking and the Risk of Cervical Neoplasia 
Obstetrics and gynecology  2005;105(1):174-181.
OBJECTIVE
Evidence links active cigarette smoking to cervical neoplasia, but much less is known about the role of passive smoking. Using a prospective cohort design, we examined personal cigarette smoking and household passive smoke exposure in relation to the risk of cervical neoplasia.
METHODS
Cohorts were established based on data collected on the smoking status of all household members during private censuses of Washington County, Maryland in 1963 (n = 24,792) and 1975 (n = 26,381). Using the Washington County Cancer Registry, the occurrence of cervical neoplasia in the two cohorts was ascertained from 1963–1978 and from 1975–1994. Poisson regression models were fitted to estimate the relative risk of developing cervical neoplasia associated with active and passive smoking in both cohorts. The referent category for all comparisons was never smokers not exposed to passive smoking.
RESULTS
The adjusted relative risk and 95% confidence limits for passive smoking was 2.1 (1.3, 3.3) in the 1963 cohort and 1.4 (0.8, 2.4) in the 1975 cohort. The adjusted relative risk and 95% confidence limits for current smoking were 2.6 (1.7, 4.1) and 1.7 (1.1, 2.6) in the 1963 and 1975 cohort, respectively.
CONCLUSION
The associations were in the direction of increased risk for both passive smoking and current active smoking in both the 1963 and 1975 cohorts, but were stronger in the 1963 cohort. The results of this long-term, prospective cohort study corroborate the association between active cigarette smoking and cervical neoplasia and provide evidence that passive smoking is a risk factor for cervical neoplasia.
doi:10.1097/01.AOG.0000148268.43584.03
PMCID: PMC3064987  PMID: 15625160
23.  Naturally occurring systemic immune responses to HPV antigens do not predict regression of CIN2/3 
Essentially all squamous cervical cancers and their precursor lesions, high grade cervical intraepithelial neoplasia (CIN2/3), are caused by persistent human papil-lomavirus (HPV) infection. However, not all CIN2/3 lesions progress to cancer. In a brief, observational study window monitoring subjects with CIN2/3 from protocol entry (biopsy diagnosis) to definitive therapy (cervical conization) at week 15, in a cohort of 50 subjects, we found that 26% of CIN2/3 lesions associated with HPV16, the genotype most commonly associated with disease, underwent complete histologic regression. Nonetheless, HPV16-specific T cell responses measured in peripheral blood obtained at the time of study entry and at the time of conization were marginally detectable directly ex vivo, and did not correlate with lesion regression. This finding suggests that, in the setting of natural infection, immune responses which are involved in elimination of cervical dysplastic epithelium are not represented to any great extent in the systemic circulation.
doi:10.1007/s00262-009-0806-4
PMCID: PMC2913444  PMID: 20012604
Human papillomavirus (HPV); Cervical dysplasia; Regression; Systemic immune response

Results 1-23 (23)