Search tips
Search criteria


Important Notice

PubMed Central Canada to be taken offline in February 2018

On February 23, 2018, PubMed Central Canada (PMC Canada) will be taken offline permanently. No author manuscripts will be deleted, and the approximately 2,900 manuscripts authored by Canadian Institutes of Health Research (CIHR)-funded researchers currently in the archive will be copied to the National Research Council’s (NRC) Digital Repository over the coming months. These manuscripts along with all other content will also remain publicly searchable on PubMed Central (US) and Europe PubMed Central, meaning such manuscripts will continue to be compliant with the Tri-Agency Open Access Policy on Publications.

Read more

Results 1-25 (40)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Human CD26high T cells elicit tumor immunity against multiple malignancies via enhanced migration and persistence 
Nature Communications  2017;8:1961.
CD8+ T lymphocytes mediate potent immune responses against tumor, but the role of human CD4+ T cell subsets in cancer immunotherapy remains ill-defined. Herein, we exhibit that CD26 identifies three T helper subsets with distinct immunological properties in both healthy individuals and cancer patients. Although CD26neg T cells possess a regulatory phenotype, CD26int T cells are mainly naive and CD26high T cells appear terminally differentiated and exhausted. Paradoxically, CD26high T cells persist in and regress multiple solid tumors following adoptive cell transfer. Further analysis revealed that CD26high cells have a rich chemokine receptor profile (including CCR2 and CCR5), profound cytotoxicity (Granzyme B and CD107A), resistance to apoptosis (c-KIT and Bcl2), and enhanced stemness (β-catenin and Lef1). These properties license CD26high T cells with a natural capacity to traffic to, regress and survive in solid tumors. Collectively, these findings identify CD4+ T cell subsets with properties critical for improving cancer immunotherapy.
The role of human CD4+ T cell subsets in cancer immunotherapy is still unclear. Here, the authors show that CD26 identifies three CD4+ T cell subsets with distinct immunological properties in both healthy individuals and cancer patients.
PMCID: PMC5719008  PMID: 29213079
2.  Adoptive Transfer of Ceramide Synthase 6 Deficient Splenocytes Reduces the Development of Colitis 
Scientific Reports  2017;7:15552.
Sphingolipids regulate critical cellular processes including inflammation. Ceramide, which serves a central role in sphingolipid metabolism, is generated by six ceramide synthases (CerS) that differ in substrate specificity. CerS6 preferentially generates C16-ceramide and its mRNA is highly expressed in immune tissues. In this study we analyzed how deficiency of CerS6 impacts on the development of colitis using an adoptive transfer model. Adoptive transfer of CerS6-deficient splenocytes, which have significantly decreased levels of C16-ceramide, showed that CerS6-deficiency protected against the development of colitis. However, adoptively transferred cells isolated from the lamina propria of the large intestine from wild type or CerS6-deficient groups showed no differences in the percentages of immune-suppressive regulatory T cells, pro-inflammatory Th17 cells, or their ability to express IL-17. In vitro polarization of wild type or CerS6-deficient splenocytes also revealed no defects in the development of T cell subsets. Our data suggest that protection from colitis following adoptive transfer of CerS6-deficient splenocytes maybe related to their ability to migrate and proliferate in vivo rather than subset development or cytokine expression.
PMCID: PMC5686186  PMID: 29138469
3.  Resident memory T cells in skin mediate durable immunity to melanoma 
Science immunology  2017;2(10):eaam6346.
Tissue-resident memory T cells (TRM cells) have been widely characterized in infectious disease settings; however, their role in mediating immunity to cancer remains unknown. Here we report that skin-resident memory T cell responses to melanoma are generated naturally as a result of autoimmune vitiligo. Melanoma antigen-specific TRM cells resided predominantly in melanocyte-depleted hair follicles and were maintained without recirculation or replenishment from the lymphoid compartment. These cells expressed CD103, CD69, and CLA, but lacked PD-1 or LAG-3, and were capable of making IFN-γ. CD103 expression on CD8 T cells was required for establishment of TRM cells in skin, but was dispensable for vitiligo development. Importantly, CD103+ CD8 TRM cells were critical for protection against melanoma re-challenge. This work establishes that CD103-dependent TRM cells play a key role in perpetuating anti-tumor immunity.
PMCID: PMC5525335  PMID: 28738020
4.  Lack of p53 Augments Anti-Tumor Functions in Cytolytic T Cells 
Cancer research  2016;76(18):5229-5240.
Repetitive stimulation of T cell receptor (TCR) with cognate antigen results in robust proliferation and expansion of the T cells, and also imprints them with replicative senescence signatures. Our previous studies have shown that life-span and anti-tumor function of T cells can be enhanced by inhibiting reactive oxygen species (ROS) or intervening with ROS dependent JNK activation that leads to its activation induced cell death (AICD). Since tumor suppressor protein p53 is also a redox active transcription factor that regulates cellular ROS generation that triggers downstream factor mediating apoptosis, we determined if p53 levels could influence persistence and function of tumor reactive T cells. Using h3T TCR transgenic mice, with human tyrosinase epitope reactive T cells developed on p53 knock-out (KO) background, we determined its role in regulating anti-tumor T cell function. Our data shows that as compared to h3T cells, h3T-p53 KO T cells exhibited enhanced glycolytic commitment that correlated with increased proliferation, IFN-γ secretion, cytolytic capacity, expression of stemness gene signature and decreased TGF-β signaling. This increased effector function correlated to the improved control of subcutaneously established murine melanoma after adoptive transfer of p53-KO T cells. Pharmacological inhibition of human TCR transduced T cells using a combination of p53 inhibitors also potentiated the T cell effector function and improved persistence. Thus, our data highlights the key role of p53 in regulating the tumor reactive T cell response and that targeting this pathway could have potential translational significance in adoptive T cell therapy.
PMCID: PMC5026612  PMID: 27466285
5.  The Basics of Artificial Antigen Presenting Cells in T Cell-Based Cancer Immunotherapies 
Adoptive T cell transfer (ACT) can mediate objective responses in patients with advanced malignancies. There have been major advances in this field, including the optimization of the ex vivo generation of tumor-reactive lymphocytes to ample numbers for effective ACT therapy via the use of natural and artificial antigen presenting cells (APCs). Herein we review the basic properties of APCs and how they have been manufactured through the years to augment vaccine and T cell-based cancer therapies. We then discuss how these novel APCs impact the function and memory properties of T cells. Finally, we propose new ways to synthesize aAPCs to augment the therapeutic effectiveness of antitumor T cells for ACT therapy.
PMCID: PMC5560309
Adoptive cell transfer; Artificial antigen presenting cells (aAPCs); T cells; Cancer immunology; Immunotherapy
6.  Platelets Subvert T Cell Immunity Against Cancer via GARP-TGFβ Axis 
Science immunology  2017;2(11):eaai7911.
Cancer-associated thrombocytosis has long been linked to poor clinical outcome, but the underlying mechanism is enigmatic. We hypothesized that platelets promote malignancy and resistance to therapy by dampening host immunity. We herein show that genetic targeting of platelets significantly enhances adoptive T cell therapy of cancer. An unbiased biochemical and structural biology approach established transforming growth factor β (TGFβ) and lactate as the major platelet-derived soluble factors to obliterate CD4+ and CD8+ T cell functions. Moreover, we found that platelets are the dominant source of functional TGFβ systemically as well as in the tumor microenvironment through constitutive expression of TGFβ-docking receptor Glycoprotein A Repetitions Predominant (GARP) rather than secretion of TGFβ per se. Indeed, platelet-specific deletion of GARP-encoding gene Lrrc32 blunted TGFβ activity at the tumor site and potentiated protective immunity against both melanoma and colon cancer. Finally, we found that T cell therapy of cancer can be substantially improved by concurrent treatment with readily available anti-platelet agents. We conclude that platelets constrain T cell immunity though a GARP-TGFβ axis and suggest a combination of immunotherapy and platelet inhibitors as a therapeutic strategy against cancer.
PMCID: PMC5539882  PMID: 28763790
7.  β-catenin and PI3Kδ inhibition expands precursor Th17 cells with heightened stemness and antitumor activity 
JCI Insight  null;2(8):e90547.
ICOS costimulation generates Th17 cells with durable memory responses to tumor. Herein, we found that ICOS induces PI3K/p110δ/Akt and Wnt/β-catenin pathways in Th17 cells. Coinhibiting PI3Kδ and β-catenin altered the biological fate of Th17 cells. Th17 cells inhibited of both pathways expressed less RORγt, which, in turn, reduced their ability to secrete IL-17. Unexpectedly, these cells were more effective (than uninhibited cells) at regressing tumor when infused into mice, leading to long-term curative responses. PI3Kδ inhibition expanded precursor Th17 cells with a central memory phenotype that expressed nominal regulatory properties (low FoxP3), while β-catenin inhibition enhanced Th17 multifunctionality in vivo. Remarkably, upon TCR restimulation, RORγt and IL-17 rebounded in Th17 cells treated with PI3Kδ and β-catenin inhibitors. Moreover, these cells regained β-catenin, Tcf7, and Akt expression, licensing them to secrete heightened IL-2, persist, and eradicate solid tumors without help from endogenous NK and CD8 T cells. This finding shines a light on ways to repurpose FDA-approved drugs to augment T cell–based cancer immunotherapies.
Inhibiting Wnt/β-catenin and PI3K/p110δ signaling pathways augments the antitumor activity of precursor stem memory Th17 cells in mice bearing large and poorly immunogenic tumors.
PMCID: PMC5396523  PMID: 28422756
8.  Vaccination with poly(IC:LC) and peptide-pulsed autologous dendritic cells in patients with pancreatic cancer 
Dendritic cells (DCs) enhance the quality of anti-tumor immune response in patients with cancer. Thus, we posit that DC-based immunotherapy, in conjunction with toll-like receptor (TLR)-3 agonist poly-ICLC, is a promising approach for harnessing immunity against metastatic or locally advanced unresectable pancreatic cancer (PC).
We generated autologous DCs from the peripheral blood of HLA-A2+ patients with PC. DCs were pulsed with three distinct A2-restricted peptides: 1) human telomerase reverse transcriptase (hTERT, TERT572Y), 2) carcinoembryonic antigen (CEA; Cap1-6D), and 3) survivin (SRV.A2). Patients received four intradermal injections of 1 × 107 peptide-pulsed DC vaccines every 2 weeks (Day 0, 14, 28, and 42). Concurrently, patients received intramuscular administration of Poly-ICLC at 30 μg/Kg on vaccination days (i.e., day 0, 14, 28, and 42), as well as on days 3, 17, 21, 31, 37, and 45. Our key objective was to assess safety and feasibility. The effect of DC vaccination on immune response was measured at each DC injection time point by enumerating the phenotype and function of patient T cells.
Twelve patients underwent apheresis: nine patients with metastatic disease, and three patients with locally advanced unresectable disease. Vaccines were successfully manufactured from all individuals. We found that this treatment was well-tolerated, with the most common symptoms being fatigue and/or self-limiting flu-like symptoms. Among the eight patients who underwent imaging on day 56, four patients experienced stable disease while four patients had disease progression. The median overall survival was 7.7 months. One patient survived for 28 months post leukapheresis. MHC class I –tetramer analysis before and after vaccination revealed effective generation of antigen-specific T cells in three patients with stable disease.
Vaccination with peptide-pulsed DCs in combination with poly-ICLC is safe and induces a measurable tumor specific T cell population in patients with advanced PC.
Trial registration
NCT01410968; Name of registry:; Date of registration: 08/04/2011).
Electronic supplementary material
The online version of this article (doi:10.1186/s13045-017-0459-2) contains supplementary material, which is available to authorized users.
PMCID: PMC5384142  PMID: 28388966
9.  Th17 cells are refractory to senescence and retain robust antitumor activity after long-term ex vivo expansion 
JCI Insight  null;2(5):e90772.
Adoptive immunotherapy for solid tumors relies on infusing large numbers of T cells to mediate successful antitumor responses in patients. While long-term rapid-expansion protocols (REPs) produce sufficient numbers of CD8+ T cells for treatment, they also cause decline in the cell’s therapeutic fitness. In contrast, we discovered that IL-17–producing CD4+ T cells (Th17 cells) do not require REPs to expand 5,000-fold over 3 weeks. Also, unlike Th1 cells, Th17 cells do not exhibit hallmarks of senescence or apoptosis, retaining robust antitumor efficacy in vivo. Three-week-expanded Th17 cells eliminated melanoma as effectively as Th17 cells expanded for 1 week when infused in equal numbers into mice. However, treating mice with large recalcitrant tumors required the infusion of all cells generated after 2 or 3 weeks of expansion, while the cell yield obtained after 1-week expansion was insufficient. Long-term-expanded Th17 cells also protected mice from tumor rechallenge including lung metastasis. Importantly, 2-week-expanded human chimeric antigen receptor–positive (CAR+) Th17 cells also retained their ability to regress human mesothelioma, while CAR+ Th1 cells did not. Our results indicate that tumor-reactive Th17 cells are an effective cell therapy for cancer, remaining uncompromised when expanded for a long duration owing to their resistance to senescence.
Th17 cells are resistant to senescence and apoptosis during ex vivo expansion, allowing the generation of potent adoptive cell therapy products for aggressive cancers.
PMCID: PMC5333954
10.  Harnessing the IL-7/IL-7Rα axis to improve tumor immunotherapy 
Oncoimmunology  2016;5(5):e1122865.
IL-7 and IL-15 are critical for supporting T cells transferred into a lymphopenic environment. As activated CD8+ T cells downregulate IL-7Rα, it is thought IL-15 is more important. However, we find that CD8+ T cells activated with IL-12 have elevated IL-7Rα and rely on IL-7 for persistence and antitumor immunity.
PMCID: PMC4910714  PMID: 27467935
Adoptive cellular therapy; CD8; IL-7; IL-7Ra; IL-15
11.  PI3Kδ Inhibition Enhances the Antitumor Fitness of Adoptively Transferred CD8+ T Cells 
Frontiers in Immunology  2017;8:1221.
Phosphatidylinositol-3-kinase p110δ (PI3Kδ) inhibition by Idelalisib (CAL-101) in hematological malignancies directly induces apoptosis in cancer cells and disrupts immunological tolerance by depleting regulatory T cells. Yet, little is known about the direct impact of PI3Kδ blockade on effector T cells from CAL-101 therapy. Herein, we demonstrate a direct effect of p110δ inactivation via CAL-101 on murine and human CD8+ T cells that promotes a strong undifferentiated phenotype (elevated CD62L/CCR7, CD127, and Tcf7). These CAL-101 T cells also persisted longer after transfer into tumor bearing mice in both the murine syngeneic and human xenograft mouse models. The less differentiated phenotype and improved engraftment of CAL-101 T cells resulted in stronger antitumor immunity compared to traditionally expanded CD8+ T cells in both tumor models. Thus, this report describes a novel direct enhancement of CD8+ T cells by a p110δ inhibitor that leads to markedly improved tumor regression. This finding has significant implications to improve outcomes from next generation cancer immunotherapies.
PMCID: PMC5626814
adoptive cell therapy; T cell; cancer; memory; phosphatidylinositol-3-kinase; CAL-101; idelalisib
12.  Exploiting IL-17-producing CD4+ and CD8+ T cells to improve cancer immunotherapy in the clinic 
Cancer immunotherapy is one the most effective approaches for treating patients with tumors, as it bolsters the generation and persistence of memory T cells. In preclinical work, it has been reported that adoptively transferred CD4+ and CD8+ lymphocytes that secrete IL-17A (i.e., Th17 and Tc17 cells) regress tumors to a greater extent than IFN-γ+Th1 or Tc1 cells in vivo. Herein, we review the mechanisms underlying how infused Th17 and Tc17 cells regress established malignancies in clinically relevant mouse models of cancer. We also discuss how unique signaling cues—such as co-stimulatory molecules (ICOS and 41BB), cytokines (IL-12 and IL-23) or pharmaceutical reagents (Akt inhibitors, etc.)—can be exploited to bolster the therapeutic potential of IL-17+ lymphocytes with an emphasis on using this knowledge to improve next-generation clinical trials for patients with cancer.
PMCID: PMC5115162  PMID: 26825102
Th17; Tc17; Cancer; Immunotherapy; ACT
13.  31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016): part one 
Lundqvist, Andreas | van Hoef, Vincent | Zhang, Xiaonan | Wennerberg, Erik | Lorent, Julie | Witt, Kristina | Sanz, Laia Masvidal | Liang, Shuo | Murray, Shannon | Larsson, Ola | Kiessling, Rolf | Mao, Yumeng | Sidhom, John-William | Bessell, Catherine A. | Havel, Jonathan | Schneck, Jonathan | Chan, Timothy A. | Sachsenmeier, Eliot | Woods, David | Berglund, Anders | Ramakrishnan, Rupal | Sodre, Andressa | Weber, Jeffrey | Zappasodi, Roberta | Li, Yanyun | Qi, Jingjing | Wong, Philip | Sirard, Cynthia | Postow, Michael | Newman, Walter | Koon, Henry | Velcheti, Vamsidhar | Callahan, Margaret K. | Wolchok, Jedd D. | Merghoub, Taha | Lum, Lawrence G. | Choi, Minsig | Thakur, Archana | Deol, Abhinav | Dyson, Gregory | Shields, Anthony | Haymaker, Cara | Uemura, Marc | Murthy, Ravi | James, Marihella | Wang, Daqing | Brevard, Julie | Monaghan, Catherine | Swann, Suzanne | Geib, James | Cornfeld, Mark | Chunduru, Srinivas | Agrawal, Sudhir | Yee, Cassian | Wargo, Jennifer | Patel, Sapna P. | Amaria, Rodabe | Tawbi, Hussein | Glitza, Isabella | Woodman, Scott | Hwu, Wen-Jen | Davies, Michael A. | Hwu, Patrick | Overwijk, Willem W. | Bernatchez, Chantale | Diab, Adi | Massarelli, Erminia | Segal, Neil H. | Ribrag, Vincent | Melero, Ignacio | Gangadhar, Tara C. | Urba, Walter | Schadendorf, Dirk | Ferris, Robert L. | Houot, Roch | Morschhauser, Franck | Logan, Theodore | Luke, Jason J. | Sharfman, William | Barlesi, Fabrice | Ott, Patrick A. | Mansi, Laura | Kummar, Shivaani | Salles, Gilles | Carpio, Cecilia | Meier, Roland | Krishnan, Suba | McDonald, Dan | Maurer, Matthew | Gu, Xuemin | Neely, Jaclyn | Suryawanshi, Satyendra | Levy, Ronald | Khushalani, Nikhil | Wu, Jennifer | Zhang, Jinyu | Basher, Fahmin | Rubinstein, Mark | Bucsek, Mark | Qiao, Guanxi | MacDonald, Cameron | Hylander, Bonnie | Repasky, Elizabeth | Chatterjee, Shilpak | Daenthanasanmak, Anusara | Chakraborty, Paramita | Toth, Kyle | Meek, Megan | Garrett-Mayer, Elizabeth | Nishimura, Michael | Paulos, Chrystal | Beeson, Craig | Yu, Xuezhong | Mehrotra, Shikhar | Zhao, Fei | Evans, Kathy | Xiao, Christine | Holtzhausen, Alisha | Hanks, Brent A. | Scharping, Nicole | Menk, Ashley V. | Moreci, Rebecca | Whetstone, Ryan | Dadey, Rebekah | Watkins, Simon | Ferris, Robert | Delgoffe, Greg M. | Peled, Jonathan | Devlin, Sean | Staffas, Anna | Lumish, Melissa | Rodriguez, Kori Porosnicu | Ahr, Katya | Perales, Miguel | Giralt, Sergio | Taur, Ying | Pamer, Eric | van den Brink, Marcel R. M. | Jenq, Robert | Annels, Nicola | Pandha, Hardev | Simpson, Guy | Mostafid, Hugh | Harrington, Kevin | Melcher, Alan | Grose, Mark | Davies, Bronwyn | Au, Gough | Karpathy, Roberta | Shafren, Darren | Ricca, Jacob | Merghoub, Taha | Wolchok, Jedd D. | Zamarin, Dmitriy | Batista, Luciana | Marliot, Florence | Vasaturo, Angela | Carpentier, Sabrina | Poggionovo, Cécile | Frayssinet, Véronique | Fieschi, Jacques | Van den Eynde, Marc | Pagès, Franck | Galon, Jérôme | Hermitte, Fabienne | Smith, Sean G. | Nguyen, Khue | Ravindranathan, Sruthi | Koppolu, Bhanu | Zaharoff, David | Schvartsman, Gustavo | Bassett, Roland | McQuade, Jennifer L. | Haydu, Lauren E. | Davies, Michael A. | Tawbi, Hussein | Glitza, Isabella | Kline, Douglas | Chen, Xiufen | Fosco, Dominick | Kline, Justin | Overacre, Abigail | Chikina, Maria | Brunazzi, Erin | Shayan, Gulidanna | Horne, William | Kolls, Jay | Ferris, Robert L. | Delgoffe, Greg M. | Bruno, Tullia C. | Workman, Creg | Vignali, Dario | Adusumilli, Prasad S. | Ansa-Addo, Ephraim A | Li, Zihai | Gerry, Andrew | Sanderson, Joseph P. | Howe, Karen | Docta, Roslin | Gao, Qian | Bagg, Eleanor A. L. | Tribble, Nicholas | Maroto, Miguel | Betts, Gareth | Bath, Natalie | Melchiori, Luca | Lowther, Daniel E. | Ramachandran, Indu | Kari, Gabor | Basu, Samik | Binder-Scholl, Gwendolyn | Chagin, Karen | Pandite, Lini | Holdich, Tom | Amado, Rafael | Zhang, Hua | Glod, John | Bernstein, Donna | Jakobsen, Bent | Mackall, Crystal | Wong, Ryan | Silk, Jonathan D. | Adams, Katherine | Hamilton, Garth | Bennett, Alan D. | Brett, Sara | Jing, Junping | Quattrini, Adriano | Saini, Manoj | Wiedermann, Guy | Gerry, Andrew | Jakobsen, Bent | Binder-Scholl, Gwendolyn | Brewer, Joanna | Duong, MyLinh | Lu, An | Chang, Peter | Mahendravada, Aruna | Shinners, Nicholas | Slawin, Kevin | Spencer, David M. | Foster, Aaron E. | Bayle, J. Henri | Bergamaschi, Cristina | Ng, Sinnie Sin Man | Nagy, Bethany | Jensen, Shawn | Hu, Xintao | Alicea, Candido | Fox, Bernard | Felber, Barbara | Pavlakis, George | Chacon, Jessica | Yamamoto, Tori | Garrabrant, Thomas | Cortina, Luis | Powell, Daniel J. | Donia, Marco | Kjeldsen, Julie Westerlin | Andersen, Rikke | Westergaard, Marie Christine Wulff | Bianchi, Valentina | Legut, Mateusz | Attaf, Meriem | Dolton, Garry | Szomolay, Barbara | Ott, Sascha | Lyngaa, Rikke | Hadrup, Sine Reker | Sewell, Andrew Kelvin | Svane, Inge Marie | Fan, Aaron | Kumai, Takumi | Celis, Esteban | Frank, Ian | Stramer, Amanda | Blaskovich, Michelle A. | Wardell, Seth | Fardis, Maria | Bender, James | Lotze, Michael T. | Goff, Stephanie L. | Zacharakis, Nikolaos | Assadipour, Yasmine | Prickett, Todd D. | Gartner, Jared J. | Somerville, Robert | Black, Mary | Xu, Hui | Chinnasamy, Harshini | Kriley, Isaac | Lu, Lily | Wunderlich, John | Robbins, Paul F. | Rosenberg, Steven | Feldman, Steven A. | Trebska-McGowan, Kasia | Kriley, Isaac | Malekzadeh, Parisa | Payabyab, Eden | Sherry, Richard | Rosenberg, Steven | Goff, Stephanie L. | Gokuldass, Aishwarya | Blaskovich, Michelle A. | Kopits, Charlene | Rabinovich, Brian | Lotze, Michael T. | Green, Daniel S. | Kamenyeva, Olena | Zoon, Kathryn C. | Annunziata, Christina M. | Hammill, Joanne | Helsen, Christopher | Aarts, Craig | Bramson, Jonathan | Harada, Yui | Yonemitsu, Yoshikazu | Helsen, Christopher | Hammill, Joanne | Mwawasi, Kenneth | Denisova, Galina | Bramson, Jonathan | Giri, Rajanish | Jin, Benjamin | Campbell, Tracy | Draper, Lindsey M. | Stevanovic, Sanja | Yu, Zhiya | Weissbrich, Bianca | Restifo, Nicholas P. | Trimble, Cornelia L. | Rosenberg, Steven | Hinrichs, Christian S. | Tsang, Kwong | Fantini, Massimo | Hodge, James W. | Fujii, Rika | Fernando, Ingrid | Jochems, Caroline | Heery, Christopher | Gulley, James | Soon-Shiong, Patrick | Schlom, Jeffrey | Jing, Weiqing | Gershan, Jill | Blitzer, Grace | Weber, James | McOlash, Laura | Johnson, Bryon D. | Kiany, Simin | Gangxiong, Huang | Kleinerman, Eugenie S. | Klichinsky, Michael | Ruella, Marco | Shestova, Olga | Kenderian, Saad | Kim, Miriam | Scholler, John | June, Carl H. | Gill, Saar | Moogk, Duane | Zhong, Shi | Yu, Zhiya | Liadi, Ivan | Rittase, William | Fang, Victoria | Dougherty, Janna | Perez-Garcia, Arianne | Osman, Iman | Zhu, Cheng | Varadarajan, Navin | Restifo, Nicholas P. | Frey, Alan | Krogsgaard, Michelle | Landi, Daniel | Fousek, Kristen | Mukherjee, Malini | Shree, Ankita | Joseph, Sujith | Bielamowicz, Kevin | Byrd, Tiara | Ahmed, Nabil | Hegde, Meenakshi | Lee, Sylvia | Byrd, David | Thompson, John | Bhatia, Shailender | Tykodi, Scott | Delismon, Judy | Chu, Liz | Abdul-Alim, Siddiq | Ohanian, Arpy | DeVito, Anna Marie | Riddell, Stanley | Margolin, Kim | Magalhaes, Isabelle | Mattsson, Jonas | Uhlin, Michael | Nemoto, Satoshi | Villarroel, Patricio Pérez | Nakagawa, Ryosuke | Mule, James J. | Mailloux, Adam W. | Mata, Melinda | Nguyen, Phuong | Gerken, Claudia | DeRenzo, Christopher | Spencer, David M. | Gottschalk, Stephen | Mathieu, Mélissa | Pelletier, Sandy | Stagg, John | Turcotte, Simon | Minutolo, Nicholas | Sharma, Prannda | Tsourkas, Andrew | Powell, Daniel J. | Mockel-Tenbrinck, Nadine | Mauer, Daniela | Drechsel, Katharina | Barth, Carola | Freese, Katharina | Kolrep, Ulrike | Schult, Silke | Assenmacher, Mario | Kaiser, Andrew | Mullinax, John | Hall, MacLean | Le, Julie | Kodumudi, Krithika | Royster, Erica | Richards, Allison | Gonzalez, Ricardo | Sarnaik, Amod | Pilon-Thomas, Shari | Nielsen, Morten | Krarup-Hansen, Anders | Hovgaard, Dorrit | Petersen, Michael Mørk | Loya, Anand Chainsukh | Junker, Niels | Svane, Inge Marie | Rivas, Charlotte | Parihar, Robin | Gottschalk, Stephen | Rooney, Cliona M. | Qin, Haiying | Nguyen, Sang | Su, Paul | Burk, Chad | Duncan, Brynn | Kim, Bong-Hyun | Kohler, M. Eric | Fry, Terry | Rao, Arjun A. | Teyssier, Noam | Pfeil, Jacob | Sgourakis, Nikolaos | Salama, Sofie | Haussler, David | Richman, Sarah A. | Nunez-Cruz, Selene | Gershenson, Zack | Mourelatos, Zissimos | Barrett, David | Grupp, Stephan | Milone, Michael | Rodriguez-Garcia, Alba | Robinson, Matthew K. | Adams, Gregory P. | Powell, Daniel J. | Santos, João | Havunen, Riikka | Siurala, Mikko | Cervera-Carrascón, Víctor | Parviainen, Suvi | Antilla, Marjukka | Hemminki, Akseli | Sethuraman, Jyothi | Santiago, Laurelis | Chen, Jie Qing | Dai, Zhimin | Wardell, Seth | Bender, James | Lotze, Michael T. | Sha, Huizi | Su, Shu | Ding, Naiqing | Liu, Baorui | Stevanovic, Sanja | Pasetto, Anna | Helman, Sarah R. | Gartner, Jared J. | Prickett, Todd D. | Robbins, Paul F. | Rosenberg, Steven A. | Hinrichs, Christian S. | Bhatia, Shailender | Burgess, Melissa | Zhang, Hui | Lee, Tien | Klingemann, Hans | Soon-Shiong, Patrick | Nghiem, Paul | Kirkwood, John M. | Rossi, John M. | Sherman, Marika | Xue, Allen | Shen, Yueh-wei | Navale, Lynn | Rosenberg, Steven A. | Kochenderfer, James N. | Bot, Adrian | Veerapathran, Anandaraman | Gokuldass, Aishwarya | Stramer, Amanda | Sethuraman, Jyothi | Blaskovich, Michelle A. | Wiener, Doris | Frank, Ian | Santiago, Laurelis | Rabinovich, Brian | Fardis, Maria | Bender, James | Lotze, Michael T. | Waller, Edmund K. | Li, Jian-Ming | Petersen, Christopher | Blazar, Bruce R. | Li, Jingxia | Giver, Cynthia R. | Wang, Ziming | Grossenbacher, Steven K. | Sturgill, Ian | Canter, Robert J. | Murphy, William J. | Zhang, Congcong | Burger, Michael C. | Jennewein, Lukas | Waldmann, Anja | Mittelbronn, Michel | Tonn, Torsten | Steinbach, Joachim P. | Wels, Winfried S. | Williams, Jason B. | Zha, Yuanyuan | Gajewski, Thomas F. | Williams, LaTerrica C. | Krenciute, Giedre | Kalra, Mamta | Louis, Chrystal | Gottschalk, Stephen | Xin, Gang | Schauder, David | Jiang, Aimin | Joshi, Nikhil | Cui, Weiguo | Zeng, Xue | Menk, Ashley V. | Scharping, Nicole | Delgoffe, Greg M. | Zhao, Zeguo | Hamieh, Mohamad | Eyquem, Justin | Gunset, Gertrude | Bander, Neil | Sadelain, Michel | Askmyr, David | Abolhalaj, Milad | Lundberg, Kristina | Greiff, Lennart | Lindstedt, Malin | Angell, Helen K. | Kim, Kyoung-Mee | Kim, Seung-Tae | Kim, Sung | Sharpe, Alan D. | Ogden, Julia | Davenport, Anna | Hodgson, Darren R. | Barrett, Carl | Lee, Jeeyun | Kilgour, Elaine | Hanson, Jodi | Caspell, Richard | Karulin, Alexey | Lehmann, Paul | Ansari, Tameem | Schiller, Annemarie | Sundararaman, Srividya | Lehmann, Paul | Hanson, Jodi | Roen, Diana | Karulin, Alexey | Lehmann, Paul | Ayers, Mark | Levitan, Diane | Arreaza, Gladys | Liu, Fang | Mogg, Robin | Bang, Yung-Jue | O’Neil, Bert | Cristescu, Razvan | Friedlander, Philip | Wassman, Karl | Kyi, Chrisann | Oh, William | Bhardwaj, Nina | Bornschlegl, Svetlana | Gustafson, Michael P. | Gastineau, Dennis A. | Parney, Ian F. | Dietz, Allan B. | Carvajal-Hausdorf, Daniel | Mani, Nikita | Velcheti, Vamsidhar | Schalper, Kurt | Rimm, David | Chang, Serena | Levy, Ronald | Kurland, John | Krishnan, Suba | Ahlers, Christoph Matthias | Jure-Kunkel, Maria | Cohen, Lewis | Maecker, Holden | Kohrt, Holbrook | Chen, Shuming | Crabill, George | Pritchard, Theresa | McMiller, Tracee | Pardoll, Drew | Pan, Fan | Topalian, Suzanne | Danaher, Patrick | Warren, Sarah | Dennis, Lucas | White, Andrew M. | D’Amico, Leonard | Geller, Melissa | Disis, Mary L. | Beechem, Joseph | Odunsi, Kunle | Fling, Steven | Derakhshandeh, Roshanak | Webb, Tonya J. | Dubois, Sigrid | Conlon, Kevin | Bryant, Bonita | Hsu, Jennifer | Beltran, Nancy | Müller, Jürgen | Waldmann, Thomas | Duhen, Rebekka | Duhen, Thomas | Thompson, Lucas | Montler, Ryan | Weinberg, Andrew | Kates, Max | Early, Brandon | Yusko, Erik | Schreiber, Taylor H. | Bivalacqua, Trinity J. | Ayers, Mark | Lunceford, Jared | Nebozhyn, Michael | Murphy, Erin | Loboda, Andrey | Kaufman, David R. | Albright, Andrew | Cheng, Jonathan | Kang, S. Peter | Shankaran, Veena | Piha-Paul, Sarina A. | Yearley, Jennifer | Seiwert, Tanguy | Ribas, Antoni | McClanahan, Terrill K. | Cristescu, Razvan | Mogg, Robin | Ayers, Mark | Albright, Andrew | Murphy, Erin | Yearley, Jennifer | Sher, Xinwei | Liu, Xiao Qiao | Nebozhyn, Michael | Lunceford, Jared | Joe, Andrew | Cheng, Jonathan | Plimack, Elizabeth | Ott, Patrick A. | McClanahan, Terrill K. | Loboda, Andrey | Kaufman, David R. | Forrest-Hay, Alex | Guyre, Cheryl A. | Narumiya, Kohei | Delcommenne, Marc | Hirsch, Heather A. | Deshpande, Amit | Reeves, Jason | Shu, Jenny | Zi, Tong | Michaelson, Jennifer | Law, Debbie | Trehu, Elizabeth | Sathyanaryanan, Sriram | Hodkinson, Brendan P. | Hutnick, Natalie A. | Schaffer, Michael E. | Gormley, Michael | Hulett, Tyler | Jensen, Shawn | Ballesteros-Merino, Carmen | Dubay, Christopher | Afentoulis, Michael | Reddy, Ashok | David, Larry | Fox, Bernard | Jayant, Kumar | Agrawal, Swati | Agrawal, Rajendra | Jeyakumar, Ghayathri | Kim, Seongho | Kim, Heejin | Silski, Cynthia | Suisham, Stacey | Heath, Elisabeth | Vaishampayan, Ulka | Vandeven, Natalie | Viller, Natasja Nielsen | O’Connor, Alison | Chen, Hui | Bossen, Bolette | Sievers, Eric | Uger, Robert | Nghiem, Paul | Johnson, Lisa | Kao, Hsiang-Fong | Hsiao, Chin-Fu | Lai, Shu-Chuan | Wang, Chun-Wei | Ko, Jenq-Yuh | Lou, Pei-Jen | Lee, Tsai-Jan | Liu, Tsang-Wu | Hong, Ruey-Long | Kearney, Staci J. | Black, Joshua C. | Landis, Benjamin J. | Koegler, Sally | Hirsch, Brooke | Gianani, Roberto | Kim, Jeffrey | He, Ming-Xiao | Zhang, Bingqing | Su, Nan | Luo, Yuling | Ma, Xiao-Jun | Park, Emily | Kim, Dae Won | Copploa, Domenico | Kothari, Nishi | doo Chang, Young | Kim, Richard | Kim, Namyong | Lye, Melvin | Wan, Ee | Kim, Namyong | Lye, Melvin | Wan, Ee | Kim, Namyong | Lye, Melvin | Wan, Ee | Knaus, Hanna A. | Berglund, Sofia | Hackl, Hubert | Karp, Judith E. | Gojo, Ivana | Luznik, Leo | Hong, Henoch S. | Koch, Sven D. | Scheel, Birgit | Gnad-Vogt, Ulrike | Kallen, Karl-Josef | Wiegand, Volker | Backert, Linus | Kohlbacher, Oliver | Hoerr, Ingmar | Fotin-Mleczek, Mariola | Billingsley, James M. | Koguchi, Yoshinobu | Conrad, Valerie | Miller, William | Gonzalez, Iliana | Poplonski, Tomasz | Meeuwsen, Tanisha | Howells-Ferreira, Ana | Rattray, Rogan | Campbell, Mary | Bifulco, Carlo | Dubay, Christopher | Bahjat, Keith | Curti, Brendan | Urba, Walter | Vetsika, E-K | Kallergi, G. | Aggouraki, Despoina | Lyristi, Z. | Katsarlinos, P. | Koinis, Filippos | Georgoulias, V. | Kotsakis, Athanasios | Martin, Nathan T. | Aeffner, Famke | Kearney, Staci J. | Black, Joshua C. | Cerkovnik, Logan | Pratte, Luke | Kim, Rebecca | Hirsch, Brooke | Krueger, Joseph | Gianani, Roberto | Martínez-Usatorre, Amaia | Jandus, Camilla | Donda, Alena | Carretero-Iglesia, Laura | Speiser, Daniel E. | Zehn, Dietmar | Rufer, Nathalie | Romero, Pedro | Panda, Anshuman | Mehnert, Janice | Hirshfield, Kim M. | Riedlinger, Greg | Damare, Sherri | Saunders, Tracie | Sokol, Levi | Stein, Mark | Poplin, Elizabeth | Rodriguez-Rodriguez, Lorna | Silk, Ann | Chan, Nancy | Frankel, Melissa | Kane, Michael | Malhotra, Jyoti | Aisner, Joseph | Kaufman, Howard L. | Ali, Siraj | Ross, Jeffrey | White, Eileen | Bhanot, Gyan | Ganesan, Shridar | Monette, Anne | Bergeron, Derek | Amor, Amira Ben | Meunier, Liliane | Caron, Christine | Morou, Antigoni | Kaufmann, Daniel | Liberman, Moishe | Jurisica, Igor | Mes-Masson, Anne-Marie | Hamzaoui, Kamel | Lapointe, Rejean | Mongan, Ann | Ku, Yuan-Chieh | Tom, Warren | Sun, Yongming | Pankov, Alex | Looney, Tim | Au-Young, Janice | Hyland, Fiona | Conroy, Jeff | Morrison, Carl | Glenn, Sean | Burgher, Blake | Ji, He | Gardner, Mark | Mongan, Ann | Omilian, Angela R. | Conroy, Jeff | Bshara, Wiam | Angela, Omilian | Burgher, Blake | Ji, He | Glenn, Sean | Morrison, Carl | Mongan, Ann | Obeid, Joseph M. | Erdag, Gulsun | Smolkin, Mark E. | Deacon, Donna H. | Patterson, James W. | Chen, Lieping | Bullock, Timothy N. | Slingluff, Craig L. | Obeid, Joseph M. | Erdag, Gulsun | Deacon, Donna H. | Slingluff, Craig L. | Bullock, Timothy N. | Loffredo, John T. | Vuyyuru, Raja | Beyer, Sophie | Spires, Vanessa M. | Fox, Maxine | Ehrmann, Jon M. | Taylor, Katrina A. | Korman, Alan J. | Graziano, Robert F. | Page, David | Sanchez, Katherine | Ballesteros-Merino, Carmen | Martel, Maritza | Bifulco, Carlo | Urba, Walter | Fox, Bernard | Patel, Sapna P. | De Macedo, Mariana Petaccia | Qin, Yong | Reuben, Alex | Spencer, Christine | Guindani, Michele | Bassett, Roland | Wargo, Jennifer | Racolta, Adriana | Kelly, Brian | Jones, Tobin | Polaske, Nathan | Theiss, Noah | Robida, Mark | Meridew, Jeffrey | Habensus, Iva | Zhang, Liping | Pestic-Dragovich, Lidija | Tang, Lei | Sullivan, Ryan J. | Logan, Theodore | Khushalani, Nikhil | Margolin, Kim | Koon, Henry | Olencki, Thomas | Hutson, Thomas | Curti, Brendan | Roder, Joanna | Blackmon, Shauna | Roder, Heinrich | Stewart, John | Amin, Asim | Ernstoff, Marc S. | Clark, Joseph I. | Atkins, Michael B. | Kaufman, Howard L. | Sosman, Jeffrey | Weber, Jeffrey | McDermott, David F. | Weber, Jeffrey | Kluger, Harriet | Halaban, Ruth | Snzol, Mario | Roder, Heinrich | Roder, Joanna | Asmellash, Senait | Steingrimsson, Arni | Blackmon, Shauna | Sullivan, Ryan J. | Wang, Chichung | Roman, Kristin | Clement, Amanda | Downing, Sean | Hoyt, Clifford | Harder, Nathalie | Schmidt, Guenter | Schoenmeyer, Ralf | Brieu, Nicolas | Yigitsoy, Mehmet | Madonna, Gabriele | Botti, Gerardo | Grimaldi, Antonio | Ascierto, Paolo A. | Huss, Ralf | Athelogou, Maria | Hessel, Harald | Harder, Nathalie | Buchner, Alexander | Schmidt, Guenter | Stief, Christian | Huss, Ralf | Binnig, Gerd | Kirchner, Thomas | Sellappan, Shankar | Thyparambil, Sheeno | Schwartz, Sarit | Cecchi, Fabiola | Nguyen, Andrew | Vaske, Charles | Hembrough, Todd
Journal for Immunotherapy of Cancer  2016;4(Suppl 1):1-106.
PMCID: PMC5123387
14.  Synthetic RORγ agonists regulate multiple pathways to enhance antitumor immunity 
Oncoimmunology  2016;5(12):e1254854.
RORγt is the key transcription factor controlling the development and function of CD4+ Th17 and CD8+ Tc17 cells. Across a range of human tumors, about 15% of the CD4+ T cell fraction in tumor-infiltrating lymphocytes are RORγ+ cells. To evaluate the role of RORγ in antitumor immunity, we have identified synthetic, small molecule agonists that selectively activate RORγ to a greater extent than the endogenous agonist desmosterol. These RORγ agonists enhance effector function of Type 17 cells by increasing the production of cytokines/chemokines such as IL-17A and GM-CSF, augmenting expression of co-stimulatory receptors like CD137, CD226, and improving survival and cytotoxic activity. RORγ agonists also attenuate immunosuppressive mechanisms by curtailing Treg formation, diminishing CD39 and CD73 expression, and decreasing levels of co-inhibitory receptors including PD-1 and TIGIT on tumor-reactive lymphocytes. The effects of RORγ agonists were not observed in RORγ−/− T cells, underscoring the selective on-target activity of the compounds. In vitro treatment of tumor-specific T cells with RORγ agonists, followed by adoptive transfer to tumor-bearing mice is highly effective at controlling tumor growth while improving T cell survival and maintaining enhanced IL-17A and reduced PD-1 in vivo. The in vitro effects of RORγ agonists translate into single agent, immune system-dependent, antitumor efficacy when compounds are administered orally in syngeneic tumor models. RORγ agonists integrate multiple antitumor mechanisms into a single therapeutic that both increases immune activation and decreases immune suppression resulting in robust inhibition of tumor growth. Thus, RORγ agonists represent a novel immunotherapy approach for cancer.
PMCID: PMC5215247  PMID: 28123897
Adoptive cell therapy; co-inhibitory receptors; co-stimulatory receptors; immunotherapy; PD-1; RORγ; Tc17; Th17
15.  IL-2Rα mediates temporal regulation of IL-2 signaling and enhances immunotherapy 
Science translational medicine  2015;7(311):311ra170.
IL-2 is a lymphocyte growth factor that is an important component of many immune-based cancer therapies. The efficacy of IL-2 is thought to be limited by the expansion of T regulatory cells, which express the high affinity IL-2 receptor subunit, IL-2Rα. IL-15 is under investigation as an alternative to IL-2. Although both cytokines signal through IL-2Rβγ, IL-15 does not bind IL-2Rα and therefore induces less T regulatory cell expansion. However, we found that transferred effector CD8+ T cells induced curative responses in lymphoreplete mice only with IL-2-based therapy. While conventional in vitro assays showed similar effector T cell responsiveness to IL-2 and IL-15, upon removal of free cytokine, IL-2 mediated sustained signaling dependent on IL-2Rα. Mechanistically, IL-2Rα sustained signaling by promoting a cell-surface IL-2 reservoir and recycling of IL-2 back to the cell surface. Our results demonstrate that IL-2Rα endows T cells with the ability to compete temporally for limited IL-2 via mechanisms beyond ligand affinity. These results suggest that strategies to enhance IL-2Rα expression on tumor-reactive lymphocytes may facilitate the development of more effective IL-2-based therapies.
PMCID: PMC4805116  PMID: 26511507
16.  Dendritic cells in irradiated mice trigger the functional plasticity and antitumor activity of adoptively transferred Tc17 cells via IL-12 signaling 
The adoptive cell transfer (ACT) of CD8+ T cells is a promising treatment for advanced malignancies. Lymphodepletion prior to ACT enhances IFN-γ+CD8+ T cell (Tc0) mediated tumor regression. Yet, how lymphodepletion regulates the function and antitumor activity of IL-17A+CD8+ T cells (Tc17) is unknown.
Experimental Design
To address this question, pmel-1 CD8+ T cells were polarized to secrete either IL-17A or IFN-γ. These subsets were then infused into mice with B16F10 melanoma that were lymphoreplete (no TBI), or lymphodepleted with non-myeloablative (5 Gy) or myeloablative (9 Gy requiring hematopoietic stem cell transplantation) TBI. The activation of innate immune cells and function of donor T cell subsets was monitored in these preconditioned mice.
Tc17 cells regress melanoma in myeloablated mice to a greater extent than in lymphoreplete or non-myeloablated mice. TBI induced functional plasticity in Tc17 cells causing conversion from IL-17A to IFN-γ producers. Additional investigation revealed that Tc17 plasticity and antitumor activity was mediated by IL-12 secreted by irradiated host dendritic cells. Neutralization of endogenous IL-12 reduced the antitumor activity of Tc17 cells in myeloablated mice, while ex vivo priming with IL-12 enhanced their capacity to regress melanoma in non-myeloablated animals. This, coupled with exogenous administration of low dose IL-12, obviated the need for host preconditioning creating curative responses in non-irradiated mice,
Our findings indicate that TBI-induced IL-12 augments Tc17 cell-mediated tumor immunity and underline the substantial implications of in vitro preparation of antitumor Tc17 cells with IL-12 in the design of T cell immunotherapies.
PMCID: PMC4452402  PMID: 25904754
Lymphodepletion; IL-12; Tc17; Adoptive T cell Transfer; Cancer Immunotherapy
17.  Interluekin-12 enhances the function and anti-tumor activity in murine and human CD8+ T cells 
Mouse CD8+ T cells conditioned with Interleukin (IL)-12 ex vivo mediate the potent regression of established melanoma when transferred into lymphodepleted mice. However, the quantitative and qualitative changes induced by IL-12 in the responding mouse CD8+ T cells have not been well defined. Moreover, the mechanisms by which IL-12-conditioning impacts human CD8+ T cells, and how such cells might be expanded prior to infusion into patients is not known. We found that ex vivo IL-12-conditioning of mouse CD8+ T cells led to a 10- to 100-fold increase in persistence and anti-tumor efficacy upon adoptive transfer into lymphodepleted mice. The enhancing effect of IL-12 was associated with maintenance of functional avidity. Importantly, in the context of ongoing ACT clinical trials, human CD8+ T cells genetically modified with a tyrosinase-specific T-cell receptor exhibited significantly enhanced functional activity when conditioned with IL-12 as indicated by heightened granzyme B expression and elevated peptide-specific CD107a degranulation. This effect was sustainable despite the 20 days of in vitro cellular expansion required to expand cells over 1,000-fold allowing adequate cell numbers for administration to cancer patients. Overall, these findings support the efficacy and feasibility of ex vivo IL-12-conditioning of TCR-modified human CD8+ T cells for adoptive transfer and cancer therapy.
PMCID: PMC4804872  PMID: 25676709
IL-12; CD8+ T cells; ACT; adoptive T cell therapy; Tc1; cancer
18.  Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells 
Cancer immunology research  2015;3(4):356-367.
This study compared second generation chimeric antigen receptors encoding signaling domains composed of CD28, ICOS and 4-1BB. Here we report that certain CARs endow T cells with the ability to undergo long-term autonomous proliferation. Transduction of primary human T-cell with lentiviral vectors encoding some of the CARs resulted in sustained proliferation for up to three months following a single stimulation through the TCR. Sustained numeric expansion was independent of cognate antigen and did not require the addition of exogenous cytokines or feeder cells after a single stimulation of the TCR and CD28. Results from gene array and functional assays linked sustained cytokine secretion and expression of T-bet, EOMES and GATA-3 to the effect. Sustained expression of the endogenous IL2 locus has not been reported in primary T cells. Sustained proliferation was dependent on CAR structure and high expression, the latter of which was necessary but not sufficient. The mechanism involves constitutive signaling through NF-kB, Akt, Erk and NFAT. The propagated CAR T cells retained a diverse TCR repertoire and cellular transformation was not observed. The CARs with a constitutive growth phenotype displayed inferior antitumor effects and engraftment in vivo. Therefore the design of CARs that have a non-constitutive growth phenotype may be a strategy to improve efficacy and engraftment of CAR T cells. The identification of CARs that confer constitutive or non-constitutive growth patterns may explain observations that CAR T cells have differential survival patterns in clinical trials.
PMCID: PMC4390458  PMID: 25600436
19.  IL-12-conditioning improves retrovirally-mediated transduction efficiency of CD8+ T cells 
Cancer gene therapy  2015;22(7):360-367.
The ability to genetically modify T cells is a critical component to many immunotherapeutic strategies and research studies. However, the success of these approaches is often limited by transduction efficiency. Since retroviral vectors require cell division for integration, transduction efficiency is dependent on the appropriate activation and culture conditions for T cells. Naïve CD8+ T cells which are quiescent must be first activated to induce cell division to allow genetic modification. To optimize this process, we activated mouse T cells with a panel of different cytokines, including IL-2, IL-4, IL-6, IL-7, IL-12, IL-15 and IL-23, known to act on T cells. After activation, cytokines were removed, and activated T cells were retrovirally transduced. We found that IL-12 pre-conditioning of mouse T cells greatly enhanced transduction efficiency while preserving function and expansion potential. We also observed a similar transduction enhancing effect of IL-12 pre-conditioning on human T cells. These findings provide a simple method to improve the transduction efficiencies of CD8+ T cells.
PMCID: PMC4807400  PMID: 26182912
20.  Toll-like receptor agonist therapy can profoundly augment the antitumor activity of adoptively transferred CD8+ T cells without host preconditioning 
Lymphodepletion enhances adoptive T cell transfer (ACT) therapy by activating the innate immune system via microbes released from the radiation-injured gut. Microbial components, such as LPS, are key mediators of total body irradiation (TBI) enhancement, but our ability to strategically use these toll-like receptor (TLR) agonists to bolster the potency of T cell-based therapies for cancer remains elusive. Herein, we used TLR4 agonist LPS as a tool to address how and when to use TLR agonists to effectively improve cancer immunotherapy.
To determine the mechanisms of how innate immune activation via lymphodepletion potentiated antitumor T cell immunity, we utilized the pmel-1 melanoma mouse model. B16F10-bearing mice were preconditioned with 5Gy TBI and given a tripartite ACT therapy (consisting of transferred pmel-1 CD8+ T cells, vaccination with fowlpox encoding gp100, and IL-2) along with TLR4 agonist LPS. The timing of LPS administration and the requirement of individual components of the tripartite therapy were evaluated based on tumor growth and the phenotype of recovered splenocytes by flow cytometry. We also evaluated the role of non-toxic and clinically used TLR4 and TLR9 agonists—monophosphoryl lipid A (MPL) and CpG Oligodeoxynucleotide (CpG ODN), respectively— for ACT therapy.
Here we report that while exogenous administration of LPS was able to enhance adoptively transferred CD8+ T cells’ tumor destruction, LPS treatment alone did not replace individual components of the tripartite ACT regimen, or obviate TBI. Moreover, we found that sequentially administering LPS during or one day prior to ACT therapy compromised tumor regression. In contrast, administering LPS after ACT potentiated the antitumor effectiveness of the regimen, thereby supporting the expansion of transferred tumor-specific CD8+ T cells over host CD4+ T cells. We also found that non-toxic TLR agonists MPL and CpG potentiated the antitumor activity of infused CD8+ T cells. Finally, TBI was no longer needed to regress tumors in mice who were depleted of host CD4+ T cells, given a tripartite ACT regimen and then treated with low dose LPS.
Collectively, our results identify how and when to administer TLR agonists to augment T cell-based immunotherapy in the absence or presence of host preconditioning for treatment of advanced malignancies. Our findings have clinical implications for the design of next generation immune-based therapies for patients with cancer.
Electronic supplementary material
The online version of this article (doi:10.1186/s40425-016-0110-8) contains supplementary material, which is available to authorized users.
PMCID: PMC4754841  PMID: 26885368
Total body Irradiation; Adoptive immunotherapy; CD8+ T lymphocytes; Innate immunity
21.  The inducible costimulator augments Tc17 cell responses to self and tumor tissue 
The inducible costimulator (ICOS) plays a key role in CD4+ Th17 cell development, but its role in CD8+ Tc17 cell development and self/tumor immunity remains unknown. We found that ICOS co-stimulation was important for the functional maintenance but not differentiation of Tc17 cells in vitro. Blocking the ICOS pathway using an antagonist antibody or by using mice genetically deficient in the ICOS ligand (ICOSL) reduced the antitumor activity of adoptively transferred Tc17 cells. Conversely, activating Tc17 cells with an ICOS agonist in vitro enhanced their capacity to eradicate melanoma and induce autoimmune vitiligo when infused into mice. However, ICOS stimulation did not augment the antitumor activity of IL-2 expanded T cells. Additional investigation revealed that ICOS stimulation not only increased IL-2Rα, CXCR3 and IL-23R expression on Tc17 cells, but also dampened their expression of suppressive molecule CD39. Although Tc17 cells activated with an ICOS agonist co-secreted heightened IL-17A, IL-9 and IFN-γ, their therapeutic effectiveness was critically dependent on IFN-γ production. Depletion of IL-17A and IL-9 had little impact of antitumor Tc17 cells activated with an ICOS agonist. Collectively, our work reveals that the ICOS pathway potentiates the antitumor activity of adoptively transferred Tc17 cells. This work has major implications for the design of vaccine, antibody and cell-based therapies for autoimmunity, infectious disease and cancer.
PMCID: PMC4323681  PMID: 25576595
22.  Novel immunotherapies for hematological malignancies 
Immunological reviews  2015;263(1):90-105.
The immune system is designed to discriminate between self and tumor tissue. Through genetic recombination, there is fundamentally no limit to the number of tumor antigens that immune cells can recognize. Yet, tumors use a variety of immunosuppressive mechanisms to evade immunity. Insight into how the immune system interacts with tumors is expanding rapidly and has accelerated the translation of immunotherapies into medical breakthroughs. Herein, we appraise the state of the art in immunotherapy with a focus on strategies that exploit the patient’s immune system to kill cancer. We review various forms of immune-based therapies, which have shown significant promise in patients with hematological malignancies, including (i) conventional monoclonal therapies like rituximab, (ii) engineered monoclonal antibodies called bispecific T cell engagers (BiTEs), (iii) monoclonal antibodies and pharmaceutical drugs that block inhibitory T-cell pathways (i.e. PD-1, CTLA-4 and IDO), and (iv) adoptive cell transfer (ACT) therapy with T cells engineered to express chimeric antigen receptors (CARs) or T-cell receptors (TCRs). We also assess the idea of using these therapies in combination and conclude by suggesting multi-prong approaches to improve treatment outcomes and curative responses in patients.
PMCID: PMC4277117  PMID: 25510273
allogeneic hematopoietic stem cell transplantation; monoclonal antibodies; bispecific T-cell engagers; immune checkpoint modulators; adoptive T-cell transfer therapy, gene transfer
24.  Reduced CD73 Expression by IL-1β Programmed Th17 Cells Improves Tumor Control 
Cancer research  2014;74(21):6048-6059.
T helper (Th)-17 subsets hold promise in adoptive T cell transfer therapy for cancer. However, ex vivo programming of Th17 cells in presence of TGF-β increases cell surface expression of ectonucleotidases CD39 and CD73, that in turn increases susceptibility to immunosuppression and reduces effector functions. Our data shows that ATP mediated suppression of IFN-γ production by Th17 cells can be overcome either by genetic ablation of CD73 or by generating TGF-β independent Th17 in presence of IL-1β. Th17 cells cultured in IL-1β are also highly polyfunctional, express high level of effector molecules and exhibit better short-term control of B16-F10 murine melanoma, despite reduced stem cell like properties. Adding TGF-β at low dose that does not up regulate CD73 expression, but induces stemness, drastically improves anti-tumor function of IL-1β cultured Th17 cells. It is likely that effector property of IL-1β dependent Th17 is due to their high glycolytic capacity, since generating IL-1β dependent Th17 cells in pyruvate containing media impaired glycolysis and its anti-tumor potential. Thus, our data suggests that due to induction of ectonucleotidase expression by TGF-β, ex vivo culture conditions for generating Th17 cells need to be reconsidered for exploiting their full potential in adoptive T cell therapy.
PMCID: PMC4216762  PMID: 25205101
Immunotherapy; Th17; CD73; melanoma; glycolysis
25.  Harnessing the Microbiome to Enhance Cancer Immunotherapy 
Journal of Immunology Research  2015;2015:368736.
The microbiota plays a key role in regulating the innate and adaptive immune system. Herein, we review the immunological aspects of the microbiota in tumor immunity in mice and man, with a focus on toll-like receptor (TLR) agonists, vaccines, checkpoint modulators, chemotherapy, and adoptive T cell transfer (ACT) therapies. We propose innovative treatments that may safely harness the microbiota to enhance T cell-based therapies in cancer patients. Finally, we highlight recent developments in tumor immunotherapy, particularly novel ways to modulate the microbiome and memory T cell responses to human malignancies.
PMCID: PMC4458560  PMID: 26101781

Results 1-25 (40)