Search tips
Search criteria


Important Notice

PubMed Central Canada to be taken offline in February 2018

On February 23, 2018, PubMed Central Canada (PMC Canada) will be taken offline permanently. No author manuscripts will be deleted, and the approximately 2,900 manuscripts authored by Canadian Institutes of Health Research (CIHR)-funded researchers currently in the archive will be copied to the National Research Council’s (NRC) Digital Repository over the coming months. These manuscripts along with all other content will also remain publicly searchable on PubMed Central (US) and Europe PubMed Central, meaning such manuscripts will continue to be compliant with the Tri-Agency Open Access Policy on Publications.

Read more

Results 1-21 (21)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  STING pathway activation stimulates potent immunity against acute myeloid leukemia 
Cell reports  2016;15(11):2357-2366.
Type I interferon (IFN), essential for spontaneous T cell priming against solid tumors, is generated through recognition of tumor DNA by STING. Interestingly, we observe that type I IFN is not elicited in animals with disseminated acute myeloid leukemia (AML). Further, survival of leukemia-bearing animals is not diminished in the absence of type I IFN signaling, suggesting that STING may not be triggered by AML. However, the STING agonist, DMXAA, induces expression of IFN-β and other inflammatory cytokines, promotes dendritic cell (DC) maturation, and results in the striking expansion of leukemia-specific T cells. Systemic DMXAA administration significantly extends survival in two AML models. The therapeutic effect of DMXAA is only partially dependent on host type I IFN signaling, suggesting that other cytokines are important. A synthetic cyclic dinucleotide that also activates human STING provided a similar anti-leukemic effect. These data demonstrate that STING is a promising immunotherapeutic target in AML.
Graphical Abstract
eTOC blurb
Here, Curran et al. demonstrate that, in contrast to solid cancers, a host type I IFN response is not triggered in leukemia-bearing hosts. However, induction of type I IFN and other inflammatory cytokines through STING pathway activation results in potent leukemia-specific immunity, culminating in prolonged survival of mice with AML.
PMCID: PMC5116809  PMID: 27264175
2.  Dendritic cells coordinate the development and homeostasis of organ-specific regulatory T cells 
Immunity  2016;44(4):847-859.
Whereas antigen recognition mediated by the T cell receptor (TCR) influences many facets of Foxp3+ regulatory T (Treg) cell biology, including development and function, the cell types that present antigen to Treg cells in vivo remain largely undefined. By tracking a clonal population of Aire-dependent, prostate-specific Treg cells in mice, we demonstrated an essential role for dendritic cells (DCs) in regulating organ-specific Treg cell biology. We have shown that the thymic development of prostate-specific Treg cells required antigen presentation by DCs. Moreover, Batf3-dependent CD8α+ DCs were dispensable for the development of this clonotype and had negligible impact on the polyclonal Treg cell repertoire. In the periphery, CCR7-dependent migratory DCs coordinated the activation of organ-specific Treg cells in the prostate-draining lymph nodes. Our results demonstrate that the development and peripheral regulation of organ-specific Treg cells are dependent on antigen presentation by DCs, implicating DCs as key mediators of organ-specific immune tolerance.
PMCID: PMC4842258  PMID: 27037189
3.  Calreticulin promotes immunity and type I interferon-dependent survival in mice with acute myeloid leukemia 
Oncoimmunology  2017;6(4):e1278332.
Exposure of cancer cells to particular chemotherapeutic agents or γ-irradiation induces a form of cell death that stimulates an immune response in mice. This “immunogenic cell death” requires calreticulin (CRT) translocation to the plasma membrane, which has been shown to promote cancer cell phagocytosis. However, it remains unclear whether the effect of CRT on cancer cell phagocytosis is alone sufficient to affect tumor immunity. Acute myeloid leukemia (AML) cells expressing cell-surface CRT were generated in order to characterize the mechanism(s) through which CRT activates tumor immune responses. Potent immune-mediated control or rejection of AML was observed in mice with CRT-expressing leukemia. The “CRT effect” was ultimately T-cell dependent, but dendritic cells (DCs), and CD8α+ DCs in particular, were also necessary, indicating that CRT might act directly on these DCs. CRT-expressing AML cells were slightly more susceptible to phagocytosis by DCs in vivo, but this effect was unlikely to explain the potent immunity observed. CRT did not affect classical DC maturation markers, but induced expression of type I interferon (IFN), which was critical for its positive effect on survival. In conclusion, CRT functions as a “danger signal” that promotes a host type I IFN response associated with the induction of potent leukemia-specific T-cell immunity.
PMCID: PMC5414882
Acute myeloid leukemia; calreticulin; immunity; type I interferon
4.  31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016): part one 
Lundqvist, Andreas | van Hoef, Vincent | Zhang, Xiaonan | Wennerberg, Erik | Lorent, Julie | Witt, Kristina | Sanz, Laia Masvidal | Liang, Shuo | Murray, Shannon | Larsson, Ola | Kiessling, Rolf | Mao, Yumeng | Sidhom, John-William | Bessell, Catherine A. | Havel, Jonathan | Schneck, Jonathan | Chan, Timothy A. | Sachsenmeier, Eliot | Woods, David | Berglund, Anders | Ramakrishnan, Rupal | Sodre, Andressa | Weber, Jeffrey | Zappasodi, Roberta | Li, Yanyun | Qi, Jingjing | Wong, Philip | Sirard, Cynthia | Postow, Michael | Newman, Walter | Koon, Henry | Velcheti, Vamsidhar | Callahan, Margaret K. | Wolchok, Jedd D. | Merghoub, Taha | Lum, Lawrence G. | Choi, Minsig | Thakur, Archana | Deol, Abhinav | Dyson, Gregory | Shields, Anthony | Haymaker, Cara | Uemura, Marc | Murthy, Ravi | James, Marihella | Wang, Daqing | Brevard, Julie | Monaghan, Catherine | Swann, Suzanne | Geib, James | Cornfeld, Mark | Chunduru, Srinivas | Agrawal, Sudhir | Yee, Cassian | Wargo, Jennifer | Patel, Sapna P. | Amaria, Rodabe | Tawbi, Hussein | Glitza, Isabella | Woodman, Scott | Hwu, Wen-Jen | Davies, Michael A. | Hwu, Patrick | Overwijk, Willem W. | Bernatchez, Chantale | Diab, Adi | Massarelli, Erminia | Segal, Neil H. | Ribrag, Vincent | Melero, Ignacio | Gangadhar, Tara C. | Urba, Walter | Schadendorf, Dirk | Ferris, Robert L. | Houot, Roch | Morschhauser, Franck | Logan, Theodore | Luke, Jason J. | Sharfman, William | Barlesi, Fabrice | Ott, Patrick A. | Mansi, Laura | Kummar, Shivaani | Salles, Gilles | Carpio, Cecilia | Meier, Roland | Krishnan, Suba | McDonald, Dan | Maurer, Matthew | Gu, Xuemin | Neely, Jaclyn | Suryawanshi, Satyendra | Levy, Ronald | Khushalani, Nikhil | Wu, Jennifer | Zhang, Jinyu | Basher, Fahmin | Rubinstein, Mark | Bucsek, Mark | Qiao, Guanxi | MacDonald, Cameron | Hylander, Bonnie | Repasky, Elizabeth | Chatterjee, Shilpak | Daenthanasanmak, Anusara | Chakraborty, Paramita | Toth, Kyle | Meek, Megan | Garrett-Mayer, Elizabeth | Nishimura, Michael | Paulos, Chrystal | Beeson, Craig | Yu, Xuezhong | Mehrotra, Shikhar | Zhao, Fei | Evans, Kathy | Xiao, Christine | Holtzhausen, Alisha | Hanks, Brent A. | Scharping, Nicole | Menk, Ashley V. | Moreci, Rebecca | Whetstone, Ryan | Dadey, Rebekah | Watkins, Simon | Ferris, Robert | Delgoffe, Greg M. | Peled, Jonathan | Devlin, Sean | Staffas, Anna | Lumish, Melissa | Rodriguez, Kori Porosnicu | Ahr, Katya | Perales, Miguel | Giralt, Sergio | Taur, Ying | Pamer, Eric | van den Brink, Marcel R. M. | Jenq, Robert | Annels, Nicola | Pandha, Hardev | Simpson, Guy | Mostafid, Hugh | Harrington, Kevin | Melcher, Alan | Grose, Mark | Davies, Bronwyn | Au, Gough | Karpathy, Roberta | Shafren, Darren | Ricca, Jacob | Merghoub, Taha | Wolchok, Jedd D. | Zamarin, Dmitriy | Batista, Luciana | Marliot, Florence | Vasaturo, Angela | Carpentier, Sabrina | Poggionovo, Cécile | Frayssinet, Véronique | Fieschi, Jacques | Van den Eynde, Marc | Pagès, Franck | Galon, Jérôme | Hermitte, Fabienne | Smith, Sean G. | Nguyen, Khue | Ravindranathan, Sruthi | Koppolu, Bhanu | Zaharoff, David | Schvartsman, Gustavo | Bassett, Roland | McQuade, Jennifer L. | Haydu, Lauren E. | Davies, Michael A. | Tawbi, Hussein | Glitza, Isabella | Kline, Douglas | Chen, Xiufen | Fosco, Dominick | Kline, Justin | Overacre, Abigail | Chikina, Maria | Brunazzi, Erin | Shayan, Gulidanna | Horne, William | Kolls, Jay | Ferris, Robert L. | Delgoffe, Greg M. | Bruno, Tullia C. | Workman, Creg | Vignali, Dario | Adusumilli, Prasad S. | Ansa-Addo, Ephraim A | Li, Zihai | Gerry, Andrew | Sanderson, Joseph P. | Howe, Karen | Docta, Roslin | Gao, Qian | Bagg, Eleanor A. L. | Tribble, Nicholas | Maroto, Miguel | Betts, Gareth | Bath, Natalie | Melchiori, Luca | Lowther, Daniel E. | Ramachandran, Indu | Kari, Gabor | Basu, Samik | Binder-Scholl, Gwendolyn | Chagin, Karen | Pandite, Lini | Holdich, Tom | Amado, Rafael | Zhang, Hua | Glod, John | Bernstein, Donna | Jakobsen, Bent | Mackall, Crystal | Wong, Ryan | Silk, Jonathan D. | Adams, Katherine | Hamilton, Garth | Bennett, Alan D. | Brett, Sara | Jing, Junping | Quattrini, Adriano | Saini, Manoj | Wiedermann, Guy | Gerry, Andrew | Jakobsen, Bent | Binder-Scholl, Gwendolyn | Brewer, Joanna | Duong, MyLinh | Lu, An | Chang, Peter | Mahendravada, Aruna | Shinners, Nicholas | Slawin, Kevin | Spencer, David M. | Foster, Aaron E. | Bayle, J. Henri | Bergamaschi, Cristina | Ng, Sinnie Sin Man | Nagy, Bethany | Jensen, Shawn | Hu, Xintao | Alicea, Candido | Fox, Bernard | Felber, Barbara | Pavlakis, George | Chacon, Jessica | Yamamoto, Tori | Garrabrant, Thomas | Cortina, Luis | Powell, Daniel J. | Donia, Marco | Kjeldsen, Julie Westerlin | Andersen, Rikke | Westergaard, Marie Christine Wulff | Bianchi, Valentina | Legut, Mateusz | Attaf, Meriem | Dolton, Garry | Szomolay, Barbara | Ott, Sascha | Lyngaa, Rikke | Hadrup, Sine Reker | Sewell, Andrew Kelvin | Svane, Inge Marie | Fan, Aaron | Kumai, Takumi | Celis, Esteban | Frank, Ian | Stramer, Amanda | Blaskovich, Michelle A. | Wardell, Seth | Fardis, Maria | Bender, James | Lotze, Michael T. | Goff, Stephanie L. | Zacharakis, Nikolaos | Assadipour, Yasmine | Prickett, Todd D. | Gartner, Jared J. | Somerville, Robert | Black, Mary | Xu, Hui | Chinnasamy, Harshini | Kriley, Isaac | Lu, Lily | Wunderlich, John | Robbins, Paul F. | Rosenberg, Steven | Feldman, Steven A. | Trebska-McGowan, Kasia | Kriley, Isaac | Malekzadeh, Parisa | Payabyab, Eden | Sherry, Richard | Rosenberg, Steven | Goff, Stephanie L. | Gokuldass, Aishwarya | Blaskovich, Michelle A. | Kopits, Charlene | Rabinovich, Brian | Lotze, Michael T. | Green, Daniel S. | Kamenyeva, Olena | Zoon, Kathryn C. | Annunziata, Christina M. | Hammill, Joanne | Helsen, Christopher | Aarts, Craig | Bramson, Jonathan | Harada, Yui | Yonemitsu, Yoshikazu | Helsen, Christopher | Hammill, Joanne | Mwawasi, Kenneth | Denisova, Galina | Bramson, Jonathan | Giri, Rajanish | Jin, Benjamin | Campbell, Tracy | Draper, Lindsey M. | Stevanovic, Sanja | Yu, Zhiya | Weissbrich, Bianca | Restifo, Nicholas P. | Trimble, Cornelia L. | Rosenberg, Steven | Hinrichs, Christian S. | Tsang, Kwong | Fantini, Massimo | Hodge, James W. | Fujii, Rika | Fernando, Ingrid | Jochems, Caroline | Heery, Christopher | Gulley, James | Soon-Shiong, Patrick | Schlom, Jeffrey | Jing, Weiqing | Gershan, Jill | Blitzer, Grace | Weber, James | McOlash, Laura | Johnson, Bryon D. | Kiany, Simin | Gangxiong, Huang | Kleinerman, Eugenie S. | Klichinsky, Michael | Ruella, Marco | Shestova, Olga | Kenderian, Saad | Kim, Miriam | Scholler, John | June, Carl H. | Gill, Saar | Moogk, Duane | Zhong, Shi | Yu, Zhiya | Liadi, Ivan | Rittase, William | Fang, Victoria | Dougherty, Janna | Perez-Garcia, Arianne | Osman, Iman | Zhu, Cheng | Varadarajan, Navin | Restifo, Nicholas P. | Frey, Alan | Krogsgaard, Michelle | Landi, Daniel | Fousek, Kristen | Mukherjee, Malini | Shree, Ankita | Joseph, Sujith | Bielamowicz, Kevin | Byrd, Tiara | Ahmed, Nabil | Hegde, Meenakshi | Lee, Sylvia | Byrd, David | Thompson, John | Bhatia, Shailender | Tykodi, Scott | Delismon, Judy | Chu, Liz | Abdul-Alim, Siddiq | Ohanian, Arpy | DeVito, Anna Marie | Riddell, Stanley | Margolin, Kim | Magalhaes, Isabelle | Mattsson, Jonas | Uhlin, Michael | Nemoto, Satoshi | Villarroel, Patricio Pérez | Nakagawa, Ryosuke | Mule, James J. | Mailloux, Adam W. | Mata, Melinda | Nguyen, Phuong | Gerken, Claudia | DeRenzo, Christopher | Spencer, David M. | Gottschalk, Stephen | Mathieu, Mélissa | Pelletier, Sandy | Stagg, John | Turcotte, Simon | Minutolo, Nicholas | Sharma, Prannda | Tsourkas, Andrew | Powell, Daniel J. | Mockel-Tenbrinck, Nadine | Mauer, Daniela | Drechsel, Katharina | Barth, Carola | Freese, Katharina | Kolrep, Ulrike | Schult, Silke | Assenmacher, Mario | Kaiser, Andrew | Mullinax, John | Hall, MacLean | Le, Julie | Kodumudi, Krithika | Royster, Erica | Richards, Allison | Gonzalez, Ricardo | Sarnaik, Amod | Pilon-Thomas, Shari | Nielsen, Morten | Krarup-Hansen, Anders | Hovgaard, Dorrit | Petersen, Michael Mørk | Loya, Anand Chainsukh | Junker, Niels | Svane, Inge Marie | Rivas, Charlotte | Parihar, Robin | Gottschalk, Stephen | Rooney, Cliona M. | Qin, Haiying | Nguyen, Sang | Su, Paul | Burk, Chad | Duncan, Brynn | Kim, Bong-Hyun | Kohler, M. Eric | Fry, Terry | Rao, Arjun A. | Teyssier, Noam | Pfeil, Jacob | Sgourakis, Nikolaos | Salama, Sofie | Haussler, David | Richman, Sarah A. | Nunez-Cruz, Selene | Gershenson, Zack | Mourelatos, Zissimos | Barrett, David | Grupp, Stephan | Milone, Michael | Rodriguez-Garcia, Alba | Robinson, Matthew K. | Adams, Gregory P. | Powell, Daniel J. | Santos, João | Havunen, Riikka | Siurala, Mikko | Cervera-Carrascón, Víctor | Parviainen, Suvi | Antilla, Marjukka | Hemminki, Akseli | Sethuraman, Jyothi | Santiago, Laurelis | Chen, Jie Qing | Dai, Zhimin | Wardell, Seth | Bender, James | Lotze, Michael T. | Sha, Huizi | Su, Shu | Ding, Naiqing | Liu, Baorui | Stevanovic, Sanja | Pasetto, Anna | Helman, Sarah R. | Gartner, Jared J. | Prickett, Todd D. | Robbins, Paul F. | Rosenberg, Steven A. | Hinrichs, Christian S. | Bhatia, Shailender | Burgess, Melissa | Zhang, Hui | Lee, Tien | Klingemann, Hans | Soon-Shiong, Patrick | Nghiem, Paul | Kirkwood, John M. | Rossi, John M. | Sherman, Marika | Xue, Allen | Shen, Yueh-wei | Navale, Lynn | Rosenberg, Steven A. | Kochenderfer, James N. | Bot, Adrian | Veerapathran, Anandaraman | Gokuldass, Aishwarya | Stramer, Amanda | Sethuraman, Jyothi | Blaskovich, Michelle A. | Wiener, Doris | Frank, Ian | Santiago, Laurelis | Rabinovich, Brian | Fardis, Maria | Bender, James | Lotze, Michael T. | Waller, Edmund K. | Li, Jian-Ming | Petersen, Christopher | Blazar, Bruce R. | Li, Jingxia | Giver, Cynthia R. | Wang, Ziming | Grossenbacher, Steven K. | Sturgill, Ian | Canter, Robert J. | Murphy, William J. | Zhang, Congcong | Burger, Michael C. | Jennewein, Lukas | Waldmann, Anja | Mittelbronn, Michel | Tonn, Torsten | Steinbach, Joachim P. | Wels, Winfried S. | Williams, Jason B. | Zha, Yuanyuan | Gajewski, Thomas F. | Williams, LaTerrica C. | Krenciute, Giedre | Kalra, Mamta | Louis, Chrystal | Gottschalk, Stephen | Xin, Gang | Schauder, David | Jiang, Aimin | Joshi, Nikhil | Cui, Weiguo | Zeng, Xue | Menk, Ashley V. | Scharping, Nicole | Delgoffe, Greg M. | Zhao, Zeguo | Hamieh, Mohamad | Eyquem, Justin | Gunset, Gertrude | Bander, Neil | Sadelain, Michel | Askmyr, David | Abolhalaj, Milad | Lundberg, Kristina | Greiff, Lennart | Lindstedt, Malin | Angell, Helen K. | Kim, Kyoung-Mee | Kim, Seung-Tae | Kim, Sung | Sharpe, Alan D. | Ogden, Julia | Davenport, Anna | Hodgson, Darren R. | Barrett, Carl | Lee, Jeeyun | Kilgour, Elaine | Hanson, Jodi | Caspell, Richard | Karulin, Alexey | Lehmann, Paul | Ansari, Tameem | Schiller, Annemarie | Sundararaman, Srividya | Lehmann, Paul | Hanson, Jodi | Roen, Diana | Karulin, Alexey | Lehmann, Paul | Ayers, Mark | Levitan, Diane | Arreaza, Gladys | Liu, Fang | Mogg, Robin | Bang, Yung-Jue | O’Neil, Bert | Cristescu, Razvan | Friedlander, Philip | Wassman, Karl | Kyi, Chrisann | Oh, William | Bhardwaj, Nina | Bornschlegl, Svetlana | Gustafson, Michael P. | Gastineau, Dennis A. | Parney, Ian F. | Dietz, Allan B. | Carvajal-Hausdorf, Daniel | Mani, Nikita | Velcheti, Vamsidhar | Schalper, Kurt | Rimm, David | Chang, Serena | Levy, Ronald | Kurland, John | Krishnan, Suba | Ahlers, Christoph Matthias | Jure-Kunkel, Maria | Cohen, Lewis | Maecker, Holden | Kohrt, Holbrook | Chen, Shuming | Crabill, George | Pritchard, Theresa | McMiller, Tracee | Pardoll, Drew | Pan, Fan | Topalian, Suzanne | Danaher, Patrick | Warren, Sarah | Dennis, Lucas | White, Andrew M. | D’Amico, Leonard | Geller, Melissa | Disis, Mary L. | Beechem, Joseph | Odunsi, Kunle | Fling, Steven | Derakhshandeh, Roshanak | Webb, Tonya J. | Dubois, Sigrid | Conlon, Kevin | Bryant, Bonita | Hsu, Jennifer | Beltran, Nancy | Müller, Jürgen | Waldmann, Thomas | Duhen, Rebekka | Duhen, Thomas | Thompson, Lucas | Montler, Ryan | Weinberg, Andrew | Kates, Max | Early, Brandon | Yusko, Erik | Schreiber, Taylor H. | Bivalacqua, Trinity J. | Ayers, Mark | Lunceford, Jared | Nebozhyn, Michael | Murphy, Erin | Loboda, Andrey | Kaufman, David R. | Albright, Andrew | Cheng, Jonathan | Kang, S. Peter | Shankaran, Veena | Piha-Paul, Sarina A. | Yearley, Jennifer | Seiwert, Tanguy | Ribas, Antoni | McClanahan, Terrill K. | Cristescu, Razvan | Mogg, Robin | Ayers, Mark | Albright, Andrew | Murphy, Erin | Yearley, Jennifer | Sher, Xinwei | Liu, Xiao Qiao | Nebozhyn, Michael | Lunceford, Jared | Joe, Andrew | Cheng, Jonathan | Plimack, Elizabeth | Ott, Patrick A. | McClanahan, Terrill K. | Loboda, Andrey | Kaufman, David R. | Forrest-Hay, Alex | Guyre, Cheryl A. | Narumiya, Kohei | Delcommenne, Marc | Hirsch, Heather A. | Deshpande, Amit | Reeves, Jason | Shu, Jenny | Zi, Tong | Michaelson, Jennifer | Law, Debbie | Trehu, Elizabeth | Sathyanaryanan, Sriram | Hodkinson, Brendan P. | Hutnick, Natalie A. | Schaffer, Michael E. | Gormley, Michael | Hulett, Tyler | Jensen, Shawn | Ballesteros-Merino, Carmen | Dubay, Christopher | Afentoulis, Michael | Reddy, Ashok | David, Larry | Fox, Bernard | Jayant, Kumar | Agrawal, Swati | Agrawal, Rajendra | Jeyakumar, Ghayathri | Kim, Seongho | Kim, Heejin | Silski, Cynthia | Suisham, Stacey | Heath, Elisabeth | Vaishampayan, Ulka | Vandeven, Natalie | Viller, Natasja Nielsen | O’Connor, Alison | Chen, Hui | Bossen, Bolette | Sievers, Eric | Uger, Robert | Nghiem, Paul | Johnson, Lisa | Kao, Hsiang-Fong | Hsiao, Chin-Fu | Lai, Shu-Chuan | Wang, Chun-Wei | Ko, Jenq-Yuh | Lou, Pei-Jen | Lee, Tsai-Jan | Liu, Tsang-Wu | Hong, Ruey-Long | Kearney, Staci J. | Black, Joshua C. | Landis, Benjamin J. | Koegler, Sally | Hirsch, Brooke | Gianani, Roberto | Kim, Jeffrey | He, Ming-Xiao | Zhang, Bingqing | Su, Nan | Luo, Yuling | Ma, Xiao-Jun | Park, Emily | Kim, Dae Won | Copploa, Domenico | Kothari, Nishi | doo Chang, Young | Kim, Richard | Kim, Namyong | Lye, Melvin | Wan, Ee | Kim, Namyong | Lye, Melvin | Wan, Ee | Kim, Namyong | Lye, Melvin | Wan, Ee | Knaus, Hanna A. | Berglund, Sofia | Hackl, Hubert | Karp, Judith E. | Gojo, Ivana | Luznik, Leo | Hong, Henoch S. | Koch, Sven D. | Scheel, Birgit | Gnad-Vogt, Ulrike | Kallen, Karl-Josef | Wiegand, Volker | Backert, Linus | Kohlbacher, Oliver | Hoerr, Ingmar | Fotin-Mleczek, Mariola | Billingsley, James M. | Koguchi, Yoshinobu | Conrad, Valerie | Miller, William | Gonzalez, Iliana | Poplonski, Tomasz | Meeuwsen, Tanisha | Howells-Ferreira, Ana | Rattray, Rogan | Campbell, Mary | Bifulco, Carlo | Dubay, Christopher | Bahjat, Keith | Curti, Brendan | Urba, Walter | Vetsika, E-K | Kallergi, G. | Aggouraki, Despoina | Lyristi, Z. | Katsarlinos, P. | Koinis, Filippos | Georgoulias, V. | Kotsakis, Athanasios | Martin, Nathan T. | Aeffner, Famke | Kearney, Staci J. | Black, Joshua C. | Cerkovnik, Logan | Pratte, Luke | Kim, Rebecca | Hirsch, Brooke | Krueger, Joseph | Gianani, Roberto | Martínez-Usatorre, Amaia | Jandus, Camilla | Donda, Alena | Carretero-Iglesia, Laura | Speiser, Daniel E. | Zehn, Dietmar | Rufer, Nathalie | Romero, Pedro | Panda, Anshuman | Mehnert, Janice | Hirshfield, Kim M. | Riedlinger, Greg | Damare, Sherri | Saunders, Tracie | Sokol, Levi | Stein, Mark | Poplin, Elizabeth | Rodriguez-Rodriguez, Lorna | Silk, Ann | Chan, Nancy | Frankel, Melissa | Kane, Michael | Malhotra, Jyoti | Aisner, Joseph | Kaufman, Howard L. | Ali, Siraj | Ross, Jeffrey | White, Eileen | Bhanot, Gyan | Ganesan, Shridar | Monette, Anne | Bergeron, Derek | Amor, Amira Ben | Meunier, Liliane | Caron, Christine | Morou, Antigoni | Kaufmann, Daniel | Liberman, Moishe | Jurisica, Igor | Mes-Masson, Anne-Marie | Hamzaoui, Kamel | Lapointe, Rejean | Mongan, Ann | Ku, Yuan-Chieh | Tom, Warren | Sun, Yongming | Pankov, Alex | Looney, Tim | Au-Young, Janice | Hyland, Fiona | Conroy, Jeff | Morrison, Carl | Glenn, Sean | Burgher, Blake | Ji, He | Gardner, Mark | Mongan, Ann | Omilian, Angela R. | Conroy, Jeff | Bshara, Wiam | Angela, Omilian | Burgher, Blake | Ji, He | Glenn, Sean | Morrison, Carl | Mongan, Ann | Obeid, Joseph M. | Erdag, Gulsun | Smolkin, Mark E. | Deacon, Donna H. | Patterson, James W. | Chen, Lieping | Bullock, Timothy N. | Slingluff, Craig L. | Obeid, Joseph M. | Erdag, Gulsun | Deacon, Donna H. | Slingluff, Craig L. | Bullock, Timothy N. | Loffredo, John T. | Vuyyuru, Raja | Beyer, Sophie | Spires, Vanessa M. | Fox, Maxine | Ehrmann, Jon M. | Taylor, Katrina A. | Korman, Alan J. | Graziano, Robert F. | Page, David | Sanchez, Katherine | Ballesteros-Merino, Carmen | Martel, Maritza | Bifulco, Carlo | Urba, Walter | Fox, Bernard | Patel, Sapna P. | De Macedo, Mariana Petaccia | Qin, Yong | Reuben, Alex | Spencer, Christine | Guindani, Michele | Bassett, Roland | Wargo, Jennifer | Racolta, Adriana | Kelly, Brian | Jones, Tobin | Polaske, Nathan | Theiss, Noah | Robida, Mark | Meridew, Jeffrey | Habensus, Iva | Zhang, Liping | Pestic-Dragovich, Lidija | Tang, Lei | Sullivan, Ryan J. | Logan, Theodore | Khushalani, Nikhil | Margolin, Kim | Koon, Henry | Olencki, Thomas | Hutson, Thomas | Curti, Brendan | Roder, Joanna | Blackmon, Shauna | Roder, Heinrich | Stewart, John | Amin, Asim | Ernstoff, Marc S. | Clark, Joseph I. | Atkins, Michael B. | Kaufman, Howard L. | Sosman, Jeffrey | Weber, Jeffrey | McDermott, David F. | Weber, Jeffrey | Kluger, Harriet | Halaban, Ruth | Snzol, Mario | Roder, Heinrich | Roder, Joanna | Asmellash, Senait | Steingrimsson, Arni | Blackmon, Shauna | Sullivan, Ryan J. | Wang, Chichung | Roman, Kristin | Clement, Amanda | Downing, Sean | Hoyt, Clifford | Harder, Nathalie | Schmidt, Guenter | Schoenmeyer, Ralf | Brieu, Nicolas | Yigitsoy, Mehmet | Madonna, Gabriele | Botti, Gerardo | Grimaldi, Antonio | Ascierto, Paolo A. | Huss, Ralf | Athelogou, Maria | Hessel, Harald | Harder, Nathalie | Buchner, Alexander | Schmidt, Guenter | Stief, Christian | Huss, Ralf | Binnig, Gerd | Kirchner, Thomas | Sellappan, Shankar | Thyparambil, Sheeno | Schwartz, Sarit | Cecchi, Fabiola | Nguyen, Andrew | Vaske, Charles | Hembrough, Todd
Journal for Immunotherapy of Cancer  2016;4(Suppl 1):1-106.
PMCID: PMC5123387
5.  Anti-coreceptor therapy drives selective T cell egress by suppressing inflammation-dependent chemotactic cues 
JCI Insight  null;1(17):e87636.
There continues to be a need for immunotherapies to treat type 1 diabetes in the clinic. We previously reported that nondepleting anti-CD4 and -CD8 Ab treatment effectively reverses diabetes in new-onset NOD mice. A key feature of the induction of remission is the egress of the majority of islet-resident T cells. How this occurs is undefined. Herein, the effects of coreceptor therapy on islet T cell retention were investigated. Bivalent Ab binding to CD4 and CD8 blocked TCR signaling and T cell cytokine production, while indirectly downregulating islet chemokine expression. These processes were required for T cell retention, as ectopic IFN-γ or CXCL10 inhibited Ab-mediated T cell purging. Importantly, treatment of humanized mice with nondepleting anti–human CD4 and CD8 Ab similarly reduced tissue-infiltrating human CD4+ and CD8+ T cells. These findings demonstrate that Ab binding of CD4 and CD8 interrupts a feed-forward circuit by suppressing T cell–produced cytokines needed for expression of chemotactic cues, leading to rapid T cell egress from the islets. Coreceptor therapy therefore offers a robust approach to suppress T cell–mediated pathology by purging T cells in an inflammation-dependent manner.
Coreceptor therapy blocks a feed-forward circuit by directly suppressing pathogenic T cell reactivity needed for production of chemotactic cues, resulting in tissue-specific T cell egress.
PMCID: PMC5070954  PMID: 27777971
6.  Targeted Disruption of Glycogen Synthase Kinase 3a (Gsk3a) in Mice Affects Sperm Motility Resulting in Male Infertility1 
Biology of Reproduction  2015;92(3):65.
The signaling enzyme glycogen synthase kinase 3 (GSK3) exists as two isoforms—GSK3A and GSK3B. Protein phosphorylation by GSK3 has important signaling roles in several cells. In our past work, we found that both isoforms of GSK3 are present in mouse sperm and that catalytic GSK3 activity correlates with motility of sperm from several species. Here, we examined the role of Gsk3a in male fertility using a targeted gene knockout (KO) approach. The mutant mice are viable, but have a male infertility phenotype, while female fertility is unaffected. Testis weights of Gsk3a−/− mice are normal and sperm are produced in normal numbers. Although spermatogenesis is apparently unimpaired, sperm motility parameters in vitro are impaired. In addition, the flagellar waveform appears abnormal, characterized by low amplitude of flagellar beat. Sperm ATP levels were lower in Gsk3a−/− mice compared to wild-type animals. Protein phosphatase PP1 gamma2 protein levels were unaltered, but its catalytic activity was elevated in KO sperm. Remarkably, tyrosine phosphorylation of hexokinase and capacitation-associated changes in tyrosine phosphorylation of proteins are absent or significantly lower in Gsk3a−/− sperm. The GSK3B isoform was present and unaltered in testis and sperm of Gsk3a−/− mice, showing the inability of GSK3B to substitute for GSK3A in this context. Our studies show that sperm GSK3A is essential for male fertility. In addition, the GSK3A isoform, with its highly conserved glycine-rich N terminus in mammals, may have an isoform-specific role in its requirement for normal sperm motility and fertility.
PMCID: PMC4358024  PMID: 25568307
glycogen synthase kinase 3a; male infertility; sperm capacitation; sperm motility; tyrosine phosphorylation
7.  Changes in Carboxy Methylation and Tyrosine Phosphorylation of Protein Phosphatase PP2A Are Associated with Epididymal Sperm Maturation and Motility 
PLoS ONE  2015;10(11):e0141961.
Mammalian sperm contain the serine/threonine phosphatases PP1γ2 and PP2A. The role of sperm PP1γ2 is relatively well studied. Here we confirm the presence of PP2A in sperm and show that it undergoes marked changes in methylation (leucine 309), tyrosine phosphorylation (tyrosine 307) and catalytic activity during epididymal sperm maturation. Spermatozoa isolated from proximal caput, distal caput and caudal regions of the epididymis contain equal immuno-reactive amounts of PP2A. Using demethyl sensitive antibodies we show that PP2A is methylated at its carboxy terminus in sperm from the distal caput and caudal regions but not in sperm from the proximal caput region of the epididymis. The methylation status of PP2A was confirmed by isolation of PP2A with microcystin agarose followed by alkali treatment, which causes hydrolysis of protein carboxy methyl esters. Tyrosine phosphorylation of sperm PP2A varied inversely with methylation. That is, PP2A was tyrosine phosphorylated when it was demethylated but not when methylated. PP2A demethylation and its reciprocal tyrosine phosphorylation were also affected by treatment of sperm with L-homocysteine and adenosine, which are known to elevate intracellular S-adenosylhomocysteine, a feedback inhibitor of methyltransferases. Catalytic activity of PP2A declined during epididymal sperm maturation. Inhibition of PP2A by okadaic acid or by incubation of caudal epididymal spermatozoa with L-homocysteine and adenosine resulted in increase of sperm motility parameters including percent motility, velocity, and lateral head amplitude. Demethylation or pharmacological inhibition of PP2A also leads to an increase in phosphorylation of glycogen synthase kinase-3 (GSK3). Our results show for the first time that changes in PP2A activity due to methylation and tyrosine phosphorylation occur in sperm and that these changes may play an important role in the regulation of sperm function.
PMCID: PMC4646675  PMID: 26569399
8.  PD-1 regulates extrathymic regulatory T-cell differentiation 
European journal of immunology  2014;44(9):2603-2616.
Regulatory T (Treg) cells and the programmed death-1/programmed death ligand-1 (PD-1/PD-L1) pathway are both critical for maintaining peripheral tolerance to self antigens. A significant subset of Treg cells constitutively expresses PD-1, which prompted an investigation into the role of PD-1/PD-L1 interactions in Treg-cell development, function and induction in vivo. The phenotype and abundance of Treg cells was not significantly altered in PD-1-deficient mice. The thymic development of polyclonal and monospecific Treg cells was not negatively impacted by PD-1 deficiency. The suppressive function of PD-1−/− Treg cells was similar to their PD-1+/+ counterparts both in vitro and in vivo. However, in three different in vivo experimental settings, PD-1−/− conventional CD4+ T cells demonstrated a strikingly diminished tendency toward differentiation into peripherally induced Treg (pTreg) cells. Our results demonstrate that PD-1 is dispensable for thymic (tTreg) Treg-cell development and suppressive function, but is critical for the extrathymic differentiation of pTreg cells in vivo. These data suggest that antibody blockade of the PD-1/PD-L1 pathway may augment T-cell responses by acting directly on conventional T cells, and also by suppressing the differentiation of pTreg cells.
PMCID: PMC4165701  PMID: 24975127
PD-1; Treg cell; Treg-cell development; Treg-cell function; Treg-cell differentiation
10.  All-or-none Suppression of B Cell Terminal Differentiation by Environmental Contaminant 2,3,7,8-Tetrachlorodibenzo-p-Dioxin 
Many environmental contaminants can disrupt the adaptive immune response. Exposure to the ubiquitous aryl hydrocarbon receptor (AhR) ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other agonists suppresses the antibody response. The underlying pathway mechanism by which TCDD alters B cell function is not well understood. The present study investigated the mechanism of AhR-mediated pathways and mode of suppression by which TCDD perturbs terminal differentiation of B cells to plasma cells and thereby impairs antibody production. An integrated approach combining computational pathway modeling and in vitro assays with primary mouse B cells activated by lipopolysaccharide was employed. We demonstrated that suppression of the IgM response by TCDD occurs in an all-or-none (binary) rather than graded mode: i.e., it reduces the number of IgM-secreting cells in a concentration-dependent manner without affecting the IgM content in individual plasma cells. The mathematical model of the gene regulatory circuit underpinning B cell differentiation revealed that two previously identified AhR-regulated pathways, inhibition of signaling protein AP-1 and activation of transcription factor Bach2, could account for the all-or-none mode of suppression. Both pathways disrupt the operation of a bistable-switch circuit that contains transcription factors Bcl6, Prdm1, Pax5, and Bach2 and regulates B cell fate. The model further predicted that by transcriptionally activating Bach2, TCDD might delay B cell differentiation and increase the likelihood of isotype switching, thereby altering the antibody repertoire. In conclusion, the present study revealed the mode and specific pathway mechanisms by which the environmental immunosuppressant TCDD suppresses B cell differentiation.
PMCID: PMC3594464  PMID: 23357550
TCDD; AhR; all-or-none; bistable; Bach2
13.  Long-Term Remission of Diabetes in NOD Mice Is Induced by Nondepleting Anti-CD4 and Anti-CD8 Antibodies 
Diabetes  2012;61(11):2871-2880.
Residual β-cells found at the time of clinical onset of type 1 diabetes are sufficient to control hyperglycemia if rescued from ongoing autoimmune destruction. The challenge, however, is to develop an immunotherapy that not only selectively suppresses the diabetogenic response and efficiently reverses diabetes, but also establishes long-term β-cell–specific tolerance to maintain remission. In the current study, we show that a short course of nondepleting antibodies (Abs) specific for the CD4 and CD8 coreceptors rapidly reversed clinical disease in recent-onset diabetic NOD mice. Once established, remission was maintained indefinitely and immunity to foreign antigens unimpaired. Induction of remission involved selective T-cell purging of the pancreas and draining pancreatic lymph nodes and upregulation of transforming growth factor (TGF)-β1 by pancreas-resident antigen-presenting cells. Neutralization of TGF-β blocked the induction of remission. In contrast, maintenance of remission was associated with tissue-specific immunoregulatory T cells. These findings demonstrate that the use of nondepleting Ab specific for CD4 and CD8 is a robust approach to establish long-term β-cell–specific T-cell tolerance at the onset of clinical diabetes.
PMCID: PMC3478559  PMID: 22751694
14.  Peripheral T-cell tolerance in hosts with acute myeloid leukemia 
Oncoimmunology  2013;2(8):e25445.
Our laboratory investigates the immune tolerance mechanisms promoted by acute myeloid leukemia (AML). In a murine AML model, we have observed that leukemia antigen-specific T cells are specifically deleted from the host, presumably following interactions with immature host antigen-presenting cells (APCs). Ongoing work focuses on identifying APC subsets that induce T-cell tolerance in AML as well as the precise mechanisms that underlie this phenomenon.
PMCID: PMC3812197  PMID: 24179704
peripheral tolerance; AML; anergy; deletion; APC
15.  CD40 ligation reverses T cell tolerance in acute myeloid leukemia 
The Journal of Clinical Investigation  2013;123(5):1999-2010.
Spontaneous antigen-specific T cell responses can be generated in hosts harboring a variety of solid malignancies, but are subverted by immune evasion mechanisms active within the tumor microenvironment. In contrast to solid tumors, the mechanisms that regulate T cell activation versus tolerance to hematological malignancies have been underexplored. A murine acute myeloid leukemia (AML) model was used to investigate antigen-specific T cell responses against AML cells inoculated i.v. versus s.c. Robust antigen-specific T cell responses were generated against AML cells after s.c., but not i.v., inoculation. In fact, i.v. AML cell inoculation prevented functional T cell activation in response to subsequent s.c. AML cell challenge. T cell dysfunction was antigen specific and did not depend on Tregs or myeloid-derived suppressor cells (MDSCs). Antigen-specific TCR-Tg CD8+ T cells proliferated, but failed to accumulate, and expressed low levels of effector cytokines in hosts after i.v. AML induction, consistent with abortive T cell activation and peripheral tolerance. Administration of agonistic anti-CD40 Ab to activate host APCs enhanced accumulation of functional T cells and prolonged survival. Our results suggest that antigen-specific T cell tolerance is a potent immune evasion mechanism in hosts with AML that can be reversed in vivo after CD40 engagement.
PMCID: PMC3635717  PMID: 23619361
16.  Evidence for the requirement of 14-3-3eta (YWHAH) in meiotic spindle assembly during mouse oocyte maturation 
The 14-3-3 (YWHA) proteins are central mediators in various cellular signaling pathways regulating development and growth, including cell cycle regulation. We previously reported that all seven mammalian 14-3-3 isoforms are expressed in mouse oocytes and eggs and that, 14-3-3η (YWHAH) accumulates and co-localizes in the region of meiotic spindle in mouse eggs matured in vivo. Therefore, we investigated the role of 14-3-3η in spindle formation during mouse oocyte maturation.
Examination of oocytes matured in vitro demonstrated that 14-3-3η accumulates in both meiosis I and II spindles. To explore if 14-3-3η interacts directly with α-tubulin in meiotic spindles, we performed an in situ proximity ligation assay that can detect intracellular protein-protein interactions at the single molecule level and which allows visualization of the actual interaction sites. This assay revealed a marked interaction between 14-3-3η and α-tubulin at the metaphase II spindle. To demonstrate a functional role for 14-3-3η in oocyte maturation, mouse oocytes were microinjected with a translation-blocking morpholino oligonucleotide against 14-3-3η mRNA to reduce 14-3-3η protein synthesis during oocyte maturation. Meiotic spindles in those cells were examined by immunofluorescence staining of 14-3-3η and α-tubulin along with observation of DNA. In 76% of cells injected with the morpholino, meiotic spindles were found to be deformed or absent and there was reduced or no accumulation of 14-3-3η in the spindle region. Those cells contained clumped chromosomes, with no polar body formation. Immunofluorescence staining of 14-3-3η and α-tubulin in control eggs matured in vitro from uninjected oocytes and oocytes microinjected with the ineffective, inverted form of a morpholino against 14-3-3η, a morpholino against 14-3-3γ, or deionized water showed normal, bipolar spindles.
The results indicate that 14-3-3η is essential for normal meiotic spindle formation during in vitro maturation of mouse oocytes, in part by interacting with α-tubulin, to regulate the assembly of microtubules. These data add to our understanding of the roles of 14-3-3 proteins in mouse oocyte maturation and mammalian reproduction.
PMCID: PMC3620909  PMID: 23547714
Meiosis; Oocyte maturation; 14-3-3η; Meiotic spindle; Morpholino oligonucleotide; α-tubulin
17.  Expression of 14-3-3 protein isoforms in mouse oocytes, eggs and ovarian follicular development 
BMC Research Notes  2012;5:57.
The 14-3-3 (YWHA) proteins are a highly conserved, ubiquitously expressed family of proteins. Seven mammalian isoforms of 14-3-3 are known (β, γ, ε, ζ, η, τ and, σ). These proteins associate with many intracellular proteins involved in a variety of cellular processes including regulation of the cell cycle, metabolism and protein trafficking. We are particularly interested in the role of 14-3-3 in meiosis in mammalian eggs and the role 14-3-3 proteins may play in ovarian function. Therefore, we examined the expression of 14-3-3 proteins in mouse oocyte and egg extracts by Western blotting after polyacrylamide gel electrophoresis, viewed fixed cells by indirect immunofluorescence, and examined mouse ovarian cells by immunohistochemical staining to study the expression of the different 14-3-3 isoforms.
We have determined that all of the mammalian 14-3-3 isoforms are expressed in mouse eggs and ovarian follicular cells including oocytes. Immunofluorescence confocal microscopy of isolated oocytes and eggs confirmed the presence of all of the isoforms with characteristic differences in some of their intracellular localizations. For example, some isoforms (β, ε, γ, and ζ) are expressed more prominently in peripheral cytoplasm compared to the germinal vesicles in oocytes, but are uniformly dispersed within eggs. On the other hand, 14-3-3η is diffusely dispersed in the oocyte, but attains a uniform punctate distribution in the egg with marked accumulation in the region of the meiotic spindle apparatus. Immunohistochemical staining detected all isoforms within ovarian follicles, with some similarities as well as notable differences in relative amounts, localizations and patterns of expression in multiple cell types at various stages of follicular development.
We found that mouse oocytes, eggs and follicular cells within the ovary express all seven isoforms of the 14-3-3 protein. Examination of the differential expression of these 14-3-3 isoforms in female germ cells and ovarian follicles provides the foundation for further investigating 14-3-3 isoform-specific interactions with key proteins involved in ovarian development, meiosis and oocyte maturation. This will lead to a better understanding of the individual functional roles of the 14-3-3 protein isoforms in mammalian oogenesis and female reproductive development.
PMCID: PMC3292963  PMID: 22264317
18.  Identification of testis 14-3-3 binding proteins by tandem affinity purification 
Spermatogenesis  2011;1(4):354-365.
The 14-3-3 family of proteins interacts with various cellular phosphoproteins and regulates multiple cell signaling cascades. Identification of 14-3-3 interactors is important to define 14-3-3 functions in various biological pathways. The binding partners of protein 14-3-3 in testis are not known. The main goal of this study was to identify the 14-3-3 interactome in testis to determine the 14-3-3 regulated cellular processes in testis. We used transgenic mice expressing tandem affinity tagged 14-3-3ζ (TAP-14-3-3ζ) driven by the ubiquitin promoter to isolate 14-3-3 binding proteins. The 14-3-3 complexes in testis were isolated using a two-step tandem affinity purification (TAP) followed by identification with liquid chromatography/tandem mass spectrometry (LC-MS/MS). A total of 135 proteins were found to be associated with 14-3-3 in vivo in testis. Comparison of the testis 14-3-3 proteome with known 14-3-3 binding proteins showed that 71 of the proteins identified in this study are novel 14-3-3 interactors. Eight of these novel 14-3-3 interacting proteins are predominantly expressed in testis. The 14-3-3 interactors predominant in testis are: protein phosphatase1γ2 (PP1γ2), spermatogenesis associated 18 (SPATA18), phosphoglycerate kinase-2 (PGK2), testis specific gene A-2 (TSGA-2), dead box polypeptide 4 (DDX4), piwi homolog 1, protein kinase NYD-SP25 and EAN57. The fact that some of these proteins are indispensable for spermatogenesis suggests that their binding to 14-3-3 may be important for their function in germ cell division and maturation. These findings are discussed in context of the putative functions of 14-3-3 in spermatogenesis.
PMCID: PMC3271647  PMID: 22332119
14-3-3; YWHA; protein phosphatase 1; spermatogenesis; tandem affinity purification
19.  Stochastic Modeling of B Lymphocyte Terminal Differentiation and Its Suppression by Dioxin 
BMC Systems Biology  2010;4:40.
Upon antigen encounter, naïve B lymphocytes differentiate into antibody-secreting plasma cells. This humoral immune response is suppressed by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other dioxin-like compounds, which belong to the family of aryl hydrocarbon receptor (AhR) agonists.
To achieve a better understanding of the immunotoxicity of AhR agonists and their associated health risks, we have used computer simulations to study the behavior of the gene regulatory network underlying B cell terminal differentiation. The core of this network consists of two coupled double-negative feedback loops involving transcriptional repressors Bcl-6, Blimp-1, and Pax5. Bifurcation analysis indicates that the feedback network can constitute a bistable system with two mutually exclusive transcriptional profiles corresponding to naïve B cells and plasma cells. Although individual B cells switch to the plasma cell state in an all-or-none fashion when stimulated by the polyclonal activator lipopolysaccharide (LPS), stochastic fluctuations in gene expression make the switching event probabilistic, leading to heterogeneous differentiation response among individual B cells. Moreover, stochastic gene expression renders the dose-response behavior of a population of B cells substantially graded, a result that is consistent with experimental observations. The steepness of the dose response curve for the number of plasma cells formed vs. LPS dose, as evaluated by the apparent Hill coefficient, is found to be inversely correlated to the noise level in Blimp-1 gene expression. Simulations illustrate how, through AhR-mediated repression of the AP-1 protein, TCDD reduces the probability of LPS-stimulated B cell differentiation. Interestingly, stochastic simulations predict that TCDD may destabilize the plasma cell state, possibly leading to a reversal to the B cell phenotype.
Our results suggest that stochasticity in gene expression, which renders a graded response at the cell population level, may have been exploited by the immune system to launch humoral immune response of a magnitude appropriately tuned to the antigen dose. In addition to suppressing the initiation of the humoral immune response, dioxin-like compounds may also disrupt the maintenance of the acquired immunity.
PMCID: PMC2859749  PMID: 20359356
20.  Proteomic Analysis of Bovine Sperm YWHA Binding Partners Identify Proteins Involved in Signaling and Metabolism1 
Biology of Reproduction  2008;79(6):1183-1191.
Posttranslational modification of proteins by phosphorylation is involved in regulation of sperm function. Protein phosphatase 1 gamma isoform 2 (PPP1CC_v2) and protein YWHA (also known as 14-3-3) are likely to be key molecules in pathways involving sperm protein phosphorylation. We have shown that phosphorylated PPP1CC_v2 is bound to protein YWHAZ in spermatozoa. In somatic cells, protein YWHA is known to bind a number of phosphoproteins involved in signaling and energy metabolism. Thus, in addition to PPP1CC_v2, it is likely that sperm contain other YWHA-binding proteins. A goal of the present study was to identify these sperm YWHA-binding proteins. The binding proteins were isolated by affinity chromatography with GST-YWHAZ followed by elution with a peptide, R-11, which is known to disrupt YWHA complexes. The YWHA-binding proteins in sperm can be classified as those involved in fertilization, acrosome reaction, energy metabolism, protein folding, and ubiquitin-mediated proteolysis. A subset of these putative YWHA-binding proteins contain known amino acid consensus motifs, not only for YWHA binding but also for PPP1C binding. Identification of sperm PPP1CC_v2-binding proteins by microcystin-agarose chromatography confirmed that PPP1CC_v2 and YWHA interactomes contain several common proteins. These are metabolic enzymes phosphoglycerate kinase 2, hexokinase 1, and glucose phosphate isomerase; proteins involved in sperm-egg fusion; angiotensin-converting enzyme, sperm adhesion molecule, and chaperones; heat shock 70-kDa protein 5 (glucose-regulated protein 78 kDa; and heat shock 70-kDa protein 1-like. These proteins are likely to be phosphoproteins and potential PPP1CC_v2 substrates. Our data suggest that in addition to potential regulation of a number of important sperm functions, YWHA may act as an adaptor molecule for a subset of PPP1CC_v2 substrates.
YWHA in bovine caudal spermatozoa binds to sperm signaling and metabolic enzymes.
PMCID: PMC2780472  PMID: 18753613
14-3-3; gamete biology; kinases; phosphatases; PP1; protein phosphorylation; signal transduction; sperm; YWHA
21.  Phosphorylation-Dependent Interaction of Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein (YWHA) with PADI6 Following Oocyte Maturation in Mice1 
Biology of reproduction  2008;79(2):337-347.
Proteins in the tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein family (YWHA; also known as 14-3-3) are involved in the regulation of many intracellular processes. We have examined the interaction of YWHA with peptidylarginine deiminase type VI (PADI6), an abundant protein in mammalian oocytes, eggs, and early embryos. Peptidylarginine deiminases catalyze the posttranslational modification of peptidylarginine to citrulline. PADI6 is associated with oocyte cytoplasmic sheets, and PADI6-deficient mice are infertile because of disruption of development beyond the two-cell stage. We found that PADI6 undergoes a dramatic developmental change in phosphorylation during oocyte maturation. This change in phosphorylation is linked to an interaction of PADI6 with YWHA in the mature egg. Recombinant glutathione S-transferase YWHA pull-down experiments and transgenic tandem affinity purification with liquid chromatography-mass spectrometry demonstrate a binding interaction between YWHA and PADI6 in mature eggs. YWHA proteins modulate or complement intracellular events involving phosphorylation-dependent switching or protein modification. These results indicate that phosphorylation and/or YWHA binding may serve as a means of intracellular PADI6 regulation.
PMCID: PMC2575841  PMID: 18463355
egg; gamete biology; gametogenesis; mouse; oocyte; oocyte development; oocyte maturation; ovum; PADI6; PAD6; peptidylarginine deiminase; phosphorylation; YWHA; 14-3-3

Results 1-21 (21)