Search tips
Search criteria


Important Notice

PubMed Central Canada to be taken offline in February 2018

On February 23, 2018, PubMed Central Canada (PMC Canada) will be taken offline permanently. No author manuscripts will be deleted, and the approximately 2,900 manuscripts authored by Canadian Institutes of Health Research (CIHR)-funded researchers currently in the archive will be copied to the National Research Council’s (NRC) Digital Repository over the coming months. These manuscripts along with all other content will also remain publicly searchable on PubMed Central (US) and Europe PubMed Central, meaning such manuscripts will continue to be compliant with the Tri-Agency Open Access Policy on Publications.

Read more

Results 1-25 (2475286)

Clipboard (0)

Related Articles

1.  Changes in Susceptibility to Oncolytic Vesicular Stomatitis Virus during Progression of Prostate Cancer 
Journal of Virology  2015;89(10):5250-5263.
A major challenge to oncolytic virus therapy is that individual cancers vary in their sensitivity to oncolytic viruses, even when these cancers arise from the same tissue type. Variability in response may arise due to differences in the initial genetic lesions leading to cancer development. Alternatively, susceptibility to viral oncolysis may change during cancer progression. These hypotheses were tested using cells from a transgenic mouse model of prostate cancer infected with vesicular stomatitis virus (VSV). Primary cultures from murine cancers derived from prostate-specific Pten deletion contained a mixture of cells that were susceptible and resistant to VSV. Castration-resistant cancers contained a higher percentage of susceptible cells than cancers from noncastrated mice. These results indicate both susceptible and resistant cells can evolve within the same tumor. The role of Pten deletion was further investigated using clonal populations of murine prostate epithelial (MPE) progenitor cells and tumor-derived Pten−/− cells. Deletion of Pten in MPE progenitor cells using a lentivirus vector resulted in cells that responded poorly to interferon and were susceptible to VSV infection. In contrast, tumor-derived Pten−/− cells expressed higher levels of the antiviral transcription factor STAT1, activated STAT1 in response to VSV, and were resistant to VSV infection. These results suggest that early in tumor development following Pten deletion, cells are primarily sensitive to VSV, but subsequent evolution in tumors leads to development of cells that are resistant to VSV infection. Further evolution in castration-resistant tumors leads to tumors in which cells are primarily sensitive to VSV.
IMPORTANCE There has been a great deal of progress in the development of replication-competent viruses that kill cancer cells (oncolytic viruses). However, a major problem is that individual cancers vary in their sensitivity to oncolytic viruses, even when these cancers arise from the same tissue type. The experiments presented here were to determine whether both sensitive and resistant cells are present in prostate cancers originating from a single genetic lesion in transgenic mice, prostate-specific deletion of the gene for the tumor suppressor Pten. The results indicate that murine prostate cancers are composed of both cells that are sensitive and cells that are resistant to oncolytic vesicular stomatitis virus (VSV). Furthermore, androgen deprivation led to castration-resistant prostate cancers that were composed primarily of cells that were sensitive to VSV. These results are encouraging for the use of VSV for the treatment of prostate cancers that are resistant to androgen deprivation therapy.
PMCID: PMC4442527  PMID: 25741004
2.  Vesicular stomatitis virus expressing interferon-β is oncolytic and promotes antitumor immune responses in a syngeneic murine model of non-small cell lung cancer 
Oncotarget  2015;6(32):33165-33177.
Vesicular stomatitis virus (VSV) is a potent oncolytic virus for many tumors. VSV that produces interferon-β (VSV-IFNβ) is now in early clinical testing for solid tumors. Here, the preclinical activity of VSV and VSV-IFNβ against non-small cell lung cancer (NSCLC) is reported. NSCLC cell lines were treated in vitro with VSV expressing green fluorescence protein (VSV-GFP) and VSV-IFNβ. VSV-GFP and VSV-IFNβ were active against NSCLC cells. JAK/STAT inhibition with ruxolitinib re-sensitized resistant H838 cells to VSV-IFNβ mediated oncolysis. Intratumoral injections of VSV-GFP and VSV-IFNβ reduced tumor growth and weight in H2009 nude mouse xenografts (p < 0.01). A similar trend was observed in A549 xenografts. Syngeneic LM2 lung tumors grown in flanks of A/J mice were injected with VSV-IFNβ intratumorally. Treatment of LM2 tumors with VSV-IFNβ resulted in tumor regression, prolonged survival (p < 0.0001), and cure of 30% of mice. Intratumoral injection of VSV-IFNβ resulted in decreased tumor-infiltrating regulatory T cells (Treg) and increased CD8+ T cells. Tumor cell expression of PDL-1 was increased after VSV-IFNβ treatment. VSV-IFNβ has potent antitumor effects and promotes systemic antitumor immunity. These data support further clinical investigation of VSV-IFNβ for NSCLC.
PMCID: PMC4741756  PMID: 26431376
oncolytic virus; NSCLC; interferon-β; VSV; Treg
3.  Histone Deacetylase Inhibitors Potentiate Vesicular Stomatitis Virus Oncolysis in Prostate Cancer Cells by Modulating NF-κB-Dependent Autophagy 
Journal of Virology  2014;88(5):2927-2940.
Vesicular stomatitis virus (VSV) is an oncolytic virus that induces cancer cell death through activation of the apoptotic pathway. Intrinsic resistance to oncolysis is found in some cell lines and many primary tumors as a consequence of residual innate immunity to VSV. In resistant-tumor models, VSV oncolytic potential can be reversibly stimulated by combination with epigenetic modulators, such as the histone deacetylase inhibitor vorinostat. Based on this reversible effect of vorinostat, we reasoned that critical host genes involved in oncolysis may likewise be reversibly regulated by vorinostat. A transcriptome analysis in prostate cancer PC3 cells identified a subset of NF-κB target genes reversibly regulated by vorinostat, as well as a group of interferon (IFN)-stimulated genes (ISGs). Consistent with the induction of NF-κB target genes, vorinostat-mediated enhancement of VSV oncolysis increased hyperacetylation of NF-κB RELA/p65. Additional bioinformatics analysis revealed that NF-κB signaling also increased the expression of several autophagy-related genes. Kinetically, autophagy preceded apoptosis, and apoptosis was observed only when cells were treated with both VSV and vorinostat. VSV replication and cell killing were suppressed when NF-κB signaling was inhibited using pharmacological or genetic approaches. Inhibition of autophagy by 3-methyladenine (3-MA) enhanced expression of ISGs, and either 3-MA treatment or genetic ablation of the autophagic marker Atg5 decreased VSV replication and oncolysis. Together, these data demonstrate that vorinostat stimulates NF-κB activity in a reversible manner via modulation of RELA/p65 signaling, leading to induction of autophagy, suppression of the IFN-mediated response, and subsequent enhancement of VSV replication and apoptosis.
PMCID: PMC3958113  PMID: 24371063
4.  Interferon Beta and Interferon Alpha 2a Differentially Protect Head and Neck Cancer Cells from Vesicular Stomatitis Virus-Induced Oncolysis 
Journal of Virology  2015;89(15):7944-7954.
Oncolytic viruses (OV) preferentially kill cancer cells due in part to defects in their antiviral responses upon exposure to type I interferons (IFNs). However, IFN responsiveness of some tumor cells confers resistance to OV treatment. The human type I IFNs include one IFN-β and multiple IFN-α subtypes that share the same receptor but are capable of differentially inducing biological responses. The role of individual IFN subtypes in promoting tumor cell resistance to OV is addressed here. Two human IFNs which have been produced for clinical use, IFN-α2a and IFN-β, were compared for activity in protecting human head and neck squamous cell carcinoma (HNSCC) lines from oncolysis by vesicular stomatitis virus (VSV). Susceptibility of HNSCC lines to killing by VSV varied. VSV infection induced increased production of IFN-β in resistant HNSCC cells. When added exogenously, IFN-β was significantly more effective at protecting HNSCC cells from VSV oncolysis than was IFN-α2a. In contrast, normal keratinocytes and endothelial cells were protected equivalently by both IFN subtypes. Differential responsiveness of tumor cells to IFN-α and -β was further supported by the finding that autocrine IFN-β but not IFN-α promoted survival of HNSCC cells during persistent VSV infection. Therefore, IFN-α and -β differentially affect VSV oncolysis, justifying the evaluation and comparison of IFN subtypes for use in combination with VSV therapy. Pairing VSV with IFN-α2a may enhance selectivity of oncolytic VSV therapy for HNSCC by inhibiting VSV replication in normal cells without a corresponding inhibition in cancer cells.
IMPORTANCE There has been a great deal of progress in the development of oncolytic viruses. However, a major problem is that individual cancers vary in their sensitivity to oncolytic viruses. In many cases this is due to differences in their production and response to interferons (IFNs). The experiments described here compared the responses of head and neck squamous cell carcinoma cell lines to two IFN subtypes, IFN-α2a and IFN-β, in protection from oncolytic vesicular stomatitis virus. We found that IFN-α2a was significantly less protective for cancer cells than was IFN-β, whereas normal cells were equivalently protected by both IFNs. These results suggest that from a therapeutic standpoint, selectivity for cancer versus normal cells may be enhanced by pairing VSV with IFN-α2a.
PMCID: PMC4505650  PMID: 25995245
5.  Vesicular Stomatitis Virus Oncolytic Treatment Interferes with Tumor-Associated Dendritic Cell Functions and Abrogates Tumor Antigen Presentation▿ 
Journal of Virology  2011;85(23):12160-12169.
Oncolytic virotherapy is a promising biological approach to cancer treatment that contributes to tumor eradication via immune- and non-immune-mediated mechanisms. One of the remaining challenges for these experimental therapies is the necessity to develop a durable adaptive immune response against the tumor. Vesicular stomatitis virus (VSV) is a prototypical oncolytic virus (OV) that exemplifies the multiple mechanisms of oncolysis, including direct cell lysis, cellular hypoxia resulting from the shutdown of tumor vasculature, and inflammatory cytokine release. Despite these properties, the generation of sustained antitumor immunity is observed only when VSV is engineered to express a tumor antigen directly. In the present study, we sought to increase the number of tumor-associated dendritic cells (DC) in vivo and tumor antigen presentation by combining VSV treatment with recombinant Fms-like tyrosine kinase 3 ligand (rFlt3L), a growth factor promoting the differentiation and proliferation of DC. The combination of VSV oncolysis and rFLt3L improved animal survival in two different tumor models, i.e., VSV-resistant B16 melanoma and VSV-sensitive E.G7 T lymphoma; however, increased survival was independent of the adaptive CD8 T cell response. Tumor-associated DC were actively infected by VSV in vivo, which reduced their viability and prevented their migration to the draining lymph nodes to prime a tumor-specific CD8 T cell response. These results demonstrate that VSV interferes with tumor DC functions and blocks tumor antigen presentation.
PMCID: PMC3209377  PMID: 21917977
6.  Highly Attenuated Recombinant Vesicular Stomatitis Virus VSV-12′GFP Displays Immunogenic and Oncolytic Activity 
Journal of Virology  2013;87(2):1019-1034.
Vesicular stomatitis virus (VSV) has shown considerable promise both as an immunization vector and as an oncolytic virus. In both applications, an important concern is the safety profile of the virus. To generate a highly attenuated virus, we added two reporter genes to the 3′ end of the VSV genome, thereby shifting the NPMGL genes from positions 1 to 5 to positions 3 to 7. The resulting virus (VSV-12′GFP) was highly attenuated, generating smaller plaques than four other attenuated VSVs. In one-step growth curves, VSV-12′GFP displayed the slowest growth kinetics. The mechanism of attenuation appears to be due to reduced expression of VSV genes downstream of the reporter genes, as suggested by a 10.4-fold reduction in L-protein RNA transcript. Although attenuated, VSV-12′GFP was highly effective at generating an immune response, indicated by a high-titer antibody response against the green fluorescent protein (GFP) expressed by the virus. Although VSV-12′GFP was more attenuated than other VSVs on both normal and cancer cells, it nonetheless showed a greater level of infection of human cancer cells (glioma and melanoma) than of normal cells, and this effect was magnified in glioma by interferon application, indicating selective oncolysis. Intravenous VSV-12′GFP selectively infected human gliomas implanted into SCID mice subcutaneously or intracranially. All postnatal day 16 mice given intranasal VSV-12′GFP survived, whereas only 10% of those given VSV-G/GFP survived, indicating reduced neurotoxicity. Intratumoral injection of tumors with VSV-12′GFP dramatically suppressed tumor growth and enhanced survival. Together these data suggest this recombinant virus merits further study for its oncolytic and vaccine potential.
PMCID: PMC3554062  PMID: 23135719
7.  Autophagic regulation of cell growth by altered expression of Beclin 1 in triple-negative breast cancer 
Beclin 1 is a promoter gene for autophagy as well as a key factor for regulating tumor cell growth and death. Allelic deletion of Beclin 1 has been observed in certain triple-negative breat cancer (TNBC) cells, and it might be associated with increased proliferation and invasion in TNBC cells. In this study we investigated the relationship between Beclin 1 expression and prognosis for TNBC patients, as well as the influence on cell growth by Beclin 1 overexpression in different cultural conditions. Beclin 1 expression in TNBC tissues was measured by immunohistochemical staining and correlated with clinicopathologic parameters for TNBC patients. The plasmid of pDS-RED-C1-Beclin 1 was transfected to BT-549 and MDA-MB-231 cells and autophagy, proliferation, apoptosis, cell cycle and Epithelial-mesenchymal transition (EMT) process were measured. Results indicated that high level of Beclin 1 expression was correlated with more lymph nodes and distant metastasis but unrelated to survival rates in 5 years for TNBC patients. In vitro, overexpression of Beclin 1 improved cellular autophagy in both BT-549 and MDA-MB-231 cells, inhibited cell proliferation at normal cultural condition and increased cell survival in starvation, hypoxia or with doxorubicin stimulation. Besides, Beclin 1 overexpression decreased cell apoptosis, induced cells to be in G0/G1 phase and promoted EMT process through Wnt/β-catenin pathway in starvation. Thus, Beclin 1 overexpression plays a double role in BT-549 and MDA-MB-231 cell growth by elevating the capability of autophagy. These findings might be useful for searching a proper method for clinical therapy of TNBC from the aspect of autophagy in future.
PMCID: PMC4509187  PMID: 26221242
Triple-negative breast cancer; autophagy; Beclin 1 gene
8.  Overcoming cancer cell resistance to VSV oncolysis with JAK1/2 inhibitors 
Cancer gene therapy  2013;20(10):582-589.
Oncolytic vesicular stomatitis virus (VSV) has potent antitumor activity but some cancer cells are resistant to VSV killing, either constitutively or due to type I interferon (IFN) inducing an antiviral state in the cells. Here, we evaluated VSV oncolysis of a panel of human head and neck cancer cells and showed that VSV resistance in SCC25 and SCC15 cells could be reversed with Janus kinase (JAK) 1/2 inhibitors (JAK inhibitor I and ruxolitinib). Pre-treatment of cells with JAK1/2 inhibitors before or in conjunction with VSV enhanced viral infection, spread and progeny yield (100- to 1000-fold increase). In contrast, inhibitors of histone deacetylase (LBH589), phosphatidylinositol 3-kinase (GDC-0941, LY294002), mammalian target of rapamycin (rapamycin) or signal transducer and activator of transcription 3 (STAT3 inhibitor VII) were ineffective. Compared with VSV-sensitive SW579 cells, IFNα/β responsive antiviral genes (IRF-9, IRF-7, OAS1 but not MxA) are constitutively expressed in SCC25 cells. Pretreatment with JAK inhibitors reduced mRNA levels of these genes, increasing VSV expression in the cells. Interestingly, 1 h of drug exposure was sufficient to reverse SCC25 resistance to VSV and was still effective if virus was added 24 h later. Overall, we show here that JAK inhibitor I and ruxolitinib (Jakafi) can reverse resistance to VSV, supporting the rationale to incorporate JAK1/2 inhibitors in future VSV virotherapy trials.
PMCID: PMC4817541  PMID: 24030211
oncolytic VSV; SCCHN; JAK inhibitor I; ruxolitinib; interferon; antiviral genes
9.  Oncolytic Measles and Vesicular Stomatitis Virotherapy for Endometrial Cancer 
Gynecologic oncology  2013;132(1):194-202.
Current adjuvant therapy for advanced-stage, recurrent, and high-risk endometrial cancer (EC) has not reduced mortality from this malignancy, and novel systemic therapies are imperative. Oncolytic viral therapy has been shown to be effective in the treatment of gynecologic cancers, and we investigated the in vitro and in vivo efficacy of the Edmonston strain of measles virus (MV) and vesicular stomatitis virus (VSV) on EC.
Human EC cell lines (HEC-1-A, Ishikawa, KLE, RL95-2, AN3 CA, ARK-1, ARK-2, and SPEC-2) were infected with Edmonston strain MV expressing the thyroidal sodium iodide symporter, VSV expressing either human or murine IFN-β, or recombinant VSV with a methionine deletion at residue 51 of the matrix protein and expressing the sodium iodide symporter. Xenografts of HEC-1-A and AN3 CA generated in athymic mice were treated with intratumoral MV or VSV or intravenous VSV.
In vitro, all cell lines were susceptible to infection and cell killing by all 3 VSV strains except KLE. In addition, the majority of EC cell lines were defective in their ability to respond to type I IFN. Intratumoral VSV–treated tumors regressed more rapidly than MV-treated tumors, and intravenous VSV resulted in effective tumor control in 100% of mice. Survival was significantly longer for mice treated with any of the 3 VSV strains compared with saline.
VSV is clearly more potent in EC oncolysis than MV. A phase 1 clinical trial of VSV in EC is warranted.
PMCID: PMC3946955  PMID: 24246772
10.  Overexpression of RBM5 induces autophagy in human lung adenocarcinoma cells 
Dysfunctions in autophagy and apoptosis are closely interacted and play an important role in cancer development. RNA binding motif 5 (RBM5) is a tumor suppressor gene, which inhibits tumor cells’ growth and enhances chemosensitivity through inducing apoptosis in our previous studies. In this study, we investigated the relationship between RBM5 overexpression and autophagy in human lung adenocarcinoma cells.
Human lung adenocarcinoma cancer (A549) cells were cultured in vitro and were transiently transfected with a RBM5 expressing plasmid (GV287-RBM5) or plasmid with scrambled control sequence. RBM5 expression was determined by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Intracellular LC-3 I/II, Beclin-1, lysosome associated membrane protein-1 (LAMP1), Bcl-2, and NF-κB/p65 protein levels were detected by Western blot. Chemical staining with monodansylcadaverine (MDC) and acridine orange (AO) was applied to detect acidic vesicular organelles (AVOs). The ultrastructure changes were observed under transmission electron microscope (TEM). Then, transplanted tumor models of A549 cells on BALB/c nude mice were established and treated with the recombinant plasmids carried by attenuated Salmonella to induce RBM5 overexpression in tumor tissues. RBM5, LC-3, LAMP1, and Beclin1 expression was determined by immunohistochemistry staining in plasmids-treated A549 xenografts.
Our study demonstrated that overexpression of RBM5 caused an increase in the autophagy-related proteins including LC3-I, LC3-II, LC3-II/LC3-I ratio, Beclin1, and LAMP1 in A549 cells. A large number of autophagosomes with double-membrane structure and AVOs were detected in the cytoplasm of A549 cells transfected with GV287-RBM5 at 24 h. We observed that the protein level of NF-κB/P65 was increased and the protein level of Bcl-2 decreased by RBM5 overexpression. Furthermore, treatment with an autophagy inhibitor, 3-MA, enhanced RBM5-induced cell death and chemosensitivity in A549 cells. Furthermore, we successfully established the lung adenocarcinoma animal model using A549 cells. Overexpression of RBM5 enhanced the LC-3, LAMP1, and Beclin1 expression in the A549 xenografts.
Our findings showed for the first time that RBM5 overexpression induced autophagy in human lung adenocarcinoma cells, which might be driven by upregulation of Beclin1, NF-κB/P65, and downregulation of Bcl-2. RBM5-enhanced autophagy acts in a cytoprotective way and inhibition of autophagy may improve the anti-tumor efficacy of RBM5 in lung cancer.
PMCID: PMC4770605  PMID: 26923134
RNA binding motif 5; Autophagy; Non-small cell lung cancer; A549 xenograft; Gene expression
11.  Mutations in the Glycoprotein of Vesicular Stomatitis Virus Affect Cytopathogenicity: Potential for Oncolytic Virotherapy▿§ 
Journal of Virology  2011;85(13):6513-6520.
Vesicular stomatitis virus (VSV) has been widely used to characterize cellular processes, viral resistance, and cytopathogenicity. Recently, VSV has also been used for oncolytic virotherapy due to its capacity to selectively lyse tumor cells. Mutants of the matrix (M) protein of VSV have generally been preferred to the wild-type virus for oncolysis because of their ability to induce type I interferon (IFN) despite causing weaker cytopathic effects. However, due to the large variability of tumor types, it is quite clear that various approaches and combinations of multiple oncolytic viruses will be needed to effectively treat most cancers. With this in mind, our work focused on characterizing the cytopathogenic profiles of four replicative envelope glycoprotein (G) VSV mutants. In contrast to the prototypic M mutant, VSV G mutants are as efficient as wild-type virus at inhibiting cellular transcription and host protein translation. Despite being highly cytopathic, the mutant G6R triggers type I interferon secretion as efficiently as the M mutant. Importantly, most VSV G mutants are more effective at killing B16 and MC57 tumor cells in vitro than the M mutant or wild-type virus through apoptosis induction. Taken together, our results demonstrate that VSV G mutants retain the high cytopathogenicity of wild-type VSV, with G6R inducing type I IFN secretion at levels similar to that of the M mutant. VSV G protein mutants could therefore prove to be highly valuable for the development of novel oncolytic virotherapy strategies that are both safe and efficient for the treatment of various types of cancer.
PMCID: PMC3126483  PMID: 21561919
12.  Gene therapy using the human telomerase catalytic subunit gene promoter enables targeting of the therapeutic effects of vesicular stomatitis virus matrix protein against human lung adenocarcinoma 
The catalytic subunit of telomerase, human telomerase reverse transcriptase (hTERT), is highly active in immortalized cells and more than 90% of human cancer cells, but is quiescent in the majority of normal somatic cells. Thus, the hTERT promoter has been extensively used in targeted cancer gene therapy. Vesicular stomatitis virus (VSV) matrix protein (MP) induces the apoptosis of tumor cells in the absence of other viral components. In our previous studies, we successfully constructed the pVAX-M plasmid from the pVAX plasmid, which expressed wild-type VSV MP (VSV MP is under the control of the CMV promoter) and demonstrated that pVAX-M efficiently suppresses the growth of malignant tumors via the induction of apoptosis in vitro and in vivo. The present study was designed to construct the plasmid phTERTM (VSV MP is under the control of the hTERT promoter) and investigate whether it had a targeted antitumor effect in nude mice bearing human lung adenocarcinoma. In vitro, A549 human lung adenocarcinoma cells were treated with NS, Lip-null, etoposide, Lip-pVAX-M or Lip-phTERT-M, and examined for cell viability through MTT assays or for apoptosis by flow cytometry and TUNEL assays. In vivo, A549 human lung carcinoma models in nude mice were established. Mice were treated with 10 4-weekly intravenous administrations of NS, Lip-null, etoposide (2 mg/kg), Lip-pVAX-M or Lip-phTERT-M. Subsequently, Lip-phTERT-M was found to be the most efficient inhibitor of tumor growth and inducer of tumor cell apoptosis when compared with the other groups in vivo and in vitro (P<0.05). Notably, immunohistochemical staining showed that Lip-phTERT-M significantly limited the overexpression of VSV MP to the tumor tissues and reduced VSV MP expression in other organs in comparison with Lip-pVAX-M (P<0.05). Therefore, it can be concluded that phTERT-M demonstrates a targeted antitumor effect on A549 human lung adenocarcinoma cells. These observations suggest that phTERT-M gene therapy may be a novel and potent strategy for targeting human lung adenocarcinoma.
PMCID: PMC3493746  PMID: 23226739
vesicular stomatitis virus matrix protein; phTERT-M; pVAX-M; apoptosis; targeted antitumor effect
13.  Molecular Determinants of Susceptibility to Oncolytic Vesicular Stomatitis Virus in Pancreatic Adenocarcinoma 
The Journal of surgical research  2013;187(2):412-426.
M protein mutant vesicular stomatitis virus (M51R-VSV) has oncolytic properties against many cancers. However, some cancer cells are resistant to M51R-VSV. Herein, we evaluate the molecular determinants of VSV resistance in pancreatic adenocarcinoma cells.
Cell viability and the effect of β-interferon (IFN) was analyzed using MTS assay. Gene expression was evaluated via microarray analysis. Cell infectability was measured by flow cytometry. Xenografts were established in athymic nude mice and treated with intratumoral M51R-VSV.
Four of five pancreatic cancer cell lines were sensitive to M51R-VSV, while Panc03.27 cells remained resistant (81±3% viability 72-hours after single cycle infection). Comparing sensitive MiaPaCa2 to resistant Panc03.27 cells, significant differences in gene expression was found relating to IFN signaling (p=2×10-5), viral entry (p=3×10-4) and endocytosis (p=7×10-4). MiaPaCa2 cells permitted high levels of VSV infection, while Panc03.27 cells were capable of resisting VSV cell entry even at high MOIs. Extrinsic β-IFN overcame apparent defects in IFN-mediated pathways in MiaPaCa2 cells conferring VSV resistance. In contrast, β-IFN decreased cell viability in Panc3.27 cells suggesting intact anti-viral mechanisms. VSV treated xenografts exhibited reduced tumor growth relative to controls in both MiaPaCa2 (1423 ± 345% vs 164 ± 136%, p<0.001) and Panc3.27 tumors (979 ± 153% vs 50 ± 56%, p=0.002). Significant lymphocytic infiltration was seen in M51R-VSV treated Panc03.27 xenografts.
Inhibition of VSV endocytosis and intact IFN-mediated defenses are responsible for M51R-VSV resistance in pancreatic adenocarcinoma cells. M51R-VSV treatment appears to induce anti-tumor cellular immunity in vivo which may expand its clinical efficacy.
PMCID: PMC3959227  PMID: 24252853
Vesicular Stomatitis Virus; Pancreatic Adenocarcinoma; Interferon; Viral Endocytosis; Xenograft
14.  Single-Cycle Viral Gene Expression, Rather Than Progressive Replication and Oncolysis, Is Required for VSV Therapy of B16 Melanoma 
Gene therapy  2009;17(2):158-170.
A fully intact immune system would be expected to hinder the efficacy of oncolytic virotherapy by inhibiting viral replication. Simultaneously, however, it may also enhance antitumor therapy through initiation of pro-inflammatory, antiviral cytokine responses at the tumor site. The aim of the current study was to investigate the role of a fully intact immune system upon the antitumor efficacy of an oncolytic virus. In this respect, injection of oncolytic Vesicular Stomatitis Virus (VSV) into subcutaneous B16ova melanomas in C57Bl/6 mice leads to tumor regression, but it is not associated with viral replicative burst in the tumor. In contrast, intratumoral delivery of VSV induces an acute proinflammatory reaction, which quickly resolves concomitantly with virus clearance. Consistent with the hypothesis that therapy may not be dependent upon the ability of VSV to undergo progressive rounds of replication, a single-cycle VSV is equally effective as a fully replication-competent VSV, whereas, inactivated viruses do not generate therapy. Even though therapy is dependent upon host CD8+ and NK cells, these effects are not associated with IFN-γ-dependent responses against either the virus or tumor. There is, however, a strong correlation between viral gene expression, induction of proinflammatory reaction in the tumor and in vivo therapy. Overall, our results suggest that acute innate antiviral immune response, which rapidly clears VSV from B16ova tumors, is associated with the therapy observed in this model. Therefore, the antiviral immune response to an oncolytic virus mediates an intricate balance between safety, restriction of oncolysis and, potentially, significant immune-mediated antitumor therapy.
PMCID: PMC3934361  PMID: 20016540
Oncolytic viruses; Experimental Melanoma; Interferon Type I; Gene Therapy; Virus Replication; Rhabdovirus
15.  Cell Cycle Progression or Translation Control Is Not Essential for Vesicular Stomatitis Virus Oncolysis of Hepatocellular Carcinoma 
PLoS ONE  2010;5(6):e10988.
The intrinsic oncolytic specificity of vesicular stomatitis virus (VSV) is currently being exploited to develop alternative therapeutic strategies for hepatocellular carcinoma (HCC). Identifying key regulators in diverse transduction pathways that define VSV oncolysis in cancer cells represents a fundamental prerequisite to engineering more effective oncolytic viral vectors and adjusting combination therapies. After having identified defects in the signalling cascade of type I interferon induction, responsible for attenuated antiviral responses in human HCC cell lines, we have now investigated the role of cell proliferation and translation initiation. Cell cycle progression and translation initiation factors eIF4E and eIF2Bε have been recently identified as key regulators of VSV permissiveness in T-lymphocytes and immortalized mouse embryonic fibroblasts, respectively. Here, we show that in HCC, decrease of cell proliferation by cell cycle inhibitors or siRNA-mediated reduction of G(1) cyclin-dependent kinase activities (CDK4) or cyclin D1 protein expression, do not significantly alter viral growth. Additionally, we demonstrate that translation initiation factors eIF4E and eIF2Bε are negligible in sustaining VSV replication in HCC. Taken together, these results indicate that cellular proliferation and the initiation phase of cellular protein synthesis are not essential for successful VSV oncolysis of HCC. Moreover, our observations indicate the importance of cell-type specificity for VSV oncolysis, an important aspect to be considered in virotherapy applications in the future.
PMCID: PMC2881869  PMID: 20539760
16.  Potent systemic therapy of Multiple Myeloma utilizing Oncolytic Vesicular stomatitis virus coding for Interferon-beta 
Cancer gene therapy  2012;19(7):443-450.
Multiple myeloma (MM) is an incurable malignancy of plasma secreting B-cells disseminated in the bone marrow. Successful utilization of oncolytic virotherapy for myeloma treatment requires a systemically administered virus that selectively destroys disseminated myeloma cells in an immune-competent host. Vesicular stomatitis virus (VSV) expressing Interferon-β (IFNβ) is a promising new oncolytic agent that exploits tumor-associated defects in innate immune signaling pathways to specifically destroy cancer cells. We demonstrate here that a single, intravenous dose of VSV-IFNβ specifically destroys subcutaneous and disseminated 5TGM1 myeloma in an immune competent myeloma model. VSV-IFN treatment significantly prolonged survival in mice bearing orthotopic myeloma. Viral murine IFNβ expression further delayed myeloma progression and significantly enhanced survival compared to VSV expressing human IFNβ. Evaluation of VSV-IFNβ oncolytic activity in human myeloma cell lines and primary patient samples confirmed myeloma specific oncolytic activity but revealed variable susceptibility to VSV-IFNβ oncolysis. The results indicate that VSV-IFNβ is a potent, safe oncolytic agent that can be systemically administered to effectively target and destroy disseminated myeloma in immune competent mice. IFNβ expression improves cancer specificity and enhances VSV therapeutic efficacy against disseminated myeloma. These data show VSV-IFNβ to be a promising vector for further development as a potential therapy for treatment of Multiple myeloma.
PMCID: PMC3380174  PMID: 22522623
Oncolytic; virotherapy; myeloma; Vesicular stomatitis virus; systemic
17.  Interference of CD40L-Mediated Tumor Immunotherapy by Oncolytic Vesicular Stomatitis Virus 
Human Gene Therapy  2010;21(4):439-450.
Oncolytic virotherapy can be achieved in two ways: (1) by exploiting an innate ability of certain viruses to selectively replicate in tumor tissues, and (2) by using viruses to deliver toxic or immunostimulatory genes to tumors. Vesicular stomatitis virus (VSV) selectively replicates in tumors lacking adequate type I interferon response. The efficacy of oncolytic virotherapy using VSV against B16 melanomas in C57BL/6 mice is dependent on CD8+ T and natural killer cells. Because immunotherapies that prime specific CD8+ T cells against melanocyte/melanoma antigens can generate significant therapeutic responses, we hypothesized that engineering VSV to express the potent T cell costimulatory molecule CD40 ligand (VSV-CD40L) would enhance virotherapy with concomitant priming of melanoma-specific T cells. However, we observed no difference in antitumor efficacy between the parental VSV-GFP and VSV-CD40L. In contrast, intratumoral injection of a replication-defective adenovirus expressing CD40L (Ad-CD40L) consistently produced significantly greater therapy than either replication-competent VSV-GFP or VSV-CD40L. The Ad-CD40L-mediated tumor regressions were associated with specific T cell responses against tumor-associated antigens (TAAs), which took several days to develop, whereas VSV-CD40L rapidly induced high levels of T cell activation without specificity for TAAs. These data suggest that the high levels of VSV-associated immunogenicity distracted immune responses away from priming of tumor-specific T cells, even in the presence of potent costimulatory signals. In contrast, a replication-defective Ad-CD40L allowed significant priming of T cells directed against TAAs. These observations suggest that an efficiently primed antitumor T cell response can produce similar, if not better, therapy against an established melanoma compared with intratumoral injection of a replication-competent oncolytic virus.
PMCID: PMC2865217  PMID: 19922169
18.  Oncolytic Vesicular Stomatitis Virus Induces Apoptosis in U87 Glioblastoma Cells by a Type II Death Receptor Mechanism and Induces Cell Death and Tumor Clearance In Vivo▿ 
Journal of Virology  2011;85(12):5708-5717.
Vesicular stomatitis virus (VSV) is a potential oncolytic virus for treating glioblastoma multiforme (GBM), an aggressive brain tumor. Matrix (M) protein mutants of VSV have shown greater selectivity for killing GBM cells versus normal brain cells than VSV with wild-type M protein. The goal of this research was to determine the contribution of death receptor and mitochondrial pathways to apoptosis induced by an M protein mutant (M51R) VSV in U87 human GBM tumor cells. Compared to controls, U87 cells expressing a dominant negative form of Fas (dnFas) or overexpressing Bcl-XL had reduced caspase-3 activation following infection with M51R VSV, indicating that both the death receptor pathway and mitochondrial pathways are important for M51R VSV-induced apoptosis. Death receptor signaling has been classified as type I or type II, depending on whether signaling is independent (type I) or dependent on the mitochondrial pathway (type II). Bcl-XL overexpression inhibited caspase activation in response to a Fas-inducing antibody, similar to the inhibition in response to M51R VSV infection, indicating that U87 cells behave as type II cells. Inhibition of apoptosis in vitro delayed, but did not prevent, virus-induced cell death. Murine xenografts of U87 cells that overexpress Bcl-XL regressed with a time course similar to that of control cells following treatment with M51R VSV, and tumors were not detectable at 21 days postinoculation. Immunohistochemical analysis demonstrated similar levels of viral antigen expression but reduced activation of caspase-3 following virus treatment of Bcl-XL-overexpressing tumors compared to controls. Further, the pathological changes in tumors following treatment with virus were quite different in the presence versus the absence of Bcl-XL overexpression. These results demonstrate that M51R VSV efficiently induces oncolysis in GBM tumor cells despite deregulation of apoptotic pathways, underscoring its potential use as a treatment for GBM.
PMCID: PMC3126314  PMID: 21450822
19.  Vesiculovirus Neutralization by Natural IgM and Complement 
Journal of Virology  2014;88(11):6148-6157.
Because of its very low human seroprevalence, vesicular stomatitis virus (VSV) has promise as a systemic oncolytic agent for human cancer therapy. However, as demonstrated in this report, the VSV infectious titer drops by 4 log units during the first hour of exposure to nonimmune human serum. This neutralization occurs relatively slowly and is mediated by the concerted actions of natural IgM and complement. Maraba virus, whose G protein is about 80% homologous to that of VSV, is relatively resistant to the neutralizing activity of nonimmune human serum. We therefore constructed and rescued a recombinant VSV whose G gene was replaced by the corresponding gene from Maraba virus. Comparison of the parental VSV and VSV with Maraba G substituted revealed nearly identical host range properties and replication kinetics on a panel of tumor cell lines. Moreover, in contrast to the parental VSV, the VSV with Maraba G substituted was resistant to nonimmune human serum. Overall, our data suggest that VSV with Maraba G substituted should be further investigated as a candidate for human systemic oncolytic virotherapy applications.
IMPORTANCE Oncolytic virotherapy is a promising approach for the treatment of disseminated cancers, but antibody neutralization of circulating oncolytic virus particles remains a formidable barrier. In this work, we developed a pseudotyped vesicular stomatitis virus (VSV) with a glycoprotein of Maraba virus, a closely related but serologically distinct member of the family Rhabdoviridae, which demonstrated greatly diminished susceptibility to both nonimmune and VSV-immune serum neutralization. VSV with Maraba G substituted or lentiviral vectors should therefore be further investigated as candidates for human systemic oncolytic virotherapy and gene therapy applications.
PMCID: PMC4093862  PMID: 24648451
20.  Reovirus FAST Protein Enhances Vesicular Stomatitis Virus Oncolytic Virotherapy in Primary and Metastatic Tumor Models 
The reovirus fusion-associated small transmembrane (FAST) proteins are the smallest known viral fusogens (∼100–150 amino acids) and efficiently induce cell-cell fusion and syncytium formation in multiple cell types. Syncytium formation enhances cell-cell virus transmission and may also induce immunogenic cell death, a form of apoptosis that stimulates immune recognition of tumor cells. These properties suggest that FAST proteins might serve to enhance oncolytic virotherapy. The oncolytic activity of recombinant VSVΔM51 (an interferon-sensitive vesicular stomatitis virus [VSV] mutant) encoding the p14 FAST protein (VSV-p14) was compared with a similar construct encoding GFP (VSV-GFP) in cell culture and syngeneic BALB/c tumor models. Compared with VSV-GFP, VSV-p14 exhibited increased oncolytic activity against MCF-7 and 4T1 breast cancer spheroids in culture and reduced primary 4T1 breast tumor growth in vivo. VSV-p14 prolonged survival in both primary and metastatic 4T1 breast cancer models, and in a CT26 metastatic colon cancer model. As with VSV-GFP, VSV-p14 preferentially replicated in vivo in tumors and was cleared rapidly from other sites. Furthermore, VSV-p14 increased the numbers of activated splenic CD4, CD8, natural killer (NK), and natural killer T (NKT) cells, and increased the number of activated CD4 and CD8 cells in tumors. FAST proteins may therefore provide a multi-pronged approach to improving oncolytic virotherapy via syncytium formation and enhanced immune stimulation.
Graphical Abstract
PMCID: PMC5562180  PMID: 28856238
oncolytic virotherapy; vesicular stomatitis virus; FAST protein; syncytium formation; 4T1 mammary adenocarcinoma; CT26 colon carcinoma
21.  Activating Systemic T-Cell Immunity Against Self Tumor Antigens to Support Oncolytic Virotherapy with Vesicular Stomatitis Virus 
Human Gene Therapy  2011;22(11):1343-1353.
We have shown that the antitumor activity of vesicular stomatitis virus (VSV) against B16ova tumors in C57BL/6 mice is predominantly due to innate antiviral immune effectors. We have also shown that the innate immune-activating properties of VSV can be harnessed to prime adaptive T-cell responses against a tumor-associated antigen (TAA) if the virus is engineered to express the cDNA of the antigen. Here, we show that the combination of VSV expressing OVA as a model tumor antigen, along with adoptive T-cell therapy targeted against the same antigen, is superior to either treatment alone and induces systemic antitumor activity. In addition, we extend our findings with the OVA model to the therapeutic use of VSV expressing hgp100, a self TAA against which tolerance is well established in C57BL/6 mice. In contrast to VSV-ova, T-cell responses raised by VSV-hgp100 were insufficient to improve therapy against B16ova tumors compared with VSV-GFP alone. However, in combination with adoptive transfer of gp100-specific pmel T cells, intratumoral VSV-hgp100 cured significantly more mice than either virus or T cells alone. Even in an aggressive model of metastatic disease, antitumor therapy was generated at levels similar to those observed in the VSV-ova/OT-I model in which a potently immunogenic, nonself TAA was targeted. Therefore, individual poorly effective virotherapies and T-cell therapies that target self TAA of low immunogenicity, which reflects the situation in patients, can be combined to generate very effective antitumor therapy.
Wongthida and colleagues demonstrate that a combination of vesicular stomatitis virus expressing a tumor-associated antigen (TAA), along with adoptive T-cell therapy targeted against the same antigen, is superior to either treatment alone and induces systemic antitumor activity in a mouse model. In addition, they show that the therapeutic use of combination oncolytic virotherapy with adoptive T-cell therapy to target a self-TAA, against which tolerance is well established in C57BL/6 mice, is effective in the context of an aggressive model of metastatic disease.
PMCID: PMC3225040  PMID: 21366404
22.  Ambra1 Is an Essential Regulator of Autophagy and Apoptosis in SW620 Cells: Pro-Survival Role of Ambra1 
PLoS ONE  2014;9(2):e90151.
Recent research has revealed a role for Ambra1, an autophagy-related gene-related (ATG) protein, in the autophagic pro-survival response, and Ambra1 has been shown to regulate Beclin1 and Beclin1-dependent autophagy in embryonic stem cells. However, whether Ambra1 plays an important role in the autophagy pathway in colorectal cancer cells is unknown. In this study, we hypothesized that Ambra1 is an important regulator of autophagy and apoptosis in CRC cell lines. To test this hypothesis, we confirmed autophagic activity in serum-starved SW620 CRC cells by assessing endogenous microtubule-associated protein 1 light chain 3 (LC3) localization, the presence of autophagosomes (transmission electron microscopy) and LC3 protein levels (Western blotting). Ambra1 expression was detected by Western blot in SW620 cells treated with staurosporine or etoposide. Calpain and caspase inhibitors were employed to verify whether calpains and caspases were responsible for Ambra1 cleavage. To examine the role of Ambra1 in apoptosis, Ambra1 knockdown cells were treated with staurosporine and etoposide. Cell apoptosis and viability were measured by annexin-V and PI staining and MTT assays. We determined that serum deprivation-induced autophagy was associated with Ambra1 upregulation in colorectal cancer cell lines. Ambra1 expression decreased during staurosporine- or etoposide-induced apoptosis. Calpains and caspases may be responsible for Ambra1 degradation. When Ambra1 expression was reduced by siRNA, SW620 cells were more sensitive to staurosporine- or etoposide-induced apoptosis. In addition, starvation-induced autophagy decreased. Finally, Co-immunoprecipitation of Ambra1 and Beclin1 demonstrated that Ambra1 and Beclin1 interact in serum-starved or rapamycin-treated SW620 cells, suggesting that Ambra1 regulates autophagy in CRC cells by interacting with Beclin1. In conclusion, Ambra1 is a crucial regulator of autophagy and apoptosis in CRC cells that maintains the balance between autophagy and apoptosis.
PMCID: PMC3936000  PMID: 24587252
23.  Some Attenuated Variants of Vesicular Stomatitis Virus Show Enhanced Oncolytic Activity against Human Glioblastoma Cells relative to Normal Brain Cells▿  
Journal of Virology  2009;84(3):1563-1573.
Vesicular stomatitis virus (VSV) has been shown in laboratory studies to be effective against a variety of tumors, including malignant brain tumors. However, attenuation of VSV may be necessary to balance the potential toxicity toward normal cells, particularly when targeting brain tumors. Here we compared 10 recombinant VSV variants resulting from different attenuation strategies. Attenuations included gene shifting (VSV-p1-GFP/RFP), M protein mutation (VSV-M51), G protein cytoplasmic tail truncations (VSV-CT1/CT9), G protein deletions (VSV-dG-GFP/RFP), and combinations thereof (VSV-CT9-M51). Using in vitro viability and replication assays, the VSV variants were grouped into three categories, based on their antitumor activity and non-tumor-cell attenuation. In the first group, wild-type-based VSV-G/GFP, tumor-adapted VSV-rp30, and VSV-CT9 showed a strong antitumor profile but also retained some toxicity toward noncancer control cells. The second group, VSV-CT1, VSV-dG-GFP, and VSV-dG-RFP, had significantly diminished toxicity toward normal cells but showed little oncolytic action. The third group displayed a desired combination of diminished general toxicity and effective antitumor action; this group included VSV-M51, VSV-CT9-M51, VSV-p1-GFP, and VSV-p1-RFP. A member of the last group, VSV-p1-GFP, was then compared in vivo against wild-type-based VSV-G/GFP. Intranasal inoculation of young, postnatal day 16 mice with VSV-p1-GFP showed no adverse neurological effects, whereas VSV-G/GFP was associated with high lethality (80%). Using an intracranial tumor xenograft model, we further demonstrated that attenuated VSV-p1-GFP targets and kills human U87 glioblastoma cells after systemic application. We concluded that some, but not all, attenuated VSV mutants display a favorable oncolytic profile and merit further investigation.
PMCID: PMC2812324  PMID: 19906910
24.  Early Steps of the Virus Replication Cycle Are Inhibited in Prostate Cancer Cells Resistant to Oncolytic Vesicular Stomatitis Virus ▿  
Journal of Virology  2008;82(24):12104-12115.
Vesicular stomatitis virus (VSV) is currently being studied as a candidate oncolytic virus for tumor therapies due to its potent tumoricidal activity. Previous studies have demonstrated that VSV selectively infects tumor cells due to defects in their antiviral pathways. These defects make them more susceptible to VSV-induced killing than normal cells. However, some cancer cells display differential sensitivity to VSV. Specifically, LNCaP prostate cancer cells are sensitive to infection with VSV, while PC3 prostate cancer cells are relatively resistant to VSV. This suggests that tumor cells vary in the extent to which they develop defects in antiviral pathways and, thus, permit virus replication. The goal of these studies was to identify the step(s) of the viral replication cycle that is inhibited in PC3 cells. Results showed that although attachment of VSV was not significantly different among cell types, penetration was delayed by 10 to 30 min in PC3 cells relative to LNCaP cells. Primary transcription was delayed by 6 to 8 h in PC3 cells relative to LNCaP cells. Similarly, both secondary transcription and viral protein synthesis rates were delayed by about 6 to 8 h. The progressively increasing delay suggests that more than one step is affected in PC3 cells. Analysis of cellular gene expression showed that in contrast to LNCaP cells, PC3 cells constitutively expressed numerous antiviral gene products, which may enhance their resistance to VSV. These data indicate that the use of VSV for oncolytic virus therapy for prostate tumors may require prescreening of tumors for their level of susceptibility.
PMCID: PMC2593309  PMID: 18829743
25.  Vesicular Stomatitis Virus Expressing Tumor Suppressor p53 Is a Highly Attenuated, Potent Oncolytic Agent ▿  
Journal of Virology  2011;85(20):10440-10450.
Vesicular stomatitis virus (VSV), a negative-strand RNA rhabdovirus, preferentially replicates in and eradicates transformed versus nontransformed cells and is thus being considered for use as a potential anticancer treatment. The genetic malleability of VSV also affords an opportunity to develop more potent agents that exhibit increased therapeutic activity. The tumor suppressor p53 has been shown to exert potent antitumor properties, which may in part involve stimulating host innate immune responses to malignancies. To evaluate whether VSV expressing p53 exhibited enhanced oncolytic action, the murine p53 (mp53) gene was incorporated into recombinant VSVs with or without a functional viral M gene-encoded protein that could either block (VSV-mp53) or enable [VSV-M(mut)-mp53] host mRNA export following infection of susceptible cells. Our results indicated that VSV-mp53 and VSV-M(mut)-mp53 expressed high levels of functional p53 and retained the ability to lyse transformed versus normal cells. In addition, we observed that VSV-ΔM-mp53 was extremely attenuated in vivo due to p53 activating innate immune genes, such as type I interferon (IFN). Significantly, immunocompetent animals with metastatic mammary adenocarcinoma exhibited increased survival following treatment with a single inoculation of VSV-ΔM-mp53, the mechanisms of which involved enhanced CD49b+ NK and tumor-specific CD8+ T cell responses. Our data indicate that VSV incorporating p53 could provide a safe, effective strategy for the design of VSV oncolytic therapeutics and VSV-based vaccines.
PMCID: PMC3187518  PMID: 21813611

Results 1-25 (2475286)