PMCC PMCC

Search tips
Search criteria

Advanced

Important Notice

PubMed Central Canada to be taken offline in February 2018

On February 23, 2018, PubMed Central Canada (PMC Canada) will be taken offline permanently. No author manuscripts will be deleted, and the approximately 2,900 manuscripts authored by Canadian Institutes of Health Research (CIHR)-funded researchers currently in the archive will be copied to the National Research Council’s (NRC) Digital Repository over the coming months. These manuscripts along with all other content will also remain publicly searchable on PubMed Central (US) and Europe PubMed Central, meaning such manuscripts will continue to be compliant with the Tri-Agency Open Access Policy on Publications.

Read more

Results 1-25 (1867553)

Clipboard (0)
None

Related Articles

1.  Characterization of citrus pectin samples extracted under different conditions: influence of acid type and pH of extraction 
Annals of Botany  2014;114(6):1319-1326.
Background and Aims
Pectin is a complex macromolecule, the fine structure of which is influenced by many factors. It is used as a gelling, thickening and emulsifying agent in a wide range of applications, from food to pharmaceutical products. Current industrial pectin extraction processes are based on fruit peel, a waste product from the juicing industry, in which thousands of tons of citrus are processed worldwide every year. This study examines how pectin components vary in relation to the plant source (orange, lemon, lime, grapefruit) and considers the influence of extraction conditions on the chemical and macromolecular characteristics of pectin samples.
Methods
Citrus peel (orange, lemon, lime and grapefruit) from a commercial supplier was used as raw material. Pectin samples were obtained on a bulk plant scale (kilograms; harsh nitric acid, mild nitric acid and harsh oxalic acid extraction) and on a laboratory scale (grams; mild oxalic acid extraction). Pectin composition (acidic and neutral sugars) and physicochemical properties (molar mass and intrinsic viscosity) were determined.
Key Results
Oxalic acid extraction allowed the recovery of pectin samples of high molecular weight. Mild oxalic acid-extracted pectins were rich in long homogalacturonan stretches and contained rhamnogalacturonan I stretches with conserved side chains. Nitric acid-extracted pectins exhibited lower molecular weights and contained rhamnogalacturonan I stretches encompassing few and/or short side chains. Grapefruit pectin was found to have short side chains compared with orange, lime and lemon. Orange and grapefruit pectin samples were both particularly rich in rhamnogalacturonan I backbones.
Conclusions
Structural, and hence macromolecular, variations within the different citrus pectin samples were mainly related to their rhamnogalacturonan I contents and integrity, and, to a lesser extent, to the length of their homogalacturonan domains.
doi:10.1093/aob/mcu150
PMCID: PMC4195561  PMID: 25081519
Pectin; plant cell wall polysaccharide; Citrus peel; Rutaceae; orange; lime; lemon; grapefruit; industrial extraction; homogalacturonan; HG; rhamnogalacturonan; RGI; RGII
2.  Extended Release Felodipine Self-Nanoemulsifying System 
AAPS PharmSciTech  2009;10(2):515-523.
The purpose of the present study was to formulate a self-nanoemulsifying system (SNES) containing model lipophilic drug, felodipine (FLD), to improve its solubility. The SNES was formulated using varying amounts of Miglyol® 840 (as an oil), Cremophor® EL (as a surfactant), and Capmul® MCM (as a co-surfactant). The SNES were characterized for turbidity, droplet size and in vitro FLD release. The SNES containing oil, surfactant, and co-surfactant in the weight ratio of 3.5:1.0:1.0, respectively, showed good emulsification, median droplet size of 421 nm, and rapid FLD release (>90% release in 15 min). Gelling was induced in the SNES by addition of Aerosil® 200 (A 200). Rheological studies clearly demonstrated the formation of gelled microstructure with enhanced elasticity for SNES with A 200. Since FLD warrants extended delivery for management of hypertension, the gelled SNES was further encased within the hydrophobic Gelucire® 43/01 (GEL) coat to extend the release of FLD. Caprol® PGE-860 (CAP) was added to this coat as a release enhancer. No interaction was seen between GEL and CAP in differential scanning calorimetry. The effect of two formulation variables in the encased SNES, viz., the gelling agent (A200) and the release enhancer (CAP), on the in vitro FLD release was evaluated using 32 factorial design experiments. CAP by virtue of channel formation in GEL coat favored the FLD release, while the A200 retarded the FLD release by inducing gelling. At later time points, an interaction between these two variables was found to govern extended release of FLD. The developed gelled SNES encased within the GEL coat can be used as an extended release composition for lipophilic drugs.
doi:10.1208/s12249-009-9235-0
PMCID: PMC2690798  PMID: 19415505
extended release; felodipine; gelucire 43/01; self-nanoemulsifying system
3.  Fruit softening and pectin disassembly: an overview of nanostructural pectin modifications assessed by atomic force microscopy 
Annals of Botany  2014;114(6):1375-1383.
Background
One of the main factors that reduce fruit quality and lead to economically important losses is oversoftening. Textural changes during fruit ripening are mainly due to the dissolution of the middle lamella, the reduction of cell-to-cell adhesion and the weakening of parenchyma cell walls as a result of the action of cell wall modifying enzymes. Pectins, major components of fruit cell walls, are extensively modified during ripening. These changes include solubilization, depolymerization and the loss of neutral side chains. Recent evidence in strawberry and apple, fruits with a soft or crisp texture at ripening, suggests that pectin disassembly is a key factor in textural changes. In both these fruits, softening was reduced as result of antisense downregulation of polygalacturonase genes. Changes in pectic polymer size, composition and structure have traditionally been studied by conventional techniques, most of them relying on bulk analysis of a population of polysaccharides, and studies focusing on modifications at the nanostructural level are scarce. Atomic force microscopy (AFM) allows the study of individual polymers at high magnification and with minimal sample preparation; however, AFM has rarely been employed to analyse pectin disassembly during fruit ripening.
Scope
In this review, the main features of the pectin disassembly process during fruit ripening are first discussed, and then the nanostructural characterization of fruit pectins by AFM and its relationship with texture and postharvest fruit shelf life is reviewed. In general, fruit pectins are visualized under AFM as linear chains, a few of which show long branches, and aggregates. Number- and weight-average values obtained from these images are in good agreement with chromatographic analyses. Most AFM studies indicate reductions in the length of individual pectin chains and the frequency of aggregates as the fruits ripen. Pectins extracted with sodium carbonate, supposedly located within the primary cell wall, are the most affected.
doi:10.1093/aob/mcu149
PMCID: PMC4195560  PMID: 25063934
Atomic force microscopy; AFM; plant cell wall; fruit softening; fruit ripening; homogalacturonan; pectins; rhamnogalacturonan; nanostructure; postharvest physiology
4.  Assessing the effects of different pectins addition on color quality and antioxidant properties of blackberry jam 
Background
In the last years pectin and other hydrocolloids were tested for improving the color stability and the retention of bioactive compounds in gelled fruit-based products. In line with these concerns, our study has been directed to quantify the changes in antioxidant status and color indices of blackberry jam obtained with different types of pectin (degree of esterification: DE, degree of amidation: DA) and doses in response to processing and storage for 1, 3 and 6 months at 20°C.
Results
Blackberry jam was obtained by a traditional procedure used in households or small-scale systems with different commercial pectins (HMP: high-methoxyl pectin, LMP: low-methoxyl pectin and LMAP: low-methoxyl amidated pectin) added to three concentrations (0.3, 0.7 and 1.0%) and investigated in terms of total monomeric anthocyanins (TMA), antioxidant capacity expressed as ferric reducing antioxidant power (FRAP), total phenolics (TP), color density (CD) and percent of polymeric color, PC (%). Thermal processing resulted in significant depreciation of analyzed parameters reported to the corresponding values of fresh fruit as follows: TMA (69-82%), TP (33-55%) and FRAP (18-52%). Biologically active compounds and color were best retained one day post-processing in jams with LMAP followed by samples with LMP and HMP. Storage for 6 months brings along additional dramatic losses reported to the values recorded one day post-processing as follows: TMA (31-56%), TP (29-51%) and FRAP (20-41%). Also, both processing and storage resulted in significant increases in PC (%). The pectin type and dosage are very influential factors for limiting the alterations occurring in response to processing and storage. The best color retention and the highest TMA, TP and FRAP were achieved by LMAP, followed by LMP and HMP. Additionally, a high level of bioactive compounds in jam could be related to a high dose of pectin. LMAP to a level of 1% is the most indicated to provide the highest antioxidant properties in jam.
Conclusions
The retention of bioactive compounds and jam color stability were strongly dependent on the pectin type and dosage. By a proper selection of pectin type and dose could be limited the losses recorded in response to processing and storage.
doi:10.1186/1752-153X-7-121
PMCID: PMC3718622  PMID: 23856382
Blackberry jams; Pectin; Monomeric anthocyanins; Polymeric color; Total phenolics; FRAP
5.  Extrusion/spheronization of pectin-based formulations. I. Screening of important factors 
AAPS PharmSciTech  2015;2(4):54-62.
This study investigated the possibility of producing pectin-based pellets by extrusion/spheronization. The study also identified factors influencing the process and the characteristics of the resulting product. Three types of pectin with different degrees of amid and methoxyl substitution were studied in combination with different granulation liquids (water, calcium chloride, citric acid, and ethanol) and/or microcrystalline cellulose. Pellets were prepared in a power-consumption-controlled, twinscrew extruder; then they were spheronized and dried. The products were characterized by image analysis, sieving analysis, and disintegration and dissolution tests. The results were evaluated by multivariate analysis. Different additives, either in the granulation liquid or in the powder mixture, influenced the ability of the extruded mass to form pellets (the processability) with this technique. However, the various pectin types responded to modifications to a different extent. Short, nearly spherical pellets are obtained with granulation liquids, such as ethanol, that reduce the swelling ability of pectin. Pellets produced with ethanol are, however, mechanically weak and tend to ditintegrate. Pectin molecules with a high degree of free carboxylic acid groups seem to be more sensitive to changes in the granulation liquid. Addition of microcrystalline cellulose as an extrusion aid generally resulted in improvements in shape and size. It was demonstrated that the processability of pectin as well as the characteristics of the products can be influenced in different ways during the process (eg, adding substances to the granulation liquid or to the powder mixture).
doi:10.1007/BF02830566
PMCID: PMC2784841  PMID: 14727863
Pectin; Pellets; Extrusion; Spheronization; Multivariate analysis
6.  Physicochemical and sensory quality of yogurt incorporated with pectin from peel of Citrus sinensis  
Food Science & Nutrition  2016;5(2):358-364.
Abstract
Industrial by‐product like orange peel plays an important role in pectin manufacture. The objective of this article was to extract pectin from peel of Citrus sinensis and to study the effect of its incorporation on the quality of yogurt during the period of fermentation and postacidification. Physicochemical, organoleptic, and rheological properties of yogurt prepared with pectin were studied in order to determine the best preparation depending on the rate of pectin. The extraction pectin yield was estimated to more than 24%. The viscosity and acidity were increased with increasing of the pectin rate. The best viscosity value was obtained with 0.6% of pectin. Furthermore, the effect of the rate of pectin incorporation in the fermented milks was clearly observed on the number of Streptococcus thermophilus and Lactobacillus bulgaricus, the cohesiveness, the adhesiveness, the taste, and the whey exudation.
doi:10.1002/fsn3.400
PMCID: PMC5332253
Pectin; preservation; quality; texture; yogurt
7.  Fluorescence imaging in vivo visualizes delayed gastric emptying of liquid enteral nutrition containing pectin 
BMC Gastroenterology  2014;14:168.
Background
Semi-solidification by gelation or increased viscosity could slow the influx of liquid enteral nutrition (EN) into the small intestine. A liquid EN formula containing pectin that gels under acidic conditions such as those found in the stomach has been developed. A new near-infrared fluorescent imaging reagent was used to non-invasively acquire real time images of gastric emptying in a murine model in vivo. We postulated that the EN formula delays gastric emptying and tested this hypothesis using imaging in vivo.
Methods
Male BALB/c mice were given an oral bolus injection of a liquid EN containing the fluorescence reagent GastroSense750 with or without pectin. The EN in the stomach was visualized in vivo at various intervals using a non-invasive live imaging system and fluorescent signals were monitored from the stomach, which was removed at 60 min after EN ingestion.
Results
The fluorescence intensity of signals in stomachs in vivo and in resected stomachs was lower and attenuated over time in mice given EN without, than with pectin.
Conclusions
Adding a gelling agent such as pectin delayed the transit of liquid EN from the stomach. Fluorescence imaging can visualize the delayed gastric emptying of EN containing pectin.
doi:10.1186/1471-230X-14-168
PMCID: PMC4182873  PMID: 25263497
Mouse; IVIS; Semi-solid; Gelation; Gastrosense
8.  Combination of Pectin and Eudargit RS and Eudragit RL in the Matrix of Pellets Prepared by Extrusion-Spheronization for Possible Colonic Delivery of 5-Amino Salicylic Acid 
Background
Different methods have been studied for targeting drugs to the colon, such as pH-based, time dependent and bacterially degradable systems. However, due to variations in physiological conditions of patients, one system alone could not be completely reliable on colonic drug delivery.
Objectives
The aim of this study was preparation and evaluation of a novel colon-specific drug delivery system for 5-ASA (mesalazine) pellets using pectin as a microbially degradable polymeric carrier and Eudragit RS (ERS) and Eudragit RL (ERL) as time-dependent polymers.
Materials and Methods
Formulations were constructed based on a multilevel full factorial design. Pellets were prepared via extrusion - spheronization and evaluated for physicochemical properties, image analysis, SEM, FT-IR, DSC and in vitro drug release studies in the simulated gastric fluid with pH = 1.2 (SGF), simulated intestinal fluid with pH = 6.8 (SIF) and simulated colonic fluid with pH = 6.8 in presence of pectinolytic enzyme (SCF).
Results
It was shown that in the presence of pectin, formulations without ERL had a relative resistance to drug release in SGF. Pellets containing pectin and the least amount of ERS had the highest burst release effect in SCF. On the other hand, increasing in amount of ERS in the formulations caused a sustained drug release. Presence of pectin in formulations containing ERS and ERL caused sensitivity of formulations to pectinolytic enzyme which can suitable for a colon specific drug delivery system.
Conclusions
It was shown that combination of pectin and eudragits can relatively control drug release in the upper GI. On the other hand, pectin degraded in the presence of pectinase and formulations were susceptible to the colonic media.
PMCID: PMC3941906  PMID: 24624194
Pectin; Methylmethacrylate-methacrylic Acid Copolymer; Colonic Diseases; Drug Delivery System
9.  Development of in vitro models to demonstrate the ability of PecSys®, an in situ nasal gelling technology, to reduce nasal run-off and drip 
Many of the increasing number of intranasal products available for either local or systemic action can be considered sub-optimal, most notably where nasal drip or run-off give rise to discomfort/tolerability issues or reduced/variable efficacy. PecSys, an in situ gelling technology, contains low methoxy (LM) pectin which gels due to interaction with calcium ions present in nasal fluid. PecSys is designed to spray readily, only forming a gel on contact with the mucosal surface. The present study employed two in vitro models to confirm that gelling translates into a reduced potential for drip/run-off: (i) Using an inclined TLC plate treated with a simulated nasal electrolyte solution (SNES), mean drip length [±SD, n = 10] was consistently much shorter for PecSys (1.5 ± 0.4 cm) than non-gelling control (5.8 ± 1.6 cm); (ii) When PecSys was sprayed into a human nasal cavity cast model coated with a substrate containing a physiologically relevant concentration of calcium, PecSys solution was retained at the site of initial deposition with minimal redistribution, and no evidence of run-off/drip anteriorly or down the throat. In contrast, non-gelling control was significantly more mobile and consistently redistributed with run-off towards the throat.
Conclusion
In both models PecSys significantly reduced the potential for run-off/drip ensuring that more solution remained at the deposition site. In vivo, this enhancement of retention will provide optimum patient acceptability, modulate drug absorption and maximize the ability of drugs to be absorbed across the nasal mucosa and thus reduce variability in drug delivery.
doi:10.3109/03639045.2012.707210
PMCID: PMC3619451  PMID: 22803832
Nasal drug delivery; pectin; formulation; no-drip; gels; in situ gelling; inclined plate; anatomical nasal cast; in vitro models; mucosal drug delivery
10.  Ion-activated In Situ Gelling Ophthalmic Delivery Systems of Azithromycin 
Gelation of pectin caused by divalent cations especially calcium ions has been applied to develop an ophthalmic formulation of azithromycin in the present study. Rapid elimination of drug on instillation into cul de sac would be minimal with in situ gelling ophthalmic solution leading to increased precorneal contact time and prolonged drug delivery. In the formulation development studies pectin was used in different concentrations (1-5% w/v) and different proportions of the hydrocolloids hydroxypropyl methylcellulose and sodium carboxymethyl cellulose of different grades of viscosity were used. The primary criteria for formulation optimization were gelling capacity and rheological behaviour. In addition, formulations were evaluated for pH, and antimicrobial efficacy and drug release. The clarity, pH, gelation in simulated tear fluid and rheological properties of the optimized formulations were satisfactory. The formulations inhibited the growth of Staphylococcus aureus effectively in cup–plate method and were proved to be safe and non irritant on rabbit eyes. The results indicate that pectin based in situ gels can be successfully used to prolong the duration of action of azithromycin.
doi:10.4103/0250-474X.100234
PMCID: PMC3480745  PMID: 23112394
Azithromycin; in situ ocular gel; ion-induced gelation; pectin
11.  Objective and quantitative definitions of modified food textures based on sensory and rheological methodology 
Food & Nutrition Research  2010;54:10.3402/fnr.v54i0.5134.
Introduction
Patients who suffer from chewing and swallowing disorders, i.e. dysphagia, may have difficulties ingesting normal food and liquids. In these patients a texture modified diet may enable that the patient maintain adequate nutrition. However, there is no generally accepted definition of ‘texture’ that includes measurements describing different food textures.
Objective
Objectively define and quantify categories of texture-modified food by conducting rheological measurements and sensory analyses. A further objective was to facilitate the communication and recommendations of appropriate food textures for patients with dysphagia.
Design
About 15 food samples varying in texture qualities were characterized by descriptive sensory and rheological measurements.
Results
Soups were perceived as homogenous; thickened soups were perceived as being easier to swallow, more melting and creamy compared with soups without thickener. Viscosity differed between the two types of soups. Texture descriptors for pâtés were characterized by high chewing resistance, firmness, and having larger particles compared with timbales and jellied products. Jellied products were perceived as wobbly, creamy, and easier to swallow. Concerning the rheological measurements, all solid products were more elastic than viscous (G′>G″), belonging to different G′ intervals: jellied products (low G′) and timbales together with pâtés (higher G′).
Conclusion
By combining sensory and rheological measurements, a system of objective, quantitative, and well-defined food textures was developed that characterizes the different texture categories.
doi:10.3402/fnr.v54i0.5134
PMCID: PMC2894641  PMID: 20592965
dysphagia; modified food texture; rheology; sensory analysis
12.  Comparative evaluation of structured oil systems: Shellac oleogel, HPMC oleogel, and HIPE gel 
In lipid-based food products, fat crystals are used as building blocks for creating a crystalline network that can trap liquid oil into a 3D gel-like structure which in turn is responsible for the desirable mouth feel and texture properties of the food products. However, the recent ban on the use of trans-fat in the US, coupled with the increasing concerns about the negative health effects of saturated fat consumption, has resulted in an increased interest in the area of identifying alternative ways of structuring edible oils using non-fat-based building blocks. In this paper, we give a brief account of three alternative approaches where oil structuring was carried out using wax crystals (shellac), polymer strands (hydrophilic cellulose derivative), and emulsion droplets as structurants. These building blocks resulted in three different types of oleogels that showed distinct rheological properties and temperature functionalities. The three approaches are compared in terms of the preparation process (ease of processing), properties of the formed systems (microstructure, rheological gel strength, temperature response, effect of water incorporation, and thixotropic recovery), functionality, and associated limitations of the structured systems. The comparative evaluation is made such that the new researchers starting their work in the area of oil structuring can use this discussion as a general guideline.
Practical applications
Various aspects of oil binding for three different building blocks were studied in this work. The practical significance of this study includes (i) information on the preparation process and the concentrations of structuring agents required for efficient gelation and (ii) information on the behavior of oleogels to temperature, applied shear, and presence of water. This information can be very useful for selecting the type of structuring agents keeping the final applications in mind. For detailed information on the actual edible applications (bakery, chocolate, and spreads) which are based on the oleogel systems described in this manuscript, the readers are advised to refer our recent papers published elsewhere. (Food & Function 2014, 5, 645–652 and Food & Function 2014, 5, 2833–2841).
doi:10.1002/ejlt.201400553
PMCID: PMC4690198  PMID: 26726293
Edible applications; HPMC; Microstructure; Oil structuring; Rheology; Shellac
13.  Kinetics of thermal softening of cassava tubers and rheological modeling of the starch 
Cassava or tapioca (Manihot esculenta Crantz) tubers having high amount of carbohydrate are utilized after boiling or processing into starch and flour. Textural properties of raw and cooked tubers depend on variety, maturity, growing environment, physico-chemical and starch properties. Starch is used in food preparations as gelling and thickening agent, stabilizer and texture modifier. This study aims at analyzing and modeling the textural, dynamic rheological and gelatinization properties of selected cassava varieties. The thermal softening behavior was analyzed by linear regression and fractional conversion techniques, rheological properties of the gelated starch by Maxwell and power law models. The varieties were classified based on their physico-chemical, texture profile, rheological and gelatinization properties by multivariate analysis. The textural, rheological and gelatinization properties were significantly affected by the varieties (p < 0.05). Thermal softening of tubers was modeled by dual mechanism first order kinetic model with rate constant values ranging from 0.081 to 0.105 min−1. Linear regression models with extremely good fit were obtained to explain the relationship between the degree of cooking and relative firmness. The dynamic spectra of the gelated starch showed the characteristics of concentrated biopolymer dispersion and described using Maxwell and power law model. The results showed that textural, rheological and gelatinization properties varied considerably among the varieties and besides the physico-chemical properties, interaction between them and structural make up of the tuber parenchyma had a great influence on cooking quality and rheological properties.
doi:10.1007/s13197-010-0087-0
PMCID: PMC3551111  PMID: 23572679
Cassava; Texture; Rheology; Dual mechanism first order kinetic model; Maxwell model
14.  A Composite Polyelectrolytic Matrix for Controlled Oral Drug Delivery 
AAPS PharmSciTech  2011;12(1):227-238.
The purpose of this study was to formulate drug-loaded polyelectrolyte matrices constituting blends of pectin, chitosan (CHT) and hydrolyzed polyacrylamide (HPAAm) for controlling the premature solvation of the polymers and modulating drug release. The model drug employed was the highly water-soluble antihistamine, diphenhydramine HCl (DPH). Polyelectrolyte complex formation was validated by infrared spectroscopy. Matrices were characterized by textural profiling, porositometry and SEM. Drug release studies were performed under simulated gastrointestinal conditions using USP apparatus 3. FTIR spectra revealed distinctive peaks indicating the presence of –COO− symmetrical stretching (1,425–1,390 cm−1) and -NH3+ deformation (1,535 cm−1) with evidence of electrostatic interaction between the cationic CHT and anionic HPAAm corroborated by molecular mechanics simulations of the complexes. Pectin–HPAAm matrices showed electrostatic attraction due to residual –NH2 and –COO− groups of HPAAm and pectin, respectively. Textural profiling demonstrated that CHT-HPAAm matrices were most resilient at 6.1% and pectin–CHT–HPAAm matrices were the least (3.9%). Matrix hardness and deformation energy followed similar behavior. Pectin–CHT–HPAAm and CHT–HPAAm matrices produced type IV isotherms with H3 hysteresis and mesopores (22.46 nm) while pectin–HPAAm matrices were atypical with hysteresis at a low P/P0 and pore sizes of 5.15 nm and a large surface area. At t2 h, no DPH was released from CHT–HPAAm matrices, whereas 28.2% and 82.2% was released from pectin–HPAAm and pectin–CHT–HPAAm matrices, respectively. At t4 h, complete DPH release was achieved from pectin–CHT–HPAAm matrices in contrast to only 35% from CHT–HPAAm matrices. This revealed the release-modulating capability of each matrix signifying their applicability in controlled oral drug delivery applications.
doi:10.1208/s12249-010-9576-8
PMCID: PMC3066358  PMID: 21225384
composite polyelectrolytes; controlled oral drug delivery; hydrolyzed polyacylamide; matrix characterization; polysaccharides
15.  Optimization of chlorphenesin emulgel formulation 
The AAPS Journal  2004;6(3):81-87.
This study was conducted to develop an emulgel formulation of chlorphenesin (CHL) using 2 types of gelling agents: hydroxypropylmethyl cellulose (HPMC) and Carbopol 934. The influence of the type of the gelling agent and the concentration of both the oil phase and emulsifying agent on the drug release from the prepared emulgels was investigated using a 23 factorial design. The prepared emulgels were evaluated for their physical appearance, rheological behavior, drug release, antifungal activity, and stability. Commercially available CHL topical powder was used for comparison. All the prepared emulgels showed acceptable physical properties concerning color, homogeneity, consistency, spreadability, and pH value. They also exhibited higher drug release and antifungal activity than the CHL powder. It was found that the emulsifying agent concentration had the most pronounced effect on the drug release from the emulgels followed by the oil phase concentration and finally the type of the gelling agent. The drug release from all the emulgels was found to follow diffusion-controlled mechanism. Rheological studies revealed that the CHL emulgels exhibited a shear-thinning behavior with thixotropy. Stability studies showed that the physical appearance, rheological properties, drug release, and antifungal activity in all the prepared emulgels remained unchanged upon storage for 3 months. As a general conclusion, it was suggested that the CHL emulgel formulation prepared with HPMC with the oil phase concentration in its low level and emulsifying agent concentration in its high level was the formula of choice since it showed the highest drug release and antifungal activity.
doi:10.1208/aapsj060326
PMCID: PMC2751251  PMID: 15760111
chlorphenesin; emulgel; factorial design
16.  Phylogenetic analysis of pectin-related gene families in Physcomitrella patens and nine other plant species yields evolutionary insights into cell walls 
BMC Plant Biology  2014;14:79.
Background
Pectins are acidic sugar-containing polysaccharides that are universally conserved components of the primary cell walls of plants and modulate both tip and diffuse cell growth. However, many of their specific functions and the evolution of the genes responsible for producing and modifying them are incompletely understood. The moss Physcomitrella patens is emerging as a powerful model system for the study of plant cell walls. To identify deeply conserved pectin-related genes in Physcomitrella, we generated phylogenetic trees for 16 pectin-related gene families using sequences from ten plant genomes and analyzed the evolutionary relationships within these families.
Results
Contrary to our initial hypothesis that a single ancestral gene was present for each pectin-related gene family in the common ancestor of land plants, five of the 16 gene families, including homogalacturonan galacturonosyltransferases, polygalacturonases, pectin methylesterases, homogalacturonan methyltransferases, and pectate lyase-like proteins, show evidence of multiple members in the early land plant that gave rise to the mosses and vascular plants. Seven of the gene families, the UDP-rhamnose synthases, UDP-glucuronic acid epimerases, homogalacturonan galacturonosyltransferase-like proteins, β-1,4-galactan β-1,4-galactosyltransferases, rhamnogalacturonan II xylosyltransferases, and pectin acetylesterases appear to have had a single member in the common ancestor of land plants. We detected no Physcomitrella members in the xylogalacturonan xylosyltransferase, rhamnogalacturonan I arabinosyltransferase, pectin methylesterase inhibitor, or polygalacturonase inhibitor protein families.
Conclusions
Several gene families related to the production and modification of pectins in plants appear to have multiple members that are conserved as far back as the common ancestor of mosses and vascular plants. The presence of multiple members of these families even before the divergence of other important cell wall-related genes, such as cellulose synthases, suggests a more complex role than previously suspected for pectins in the evolution of land plants. The presence of relatively small pectin-related gene families in Physcomitrella as compared to Arabidopsis makes it an attractive target for analysis of the functions of pectins in cell walls. In contrast, the absence of genes in Physcomitrella for some families suggests that certain pectin modifications, such as homogalacturonan xylosylation, arose later during land plant evolution.
doi:10.1186/1471-2229-14-79
PMCID: PMC4108027  PMID: 24666997
Plant cell wall; Pectin; Physcomitrella patens; Arabidopsis thaliana; Phylogeny; Evolution
17.  Improved corneal bioavailability of ofloxacin: biodegradable microsphere-loaded ion-activated in situ gel delivery system 
The aim of the study was to improve corneal penetration and bioavailability of ofloxacin (OFX) eye preparations. OFX was incorporated in poly (lactide-co-glycolide) as biodegradable microspheres using oil in oil emulsion solvent evaporation technique. The prepared OFX microspheres were then incorporated in Gelrite® in situ gel preparation. In addition, OFX Gelrite-based in situ gel formulations were prepared. OFX formulations were characterized for gelling capacity, viscosity, and rheological properties. Release studies for OFX microspheres, OFX in situ gel, and OFX-loaded microspheres in situ gel formulations were carried out to investigate release characteristics of the drug. The prepared OFX formulations were then investigated in vivo compared with commercially available OFX eyedrops. Results showed that the optimum Gelrite concentration was at 0.4%–0.7% w/v; the prepared formulations were viscous liquid transformed into a pourable gel immediately after the addition of simulated tear fluid with a gelling factor of 27–35. Incorporation of OFX-loaded microspheres in Gelrite solution (0.4% w/v) significantly altered the release profiles of OFX-loaded microspheres in situ gel formula compared with the corresponding OFX gels and OFX microspheres. In vivo results in rabbits showed that OFX-loaded microspheres in situ gel formula improved the relative bioavailability by 11.7-fold compared with the commercially available OFX eyedrops. In addition, the longer duration of action of OFX-loaded microspheres in situ gel formula preparations is thought to avoid frequent instillations, which improves patient tolerability and compliance.
doi:10.2147/DDDT.S80697
PMCID: PMC4362657  PMID: 25792803
corneal delivery; fluoroquinolones; gellan gum; Gelrite; simulated tear fluid
18.  Synthesis and Evaluation of a Sodium Alginate-4-Aminosalicylic Acid Based Microporous Hydrogel for Potential Viscosupplementation for Joint Injuries and Arthritis-Induced Conditions 
Marine Drugs  2017;15(8):257.
A microporous hydrogel was developed using sodium alginate (alg) and 4-aminosalicylic acid (4-ASA). The synthesized hydrogel was characterized using various analytical techniques such as Fourier transform infrared spectroscopy (FTIR), Carbon-13 nuclear magnetic resonance (13C-NMR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). Additonal carboxyl and hydroxyl functional groups of 4-ASA provided significant lubrication and stress-triggered sol-gel transition to the conjugated hydrogel. In addition, cytotoxicity analysis was undertaken on the conjugated hydrogel using human dermal fibroblast-adult (HDFa) cells, displaying non-toxic characteristics. Drug release profiles displaying 49.6% in the first 8 h and 97.5% within 72 h, similar to the native polymer (42.8% in first 8 h and 90.1% within 72 h). Under applied external stimuli, the modified hydrogel displayed significant gelling properties and structure deformation/recovery behaviour, confirmed using rheological evaluation (viscosity and thixotropic area of 8095.3 mPas and 26.23%, respectively). The modified hydrogel, thus, offers great possibility for designing smart synovial fluids as a biomimetic aqueous lubricant for joint-related injuries and arthritis-induced conditions. In addtion, the combination of thixotropy, non-toxicity, and drug release capabilities enables potential viscosupplementation for clinical application.
doi:10.3390/md15080257
PMCID: PMC5577611  PMID: 28812999
hydrogel; sodium alginate; 4-aminosalicylic acid (4-ASA); viscosupplementation; arthritis
19.  Genotypic differences in Al resistance and the role of cell-wall pectin in Al exclusion from the root apex in Fagopyrum tataricum 
Annals of Botany  2010;107(3):371-378.
Background and Aims
Aluminium (Al) toxicity is one of the factors limiting crop production on acid soils. However, genotypic differences exist among plant species or cultivars in response to Al toxicity. This study aims to investigate genotypic differences among eight cultivars of tatary buckwheat (Fagopyrum tataricum) for Al resistance and explore the possible mechanisms of Al resistance.
Methods
Al resistance was evaluated based on relative root elongation (root elongation with Al/root elongation without Al). Root apex Al content, pectin content and exudation of root organic acids were determined and compared.
Key Results
Genotypic differences among the eight cultivars were correlated with exclusion of Al from the root apex. However, there was a lack of correlation between Al exclusion and Al-induced oxalate secretion. Interestingly, cell-wall pectin content of the root apex was generally lower in Al-resistant cultivars than in Al-sensitive cultivars. Although we were unable to establish a significant correlation between Al exclusion and pectin content among the eight cultivars, a strong correlation could be established among six cultivars, in which the pectin content in the most Al-resistant cultivar ‘Chuan’ was significantly lower than that in the most Al-sensitive cultivar ‘Liuku2’. Furthermore, root apex cell-wall pectin methylesterase activity (PME) was similar in ‘Chuan’ and ‘Liuku2’ in the absence of Al, but Al treatment resulted in increased PME activity in ‘Liuku2’ compared with ‘Chuan’. Immunolocalization of pectins also showed that the two cultivars had similar amounts of either low-methyl-ester pectins or high-methyl-ester pectins in the absence of Al, but Al treatment resulted in a more significant increase of low-methyl-ester pectins and decrease of high-methyl-ester pectins in ‘Liuku2’.
Conclusions
Cell-wall pectin content may contribute, at least in part, to differential Al resistance among tatary buckwheat cultivars.
doi:10.1093/aob/mcq254
PMCID: PMC3043930  PMID: 21183454
Aluminium resistance; cell wall; exclusion mechanism; Fagopyrum tataricum; pectin; pectin methylesterase; oxalate; toxicity
20.  Effect of Microstructure on Population Growth Parameters of Escherichia coli in Gelatin-Dextran Systems 
Applied and Environmental Microbiology  2014;80(17):5330-5339.
Current literature acknowledges the effect of food structure on bacterial dynamics. Most studies introduce this “structure” factor using a single gelling agent, resulting in a homogeneous environment, whereas in practice most food products are heterogeneous. Therefore, this study focuses on heterogeneous protein-polysaccharide mixtures, based on gelatin and dextran. These mixtures show phase separation, leading to a range of heterogeneous microstructures by adjusting relative concentrations of both gelling agents. Based on confocal microscope observations, the growth of Escherichia coli in gelatin-dextran systems was observed to occur in the dextran phase. To find a relation between microscopic and population behavior, growth experiments were performed in binary and singular gelatin-dextran systems and culture broth at 23.5°C, with or without adding 2.9% (wt/vol) NaCl. The Baranyi and Roberts growth model was fitted to the experimental data and parameter estimates were statistically compared. For salted binary mixtures, a decrease in the population maximum cell density was observed with increasing gelatin concentration. In this series, for one type of microstructure, i.e., a gelatin matrix phase with a disperse dextran phase, the maximum cell density decreased with decreasing percentage of dextran phase. However, this relation no longer held when other types of microstructure were observed. Compared to singular systems, adding a second gelling agent in the presence of NaCl had an effect on population lag phases and maximum cell densities. For unsalted media, the growth parameters of singular and binary mixtures were comparable. Introducing this information into mathematical models leads to more reliable growth predictions and enhanced food safety.
doi:10.1128/AEM.00817-14
PMCID: PMC4136113  PMID: 24951795
21.  Novel Jojoba Oil-Based Emulsion Gel Formulations for Clotrimazole Delivery 
AAPS PharmSciTech  2011;12(1):239-247.
Jojoba oil-based emulgel formulations were prepared using different concentrations of various gelling agents, such as hydroxypropyl methylcellulose (HPMC) and Carbopol 934 P and combination of both. The prepared emulgels were physically evaluated for their stability after temperature cycle test, centrifugation and long-term shelf storage for 1 year at room temperature. The in vitro release at 37°C was studied to define the effect of the concentration and type of the gelling agent. A comparison between the formulated emulgels and two commercially available products, Candistan® and Canesten® creams, was carried out to judge their efficacy and stability. The prepared emulgels exhibited non-Newtonian shear thinning behavior with little or no thixotropy. Four emulgels showed excellent stability as they demonstrated consistent rheological model under different treatment conditions. The in vitro release test showed variation in the extent of percent drug released. The drug release from the commercial preparation was lower than some of the prepared emulgel formulae. One formula containing combination of the two gelling agents (HPMC and Carbopol 934 P), showed excellent stability and high extent of clotrimazole release was microbiologically evaluated against Candida albicans using cylinder and plate method. The selected formula showed superior antimycotic activity compared to the commercially available formulation. Further in vivo animal studies for the obtained stable formula is recommended.
doi:10.1208/s12249-011-9583-4
PMCID: PMC3066381  PMID: 21225383
Carbopol 934 P; clotrimazole; emulgel; emulsion gel; HPMC; microbiological evaluation; rheology; stability
22.  Hp-β-CD-Voriconazole In Situ Gelling System for Ocular Drug Delivery: In Vitro, Stability, and Antifungal Activities Assessment 
BioMed Research International  2013;2013:341218.
The objective of the present study was to design ophthalmic delivery systems based on polymeric carriers that undergo sol-to-gel transition upon change in temperature or in the presence of cations so as to prolong the effect of HP-β-CD Voriconazole (VCZ) in situ gelling formulations. The in situ gelling formulations of Voriconazole were prepared by using pluronic F-127 (PF-127) or with combination of pluronic F-68 (PF-68) and sodium alginate by cold method technique. The prepared formulations were evaluated for their physical appearance, drug content, gelation temperature (Tgel), in vitro permeation studies, rheological properties, mucoadhesion studies, antifungal studies, and stability studies. All batches of in situ formulations had satisfactory pH ranging from 6.8 to 7.4, drug content between 95% and 100%, showing uniform distribution of drug. As the concentration of each polymeric component was increased, that is, PF-68 and sodium alginate, there was a decrease in Tgel with increase in viscosity and mucoadhesive strength. The in vitro drug release decreased with increase in polymeric concentrations. The stability data concluded that all formulations showed the low degradation and maximum shelf life of 2 years. The antifungal efficiency of the selected formulation against Candida albicans and Asperigillus fumigatus confirmed that designed formulation has prolonged effect and retained its properties against fungal infection.
doi:10.1155/2013/341218
PMCID: PMC3665163  PMID: 23762839
23.  Fast preparation of RG-I enriched ultra-low molecular weight pectin by an ultrasound accelerated Fenton process 
Scientific Reports  2017;7:541.
Pectin, a natural polysaccharide found in the cell wall of most higher plant such as citrus, has drawn much attention due to its potential beneficial role in facilitating the treatment of many diseases like cancer, hyper cholesterol and diabetes. However, the broad application of pectin faces great limitations as the large molecular size of pectin severely prevents its bioavailability in vivo. In this study, we report an effective and highly convenient approach to degrade natural pectin into lower molecular pectin. By combining ultrasound with Fenton system (US-Fenton), we show that ultrasound synergistically enhances the efficiency of Fenton reaction to degrade pectin into 5.5 kDa within only 35 minutes. Importantly, RG-I domain, the most effective portion of natural pectin, was well preserved and highly enriched. In addition, the antioxidant activities of US-Fenton-treated pectin was significantly elevated. The mechanism of this novel observation was further investigated through the multiple structural analyses including HPLC, IR and NMR. Taken together, we present a novel and convenient approach to generate ultra-low molecular weight pectin with high efficiency and higher bioactivity. We expect our approach will have broader applications in improving the bioavailability and bioactivity of other polysaccharide-based natural compounds.
doi:10.1038/s41598-017-00572-3
PMCID: PMC5428719  PMID: 28373642
24.  Toward a Quantitative Modeling of the Synthesis of the Pectate Lyases, Essential Virulence Factors in Dickeya dadantii* 
The Journal of Biological Chemistry  2010;285(37):28565-28576.
A dynamic mathematical model has been developed and validated to describe the synthesis of pectate lyases (Pels), the major virulence factors in Dickeya dadantii. This work focuses on the simultaneous modeling of the metabolic degradation of pectin by Pel enzymes and the genetic regulation of pel genes by 2-keto-3-deoxygluconate (KDG), a catabolite product of pectin that inactivates KdgR, one of the main repressors of pel genes. This modeling scheme takes into account the fact that the system is composed of two time-varying compartments: the extracellular medium, where Pel enzymes cleave pectin into oligomers, and the bacterial cytoplasm where, after internalization, oligomers are converted to KDG. Using the quasi-stationary state approximations, the model consists of some nonlinear differential equations for which most of the parameters could be estimated from the literature or from independent experiments. The few remaining unknown parameters were obtained by fitting the model equations against a set of Pel activity data. Model predictions were verified by measuring the time courses of bacterial growth, Pel production, pel mRNA accumulation, and pectin consumption under various growth conditions. This work reveals that pectin is almost totally consumed before the burst of Pel production. This paradoxical behavior can be interpreted as an evolutionary strategy to control the diffusion process so that as soon as a small amount of pectin is detected by the bacteria in its surroundings, it anticipates more pectin to come. The model also predicts the possibility of bistable steady states in the presence of constant pectin compounds.
doi:10.1074/jbc.M110.114710
PMCID: PMC2937882  PMID: 20581112
Bacteria; Bacterial Genetics; Computation; Gene Regulation; Mathematical Modeling; Transcription Regulation; Erwinia chrysanthemi; Systems Biology; Pathogenic Bacteria; Virulence Factor
25.  Extrusion/spheronization of pectin-based formulations. II. Effect of additive concentration in the granulation liquid 
AAPS PharmSciTech  2015;2(4):63-72.
Purpose. The aim of this study was to improve the formation of spherical pectin pellets by investigating the effect of additive concentration in the granulation liquid on the shape and size of the products as well as by identifying an optimal additive concentration.Methods. High-methoxylated, low-methoxylated, and amidated low-methoxylated pectin types were evaluated in combination with different concentrations of methanol, ethanol, citric acid, lactic acid, and calcium chloride. Pellets were prepared in a power-consumption-controlled twin-screw extruder, then spheronized and dried. The moisture content of the extrudate was determined, and the final products were characterized by image analysis and sieving analysis. A cloud point test was employed for the identification of an optimal additive concentration.Results. The concentration of additive in the granulation liquid affected the moisture content of the extrudate and the shape, size, and mechanical stability of the pectin pellets. Improvements in the pellet characteristics are dependent on the pectin type employed. The 2 low-methoxylated pectins were more sensitive to concentration changes than was the high-methoxylated type. Above a certain threshold concentration, the quality of the pellets are improved. This additive concentration differs according to type of pectin and type of additive.Conclusion. It was demonstrated that there is a concentration-dependent interaction between pectin and substances added to the granulation liquid that can be utilized to improve the formation of spherical pectin pellets.
doi:10.1007/BF02830567
PMCID: PMC2784842
Extrusion; Spheronization; Pectin; Granulation Liquid; Concentration Effects

Results 1-25 (1867553)