PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actae2this articlesearchopen accesssubmitActa Crystallographica Section E: Crystallographic CommunicationsActa Crystallographica Section E: Crystallographic Communications
 
Acta Crystallogr E Crystallogr Commun. 2017 October 1; 73(Pt 10): 1539–1541.
Published online 2017 September 25. doi:  10.1107/S2056989017013408
PMCID: PMC5730313

Crystal structure of {[1′-(di­phenyl­phosphino)ferrocen­yl]meth­yl}di­methyl­ammonium chloride monohydrate

Abstract

Individual ions and the solvating water mol­ecule constituting the structure of the title compound, [Fe(C8H13N)(C17H14P)]Cl·H2O, assemble into dimeric units located around crystallographic inversion centers via N—H(...)Cl and O—H(...)Cl hydrogen bonds. These discrete fragments are further inter­connected into chains by C—H(...)O inter­actions. The disubstituted ferrocene core in the {[1′-(di­phenyl­phosphino)ferrocen­yl]meth­yl}di­methyl­ammonium cation has an approximate synclinal eclipsed conformation and is tilted by 3.40 (11)°.

Keywords: crystal structure, ferrocene, amines, phosphines, structure elucidation

Chemical context  

Chiral phosphinoferrocene amines are recognized to be efficient supporting ligands for transition-metal-catalysed reactions as well as useful synthetic precursors for a range of ferrocene derivatives (Štěpnička et al., 2008  ). In contrast, their non-chiral counterparts have received limited attention. While studying functional derivatives of the ubiquitous 1,1′-bis­(di­phenyl­phosphino)ferrocene (dppf), we have devised an alternative synthesis of 1′-(di­phenyl­phosphino)-1-[(di­methyl­amino)­meth­yl]ferrocene, Ph2PfcCH2NMe2 (fc = ferrocene-1,1′-di­yl), firstly reported by Wright (1990  ), and studied this compound as a ligand in PdII and AuI complexes (Štěpnička et al., 2012  ). More recently, we have converted this phosphino­amine into a phosphinoferrocene betaine Ph2PfcCH2NMe2(CH2)3SO3, which was in turn used to prepare new functional ferrocene phosphines (Zábranský et al., 2015  , 2017  ). This contribution describes the crystal structure of a hydrated hydro­chloride of this amine, [Ph2PfcCH2NHMe2]Cl·H2O, which was isolated serendipitously while regenerating the amine after preparation of the aforementioned betaine.

An external file that holds a picture, illustration, etc.
Object name is e-73-01539-scheme1.jpg

Structural commentary  

A view of the mol­ecular structure of the title compound, with atom labelling, is shown in Fig. 1  . The ferrocene moiety in the {[1′-(di­phenyl­phosphino)ferrocen­yl]meth­yl}di­methyl­ammonium cation has a regular geometry with the individual Fe—C bonds ranging from 2.0239 (15) Å (C1) to 2.0489 (15) Å (C7). Its cyclo­penta­dienyl rings are tilted by 3.40 (11)° and assume an eclipsed conformation with the attached substituents oriented in a synclinal fashion, as demonstrated by the torsion angle C1—Cg1—Cg2—C6 of −85.38 (12)°, where Cg1 and Cg2 are the centroids of the cyclo­penta­dienyl rings C1–C5 and C6–C10, respectively.

Figure 1
PLATON (Spek, 2009  ) plot of the cation in the structure of the title compound. Displacement ellipsoids correspond to the 50% probability level.

The protonated amino­methyl chain is directed away from the ferrocene core, with the angle between the C1—N bond and the axis of the ferrocene unit, Cg1(...)Cg2, being 148.99 (11)°. The phosphine substituent at the other cyclo­penta­dienyl ring is oriented so that one of its pivotal P—C(Ph) bonds lies nearly in the plane of the bonding five-membered ring C6–C10, while the other is roughly parallel with the axis of the ferrocene unit. The angle at which the P—C18 bond inter­sects the C6–C10 plane is 13.17 (10)°, whereas the angle subtended by the P—C12 bond and the Cg1(...)Cg2 line is only 8.68 (5)°.

Supra­molecular features  

Each [Ph2PfcCH2NHMe2]+ cation in the structure of the title compound is involved in an N—H(...)Cl hydrogen bond to a proximal chloride anion (for hydrogen-bond parameters, see Table 1  ). The anions further act as hydrogen-bond acceptors for a pair of inversion-related water mol­ecules, which in turn results in the formation of charge-neutral, closed dimeric arrays {(Ph2PfcCH2NHMe2)2Cl2(H2O)2} around the crystallographic inversion centers. These discrete units are further inter­linked into chains along the a axis via the weaker C—H(...)O and C—H(...)Cl inter­actions, as shown in Fig. 2  .

Figure 2
Section of the hydrogen-bonded chains in the structure of the title compound. For clarity, hydrogen atoms not involved in hydrogen bonding are omitted.
Table 1
Hydrogen-bond geometry (Å, °)

Database survey  

A search in the Cambridge Structural Database (Version 5.38 with the latest update from May 2017; Groom et al., 2016  ) for structurally related compounds resulted in the structures of two similar (ferrocenylmeth­yl)ammonium salts, namely N-(ferrocenylmeth­yl)di­methyl­ammonium chloride (Winter & Wolmershäuser, 1998  ) and its dihydrate (Guo et al., 2006  ), and two complexes obtained from Ph2PfcCH2NMe2 featuring a protonated (di­methyl­amino)­methyl side chain, viz. [AuCl(Ph2PfcCH2NHMe2)]X, where X = Cl and ClO4 (Štěpnička et al., 2012  ).

Synthesis and crystallization  

The ‘amine’ Ph2PfcCH2NMe2 regenerated from the synthesis of the phosphinoferrocene betaine Ph2PfcCH2NMe2(CH2)3SO3 (Zábranský et al., 2015  ) (ca 100 mg) was dissolved in acetic acid (10 mL) and the solution was evaporated under reduced pressure. After this procedure was repeated twice using chloro­form as a solvent, the residue was dissolved in a minimum amount of hot ethyl acetate. The solution was filtered and layered with hexane. Crystallization by liquid-phase diffusion over several days afforded orange crystals of the title compound. The yield was not determined.

Analysis calculated for [C25H27FeNP]Cl·H2O (481.76 g mol−1): C 62.32, H 6.07, N 2.91%. Found: C 62.23, H 5.91, N 2.79%. ESI MS: m/z 383 ([Ph2PfcCH2]+), 428 ([Ph2PfcCH2NMe2 + H]+)

Refinement  

Relevant crystallographic data and structure refinement parameters are summarized in Table 2  . All non-hydrogen atoms were refined freely with anisotropic displacement parameters. The hydrogen atoms of the water mol­ecule and the NH proton were located on a difference electron-density map and refined as riding atoms with U iso(H) set to 1.2U eq of their bonding atom. Hydrogen atoms bonded to carbons were included in their theoretical positions and refined as riding atoms with U iso(H) = 1.2U eq(C).

Table 2
Experimental details

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017013408/im2484sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017013408/im2484Isup3.hkl

CCDC reference: 1575391

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Dr Ivana Císařová from the Department of Inorganic Chemistry, Faculty of Science, Charles University for recording the diffraction data of the title compound.

supplementary crystallographic information

Crystal data

[Fe(C8H13N)(C17H14P]Cl·H2OZ = 2
Mr = 481.76F(000) = 504
Triclinic, P1Dx = 1.365 Mg m3
a = 7.9888 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.7596 (6) ÅCell parameters from 9875 reflections
c = 13.2311 (5) Åθ = 2.7–27.5°
α = 111.037 (1)°µ = 0.84 mm1
β = 104.075 (1)°T = 150 K
γ = 99.628 (2)°Plate, orange
V = 1171.76 (8) Å30.27 × 0.26 × 0.14 mm

Data collection

Bruker D8 VENTURE Kappa Duo PHOTON 100 CMOS diffractometer5361 independent reflections
Radiation source: IµS micro-focus sealed tube4820 reflections with I > 2σ(I)
Quazar Mo multilayer optic monochromatorRint = 0.024
[var phi] and ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: numerical (SADABS; Bruker, 2014)h = −10→10
Tmin = 0.78, Tmax = 0.89k = −16→16
24764 measured reflectionsl = −17→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: mixed
wR(F2) = 0.074H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0302P)2 + 0.8395P] where P = (Fo2 + 2Fc2)/3
5361 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = −0.53 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Fe0.35629 (3)0.59451 (2)0.78521 (2)0.01686 (7)
P0.60918 (5)0.42728 (3)0.65913 (3)0.02008 (9)
N0.48959 (19)0.94040 (11)0.77917 (12)0.0222 (3)
H1N0.41150.96190.81850.027*
C10.3623 (2)0.73548 (13)0.74808 (13)0.0190 (3)
C20.3012 (2)0.63030 (14)0.64396 (13)0.0246 (3)
H20.35590.61200.58600.029*
C30.1436 (2)0.55845 (15)0.64331 (15)0.0305 (4)
H30.07550.48320.58500.037*
C40.1056 (2)0.61835 (16)0.74453 (17)0.0306 (4)
H40.00750.59030.76550.037*
C50.2396 (2)0.72753 (15)0.80907 (15)0.0242 (3)
H50.24630.78530.88050.029*
C60.5294 (2)0.49253 (13)0.77727 (13)0.0188 (3)
C70.3773 (2)0.44264 (14)0.80049 (13)0.0214 (3)
H70.29590.36680.75490.026*
C80.3684 (3)0.52571 (16)0.90340 (14)0.0282 (4)
H80.27940.51530.93800.034*
C90.5155 (3)0.62697 (15)0.94565 (14)0.0295 (4)
H90.54270.69561.01390.035*
C100.6153 (2)0.60790 (14)0.86822 (14)0.0240 (3)
H100.71990.66170.87530.029*
C110.5289 (2)0.83286 (14)0.79066 (14)0.0231 (3)
H11A0.60980.80670.74680.028*
H11B0.59210.85290.87230.028*
C120.7610 (2)0.35513 (13)0.71926 (14)0.0218 (3)
C130.8462 (2)0.28984 (15)0.64905 (17)0.0315 (4)
H130.82580.28520.57360.038*
C140.9599 (2)0.23210 (16)0.6890 (2)0.0422 (5)
H141.01320.18560.63960.051*
C150.9964 (3)0.24150 (17)0.7998 (2)0.0442 (6)
H151.07540.20220.82680.053*
C160.9178 (3)0.30812 (18)0.8711 (2)0.0395 (5)
H160.94440.31600.94790.047*
C170.7991 (2)0.36410 (16)0.83049 (16)0.0290 (4)
H170.74390.40880.87970.035*
C180.4138 (2)0.30073 (13)0.56095 (13)0.0194 (3)
C190.2952 (2)0.31205 (15)0.47127 (14)0.0257 (3)
H190.31540.38420.46410.031*
C200.1473 (2)0.21872 (16)0.39223 (15)0.0303 (4)
H200.06690.22780.33210.036*
C210.1172 (2)0.11288 (16)0.40097 (15)0.0293 (4)
H210.01700.04910.34650.035*
C220.2337 (2)0.10042 (15)0.48951 (15)0.0298 (4)
H220.21350.02780.49570.036*
C230.3807 (2)0.19393 (14)0.56956 (14)0.0249 (3)
H230.45900.18480.63060.030*
C240.3962 (3)0.91775 (17)0.65899 (16)0.0363 (4)
H24A0.36880.98900.65630.054*
H24B0.28410.85470.62820.054*
H24C0.47380.89450.61280.054*
C250.6568 (3)1.03899 (16)0.83233 (19)0.0405 (5)
H25A0.74121.01910.79070.061*
H25B0.71171.05340.91260.061*
H25C0.62771.10950.82880.061*
Cl0.23009 (6)1.03869 (4)0.89357 (4)0.02978 (10)
O1W0.0368 (2)1.16218 (15)1.07177 (16)0.0569 (4)
H2W−0.02681.10161.09380.068*
H1W0.09731.12331.01890.068*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe0.01965 (11)0.01487 (11)0.01374 (11)0.00601 (8)0.00136 (8)0.00560 (8)
P0.0215 (2)0.01765 (19)0.01958 (19)0.00385 (15)0.00531 (15)0.00777 (15)
N0.0266 (7)0.0174 (6)0.0224 (7)0.0044 (5)0.0097 (6)0.0076 (5)
C10.0216 (7)0.0165 (7)0.0189 (7)0.0076 (6)0.0027 (6)0.0089 (6)
C20.0342 (9)0.0206 (8)0.0164 (7)0.0094 (7)0.0009 (6)0.0092 (6)
C30.0296 (9)0.0221 (8)0.0272 (8)0.0013 (7)−0.0102 (7)0.0117 (7)
C40.0178 (8)0.0319 (9)0.0445 (10)0.0069 (7)0.0042 (7)0.0225 (8)
C50.0243 (8)0.0242 (8)0.0298 (8)0.0141 (7)0.0101 (7)0.0137 (7)
C60.0212 (7)0.0152 (7)0.0183 (7)0.0073 (6)0.0021 (6)0.0071 (6)
C70.0282 (8)0.0188 (7)0.0214 (7)0.0090 (6)0.0078 (6)0.0122 (6)
C80.0408 (10)0.0328 (9)0.0202 (8)0.0186 (8)0.0127 (7)0.0160 (7)
C90.0409 (10)0.0271 (9)0.0147 (7)0.0170 (8)−0.0003 (7)0.0052 (6)
C100.0226 (8)0.0178 (7)0.0222 (8)0.0067 (6)−0.0048 (6)0.0056 (6)
C110.0216 (8)0.0201 (7)0.0261 (8)0.0070 (6)0.0051 (6)0.0091 (6)
C120.0160 (7)0.0162 (7)0.0273 (8)0.0016 (6)0.0043 (6)0.0059 (6)
C130.0202 (8)0.0249 (8)0.0353 (10)0.0023 (7)0.0078 (7)−0.0001 (7)
C140.0194 (8)0.0228 (9)0.0659 (15)0.0055 (7)0.0101 (9)0.0010 (9)
C150.0200 (9)0.0268 (9)0.0811 (17)0.0074 (7)0.0050 (9)0.0245 (10)
C160.0291 (10)0.0403 (11)0.0527 (12)0.0103 (8)0.0038 (9)0.0296 (10)
C170.0266 (9)0.0312 (9)0.0334 (9)0.0122 (7)0.0091 (7)0.0170 (8)
C180.0216 (7)0.0187 (7)0.0158 (7)0.0062 (6)0.0057 (6)0.0051 (6)
C190.0323 (9)0.0243 (8)0.0205 (8)0.0114 (7)0.0060 (7)0.0094 (6)
C200.0301 (9)0.0345 (9)0.0199 (8)0.0128 (7)−0.0004 (7)0.0083 (7)
C210.0227 (8)0.0279 (9)0.0238 (8)0.0040 (7)0.0010 (7)0.0018 (7)
C220.0286 (9)0.0223 (8)0.0298 (9)0.0014 (7)0.0014 (7)0.0092 (7)
C230.0247 (8)0.0229 (8)0.0222 (8)0.0040 (6)0.0001 (6)0.0101 (7)
C240.0516 (12)0.0342 (10)0.0265 (9)0.0102 (9)0.0105 (8)0.0188 (8)
C250.0382 (11)0.0231 (9)0.0487 (12)−0.0046 (8)0.0140 (9)0.0083 (8)
Cl0.0340 (2)0.0292 (2)0.0265 (2)0.01592 (17)0.01079 (17)0.00835 (17)
O1W0.0473 (9)0.0474 (9)0.0704 (12)0.0122 (8)0.0307 (9)0.0117 (8)

Geometric parameters (Å, º)

Fe—C12.0239 (15)C9—H90.9500
Fe—C52.0341 (16)C10—H100.9500
Fe—C102.0389 (16)C11—H11A0.9900
Fe—C82.0411 (16)C11—H11B0.9900
Fe—C92.0433 (16)C12—C171.386 (2)
Fe—C22.0433 (16)C12—C131.401 (2)
Fe—C42.0469 (17)C13—C141.384 (3)
Fe—C32.0472 (16)C13—H130.9500
Fe—C62.0472 (15)C14—C151.380 (3)
Fe—C72.0489 (15)C14—H140.9500
P—C61.8084 (16)C15—C161.377 (3)
P—C121.8390 (17)C15—H150.9500
P—C181.8427 (16)C16—C171.397 (2)
N—C241.480 (2)C16—H160.9500
N—C251.485 (2)C17—H170.9500
N—C111.508 (2)C18—C231.395 (2)
N—H1N0.9207C18—C191.396 (2)
C1—C51.426 (2)C19—C201.393 (2)
C1—C21.437 (2)C19—H190.9500
C1—C111.487 (2)C20—C211.383 (3)
C2—C31.424 (3)C20—H200.9500
C2—H20.9500C21—C221.385 (2)
C3—C41.418 (3)C21—H210.9500
C3—H30.9500C22—C231.394 (2)
C4—C51.421 (2)C22—H220.9500
C4—H40.9500C23—H230.9500
C5—H50.9500C24—H24A0.9800
C6—C71.428 (2)C24—H24B0.9800
C6—C101.440 (2)C24—H24C0.9800
C7—C81.421 (2)C25—H25A0.9800
C7—H70.9500C25—H25B0.9800
C8—C91.420 (3)C25—H25C0.9800
C8—H80.9500O1W—H2W1.0206
C9—C101.424 (3)O1W—H1W0.9824
C1—Fe—C541.14 (6)C7—C6—P128.31 (12)
C1—Fe—C10106.92 (7)C10—C6—P124.39 (13)
C5—Fe—C10126.23 (7)C7—C6—Fe69.66 (9)
C1—Fe—C8148.86 (7)C10—C6—Fe69.05 (8)
C5—Fe—C8115.03 (7)P—C6—Fe127.25 (8)
C10—Fe—C868.79 (7)C8—C7—C6108.38 (15)
C1—Fe—C9115.70 (7)C8—C7—Fe69.38 (9)
C5—Fe—C9104.86 (7)C6—C7—Fe69.53 (8)
C10—Fe—C940.82 (7)C8—C7—H7125.8
C8—Fe—C940.70 (8)C6—C7—H7125.8
C1—Fe—C241.36 (6)Fe—C7—H7126.9
C5—Fe—C269.00 (7)C9—C8—C7108.19 (15)
C10—Fe—C2119.30 (7)C9—C8—Fe69.73 (9)
C8—Fe—C2167.52 (7)C7—C8—Fe69.97 (9)
C9—Fe—C2151.52 (8)C9—C8—H8125.9
C1—Fe—C469.01 (7)C7—C8—H8125.9
C5—Fe—C440.74 (7)Fe—C8—H8126.0
C10—Fe—C4163.98 (7)C8—C9—C10108.27 (15)
C8—Fe—C4106.22 (8)C8—C9—Fe69.57 (9)
C9—Fe—C4125.71 (8)C10—C9—Fe69.43 (9)
C2—Fe—C468.59 (7)C8—C9—H9125.9
C1—Fe—C369.10 (6)C10—C9—H9125.9
C5—Fe—C368.56 (7)Fe—C9—H9126.7
C10—Fe—C3154.05 (8)C9—C10—C6107.85 (15)
C8—Fe—C3128.15 (8)C9—C10—Fe69.75 (9)
C9—Fe—C3164.68 (8)C6—C10—Fe69.67 (9)
C2—Fe—C340.75 (7)C9—C10—H10126.1
C4—Fe—C340.52 (8)C6—C10—H10126.1
C1—Fe—C6129.28 (6)Fe—C10—H10126.1
C5—Fe—C6166.26 (7)C1—C11—N112.09 (13)
C10—Fe—C641.28 (6)C1—C11—H11A109.2
C8—Fe—C668.83 (7)N—C11—H11A109.2
C9—Fe—C668.93 (6)C1—C11—H11B109.2
C2—Fe—C6110.24 (7)N—C11—H11B109.2
C4—Fe—C6152.74 (7)H11A—C11—H11B107.9
C3—Fe—C6120.44 (7)C17—C12—C13118.37 (16)
C1—Fe—C7168.72 (6)C17—C12—P123.83 (13)
C5—Fe—C7149.81 (7)C13—C12—P117.78 (14)
C10—Fe—C768.83 (7)C14—C13—C12120.41 (19)
C8—Fe—C740.66 (6)C14—C13—H13119.8
C9—Fe—C768.44 (7)C12—C13—H13119.8
C2—Fe—C7130.66 (6)C15—C14—C13120.62 (19)
C4—Fe—C7117.98 (7)C15—C14—H14119.7
C3—Fe—C7109.84 (7)C13—C14—H14119.7
C6—Fe—C740.81 (6)C16—C15—C14119.70 (18)
C6—P—C12100.79 (7)C16—C15—H15120.1
C6—P—C18101.23 (7)C14—C15—H15120.1
C12—P—C18100.82 (7)C15—C16—C17120.0 (2)
C24—N—C25111.96 (15)C15—C16—H16120.0
C24—N—C11112.50 (13)C17—C16—H16120.0
C25—N—C11110.50 (14)C12—C17—C16120.80 (18)
C24—N—H1N105.9C12—C17—H17119.6
C25—N—H1N107.8C16—C17—H17119.6
C11—N—H1N107.9C23—C18—C19118.43 (15)
C5—C1—C2107.59 (15)C23—C18—P123.76 (12)
C5—C1—C11124.99 (15)C19—C18—P117.78 (12)
C2—C1—C11127.30 (15)C20—C19—C18120.71 (16)
C5—C1—Fe69.82 (9)C20—C19—H19119.6
C2—C1—Fe70.04 (9)C18—C19—H19119.6
C11—C1—Fe122.55 (11)C21—C20—C19120.27 (16)
C3—C2—C1107.63 (15)C21—C20—H20119.9
C3—C2—Fe69.77 (9)C19—C20—H20119.9
C1—C2—Fe68.59 (9)C20—C21—C22119.64 (16)
C3—C2—H2126.2C20—C21—H21120.2
C1—C2—H2126.2C22—C21—H21120.2
Fe—C2—H2127.0C21—C22—C23120.31 (16)
C4—C3—C2108.37 (15)C21—C22—H22119.8
C4—C3—Fe69.73 (10)C23—C22—H22119.8
C2—C3—Fe69.48 (9)C22—C23—C18120.63 (15)
C4—C3—H3125.8C22—C23—H23119.7
C2—C3—H3125.8C18—C23—H23119.7
Fe—C3—H3126.6N—C24—H24A109.5
C3—C4—C5108.16 (16)N—C24—H24B109.5
C3—C4—Fe69.75 (10)H24A—C24—H24B109.5
C5—C4—Fe69.14 (9)N—C24—H24C109.5
C3—C4—H4125.9H24A—C24—H24C109.5
C5—C4—H4125.9H24B—C24—H24C109.5
Fe—C4—H4126.8N—C25—H25A109.5
C4—C5—C1108.24 (15)N—C25—H25B109.5
C4—C5—Fe70.11 (10)H25A—C25—H25B109.5
C1—C5—Fe69.05 (9)N—C25—H25C109.5
C4—C5—H5125.9H25A—C25—H25C109.5
C1—C5—H5125.9H25B—C25—H25C109.5
Fe—C5—H5126.5H2W—O1W—H1W107.9
C7—C6—C10107.30 (14)
C5—C1—C2—C3−0.93 (17)Fe—C9—C10—C6−59.48 (10)
C11—C1—C2—C3175.34 (14)C8—C9—C10—Fe58.89 (11)
Fe—C1—C2—C359.05 (11)C7—C6—C10—C90.14 (17)
C5—C1—C2—Fe−59.99 (11)P—C6—C10—C9−178.91 (11)
C11—C1—C2—Fe116.29 (15)Fe—C6—C10—C959.53 (11)
C1—C2—C3—C40.75 (18)C7—C6—C10—Fe−59.39 (10)
Fe—C2—C3—C459.06 (12)P—C6—C10—Fe121.56 (11)
C1—C2—C3—Fe−58.32 (10)C5—C1—C11—N−77.55 (19)
C2—C3—C4—C5−0.27 (19)C2—C1—C11—N106.78 (17)
Fe—C3—C4—C558.64 (11)Fe—C1—C11—N−164.53 (10)
C2—C3—C4—Fe−58.91 (11)C24—N—C11—C1−59.33 (18)
C3—C4—C5—C1−0.31 (18)C25—N—C11—C1174.72 (14)
Fe—C4—C5—C158.70 (11)C6—P—C12—C17−3.86 (16)
C3—C4—C5—Fe−59.01 (12)C18—P—C12—C17−107.64 (15)
C2—C1—C5—C40.77 (17)C6—P—C12—C13177.80 (13)
C11—C1—C5—C4−175.61 (14)C18—P—C12—C1374.02 (14)
Fe—C1—C5—C4−59.36 (11)C17—C12—C13—C142.5 (2)
C2—C1—C5—Fe60.13 (10)P—C12—C13—C14−179.02 (14)
C11—C1—C5—Fe−116.26 (15)C12—C13—C14—C15−2.5 (3)
C12—P—C6—C7−89.13 (14)C13—C14—C15—C160.6 (3)
C18—P—C6—C714.33 (15)C14—C15—C16—C171.2 (3)
C12—P—C6—C1089.71 (13)C13—C12—C17—C16−0.8 (3)
C18—P—C6—C10−166.83 (13)P—C12—C17—C16−179.14 (14)
C12—P—C6—Fe178.35 (9)C15—C16—C17—C12−1.0 (3)
C18—P—C6—Fe−78.20 (11)C6—P—C18—C23−83.71 (15)
C10—C6—C7—C80.36 (17)C12—P—C18—C2319.72 (15)
P—C6—C7—C8179.36 (12)C6—P—C18—C1997.97 (13)
Fe—C6—C7—C8−58.65 (11)C12—P—C18—C19−158.60 (13)
C10—C6—C7—Fe59.01 (10)C23—C18—C19—C20−0.1 (2)
P—C6—C7—Fe−121.99 (12)P—C18—C19—C20178.34 (13)
C6—C7—C8—C9−0.73 (18)C18—C19—C20—C21−0.7 (3)
Fe—C7—C8—C9−59.47 (11)C19—C20—C21—C220.7 (3)
C6—C7—C8—Fe58.75 (11)C20—C21—C22—C230.1 (3)
C7—C8—C9—C100.81 (18)C21—C22—C23—C18−0.8 (3)
Fe—C8—C9—C10−58.81 (11)C19—C18—C23—C220.8 (3)
C7—C8—C9—Fe59.62 (11)P—C18—C23—C22−177.51 (14)
C8—C9—C10—C6−0.58 (18)

Hydrogen-bond geometry (Å, º)

D—H···AD—HH···AD···AD—H···A
N—H1N···Cl0.922.133.0323 (16)167
O1W—H1W···Cl0.982.233.2162 (19)177
O1W—H2W···Cli1.022.293.289 (2)166
C10—H10···O1Wii0.952.463.390 (3)165
C11—H11B···Clii0.992.773.7369 (17)167

Symmetry codes: (i) −x, −y+2, −z+2; (ii) −x+1, −y+2, −z+2.

Funding Statement

This work was funded by Grantová Agentura České Republiky grant 15-11571S.

This paper was supported by the following grant(s):

Grantová Agentura České Republiky 15-11571S.

References

  • Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2015). Instrument Service and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [PMC free article] [PubMed]
  • Guo, H.-X., Zhou, X.-J., Lin, Z.-X. & Liu, J.-M. (2006). Acta Cryst. E62, m1770–m1772.
  • Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. [PMC free article] [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Štěpnička, P. (2008). Ferrocenes: Ligands, Materials and Biomolecules. Chichester: Wiley.
  • Štěpnička, P., Zábranský, M. & Císařová, I. (2012). ChemistryOpen 1, pp. 71–79. [PMC free article] [PubMed]
  • Winter, R. F. & Wolmershäuser, G. (1998). J. Organomet. Chem. 570, 201–218.
  • Wright, M. E. (1990). Organometallics, 9, 853–856.
  • Zábranský, M., Císařová, I. & Štěpnička, P. (2015). Dalton Trans. 44, 14494–14506. [PubMed]
  • Zábranský, M., Císařová, I. & Štěpnička, P. (2017). Eur. J. Inorg. Chem. pp. 2557–2572.

Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography