PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actae2this articlesearchopen accesssubmitActa Crystallographica Section E: Crystallographic CommunicationsActa Crystallographica Section E: Crystallographic Communications
 
Acta Crystallogr E Crystallogr Commun. 2017 October 1; 73(Pt 10): 1530–1533.
Published online 2017 September 25. doi:  10.1107/S2056989017013317
PMCID: PMC5730311

Crystal structure of 4-meth­oxy-N-(piperidine-1-carbono­thio­yl)benzamide

Abstract

In the title compound, C14H18N2O2S, the piperidine ring has a chair conformation. Its mean plane is twisted with respect to the 4-meth­oxy­benzoyl ring, with a dihedral angle of 63.0 (3)°. The central N—C(=S)—N(H)—C(=O) bridge is twisted with an N—C—N—C torsion angle of 74.8 (6)°. In the crystal, mol­ecules are linked by N—H(...)O and C—H(...)O hydrogen bonds, forming chains along the c-axis direction. Adjacent chains are linked by C—H(...)π inter­actions, forming layers parallel to the ac plane. The layers are linked by offset π–π inter­actions [inter­centroid distance = 3.927 (3) Å], forming a supra­molecular three-dimensional structure.

Keywords: crystal structure, benzoyl­thio­urea, piperidine, pyrrolidine, benzamide, anti-cancer, hydrogen bonding, C—H(...)π inter­actions, offset π–π inter­actions

Chemical context  

Benzoyl­thio­urea compounds exhibit anti-inflammatory (Brachmachari & Das, 2012  ), anti-cancer, anti-diabetic and anti-virus activity (Kovačková et al., 2011  ), and have applications as ionic sensors (Suhud et al. 2015b  ) and pharmaceutical drugs (Watson et al., 2000  ). Benzoyl­thio­urea mol­ecules containing thio­amide (NH—C=S) and carbonyl (C=O) electron-rich donating groups facilitate the formation of coordination bonds with metal ions such as Co3+ (Tan et al., 2014  ), Ru2+ (Małecki & Nycz, 2013  ), Ag+ (Isab et al., 2010  ) and Ni2+ (Arslan et al., 2006  ). Bivalent and trivalent metal ions prefer to coordinate via the S and O atoms from the thiono and carbonyl units, respectively, but monovalent metal ions tend to coordinate via the S atom.

An external file that holds a picture, illustration, etc.
Object name is e-73-01530-scheme1.jpg

Herein, we report on the crystal structure of 4-meth­oxy-N-(piperidine-1-carbono­thio­yl)benzamide (MPiCB) and its chemical structural data in comparison with the previously reported compound 4-meth­oxy-N-[(pyrrolidin-1-yl)carbono­thio­yl]benzamide (MPCB; Suhud et al., 2015a  ,b  ).

Structural commentary  

The mol­ecular structure of the title compound, MPiCB, is illustrated in Fig. 1  . The geometrical parameters are similar to those observed for 4-meth­oxy-N-[(pyrrolidin-1-yl)carbo­thio­yl]benzamide (MPCB; Suhud et al. 2015a  ). The 4-meth­oxy­benzoyl and piperidine fragments adopt a transcis conformation with respect to the thiono S atom across the C8—N1 bond, with the piperidine ring having a chair conformation. The mean plane of the piperidine ring is twisted with respect to the 4-meth­oxy benzoyl ring with a dihedral angle of 63.0 (3)°. The central N—C(=S)—N(H)—C(=O) bridge is twisted with an N2—C8—N1—C7 torsion angle of 74.8 (6)°. The meth­oxy group lies in the plane of the benzene ring, with the C14—O2—C4—C3 torsion angle being 180.0 (4)°.

Figure 1
A view of the mol­ecular structure of the title compound (MPiCB), with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal of MPiCB, neighbouring mol­ecules are linked by N—H(...)O and C—H(...)O hydrogen bonds, forming chains along the c-axis direction (Table 1  and Fig. 2  ). Adjacent chains are linked by C—H(...)π inter­actions, involving a piperidine H atom and the π electrons of the benzene ring, forming layers parallel to the ac plane (Table 1  and Fig. 3  ). The layers are linked by offset π–π stacking inter­actions involving the benzene rings, forming a supra­molecular three-dimensional structure as illustrated in Fig. 3  [Cg(...)Cg i = 3.927 (3) Å; Cg is the centroid of the C1–C6 ring; inter­planar distance = 3.517 (2) Å; slippage = 1.747 Å; symmetry code: (i) −x, −y + 2, −z + 2].

Figure 2
A view along the a axis of the crystal packing of the title compound (MPiCB). Hydrogen bonds (see Table 1  ) are shown as dashed lines.
Figure 3
A view normal to the ac plane of the crystal packing of the title compound (MPiCB), showing the offset π–π stacking inter­actions that add further stabilization to the crystal structure, and the hydrogen bonds (dashed lines). ...
Table 1
Hydrogen-bond geometry (Å, °)

Database survey  

A search of the Cambridge Structural Database (Version 5.38, update May 2017; Groom et al., 2016  ) for the 4-meth­oxy-N-(carbono­thio­yl)benzamide skeleton gave 37 hits. Two compounds are of particular inter­est, namely 4-meth­oxy-N-(pyrrolidin-1-ylcarbono­thio­yl)benzamide (DUDYOS; Suhud et al., 2015a  ) mentioned previously (MPCB), and N-(2,6-di­meth­yl­piperidine-1-carbono­thio­yl)-3,4,5-tri­meth­oxy­benz­amide (HESLEX; Dillen et al., 2006  ). The 4-meth­oxy­benzoyl ring and the mean plane of the piperidine ring in MPiCB form a smaller angle [63.13 (3)°] compared with the angle of 72.60 (14)° for similar mean planes found in DUDYOS (Suhud et al. 2015a  ). The bond lengths for C8=S1 [1.651 (4) Å] and C7=O1 [1.226 (4) Å] in MPiCB are comparable to those observed for DUDYOS [C=S = 1.662 (2) Å and C=O = 1.220 (2) Å]. Other bond lengths and angles in the MPiCB mol­ecule are comparable with those reported for DUDYOS and N-(pyrrolidin-1-ylcarbo­thio­yl)benzamide (SAGYOQ; Al-abbasi et al., 2012  ). Compound HESLEX also involves a piperidine ring with a chair conformation linked by the C(=S)—N(H)—C(=O) bridge to a 3,4,5-tri­meth­oxy­benzene ring. It crystallizes with two independent mol­ecules in the asymmetric unit with slightly different conformations. For example, the mean plane of the piperidine rings are inclined to the benzene rings by 58.97 (11) and 64.11 (11)°, compared to 63.13 (3)° in the title compound. The central N—C(=S)—N(H)—C(=O) bridge is twisted in each compound, with an N2—C8—N1—C7 torsion angle of 74.8 (6)° in MPiCB, 63.0 (3)° in DUDYOS, 65.5 (3) and 79.9 (3)° in HESLEX, and finally −59.7 (2)° in SAGYOQ.

Synthesis and crystallization  

Benzoyl chloride (0.01 mol) was added slowly to ammonium thio­cyanate (0.01 mol) in acetone and the mixture was stirred for 30 min at room temperature. A white precipitate of ammonium chloride was filtered off and the filtrate was cooled in an ice bath (278–283 K) for about 15 min. A cold solution (278–283 K) of piperidine (0.01 mol) in acetone was added to the benzoyl iso­thio­cyanate and the mixture was left for 3 h at room temperature. A yellowish precipitate was formed, filtered and washed with cold water to give pale-yellow crystals (yield 87%, m.p. 401-402 K).

The infrared spectrum of MPiCB shows the characteristic signals for ν(NH) 3300, ν(O—CH3) 2900, ν(C=O) 1609, ν(C—Cbenzene) 1460, ν(C—Ostretching) 1327 and v(C=S) 1252 cm−1. The 1H NMR spectrum exhibits the H(N) group at 8.35 Hz, while the 13C NMR signal of the C=S and C=O groups appear at 174.66 and 163.19 Hz, respectively.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2  . The NH H atom was located in a difference-Fourier map and freely refined. The C-bound H atoms were included in calculated positions and refined in a riding-model approximation: C—H = 0.93–0.97 Å with U iso(H) = 1.2U eq(C).

Table 2
Experimental details

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989017013317/su4162sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017013317/su4162Isup2.hkl

CCDC reference: 1575129

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C14H18N2O2SF(000) = 592
Mr = 278.36Dx = 1.301 Mg m3
Monoclinic, P21/cMelting point = 402–401 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.2228 (9) ÅCell parameters from 9933 reflections
b = 18.1289 (19) Åθ = 3.1–25.0°
c = 9.945 (1) ŵ = 0.23 mm1
β = 106.612 (3)°T = 296 K
V = 1420.6 (3) Å3Block, pale-yellow
Z = 40.50 × 0.35 × 0.16 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer2500 independent reflections
Radiation source: fine-focus sealed tube1955 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scanθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 2007)h = −9→9
Tmin = 0.895, Tmax = 0.965k = −21→21
38784 measured reflectionsl = −11→11

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.081H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.251w = 1/[σ2(Fo2) + (0.1213P)2 + 2.9951P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2500 reflectionsΔρmax = 0.99 e Å3
178 parametersΔρmin = −0.52 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.10498 (18)0.58727 (6)1.00073 (14)0.0680 (5)
O10.0919 (5)0.77247 (17)0.7982 (3)0.0700 (10)
O2−0.3058 (4)1.02962 (17)0.9922 (3)0.0636 (9)
N10.1299 (4)0.73279 (18)1.0176 (3)0.0460 (8)
N20.3615 (6)0.6709 (2)0.9800 (6)0.0807 (15)
C1−0.0338 (5)0.8445 (2)0.9412 (4)0.0416 (9)
C2−0.1170 (5)0.8893 (3)0.8297 (4)0.0529 (11)
H2−0.11170.87810.73970.064*
C3−0.2068 (6)0.9496 (3)0.8504 (4)0.0587 (11)
H3−0.26220.97880.77420.070*
C4−0.2165 (5)0.9679 (2)0.9832 (4)0.0487 (10)
C5−0.1338 (5)0.9242 (2)1.0951 (4)0.0496 (10)
H5−0.13890.93571.18500.059*
C6−0.0434 (5)0.8633 (2)1.0739 (4)0.0482 (10)
H60.01230.83421.15020.058*
C70.0655 (5)0.7812 (2)0.9123 (4)0.0460 (10)
C80.2076 (6)0.6650 (2)0.9959 (4)0.0502 (10)
C90.4655 (9)0.7393 (3)0.9999 (9)0.102 (2)
H9A0.39280.78140.99970.122*
H9B0.54990.73741.09070.122*
C100.5469 (9)0.7491 (4)0.8969 (9)0.105 (2)
H10A0.62000.79200.92010.126*
H10B0.46240.75880.80820.126*
C110.6528 (7)0.6829 (4)0.8795 (8)0.0910 (18)
H11A0.68920.68890.79560.109*
H11B0.75330.67960.95930.109*
C120.5502 (10)0.6128 (4)0.8685 (10)0.119 (3)
H12A0.46940.61100.77590.143*
H12B0.62620.57110.87620.143*
C130.4638 (11)0.6046 (3)0.9654 (10)0.119 (3)
H13A0.54420.59401.05570.143*
H13B0.38850.56250.93960.143*
C14−0.3187 (7)1.0502 (3)1.1266 (6)0.0678 (13)
H14A−0.36891.01061.16490.102*
H14B−0.38841.09341.11790.102*
H14C−0.20761.06051.18770.102*
H10.085 (5)0.732 (2)1.084 (4)0.043 (11)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0856 (10)0.0478 (7)0.0731 (9)−0.0160 (6)0.0266 (7)0.0031 (5)
O10.124 (3)0.0583 (19)0.0390 (16)−0.0046 (18)0.0422 (17)−0.0021 (13)
O20.0632 (19)0.0547 (18)0.070 (2)0.0078 (15)0.0152 (15)0.0078 (15)
N10.064 (2)0.0447 (19)0.0374 (17)−0.0028 (15)0.0268 (16)−0.0016 (14)
N20.094 (3)0.042 (2)0.133 (4)−0.009 (2)0.075 (3)−0.019 (2)
C10.049 (2)0.042 (2)0.0356 (19)−0.0123 (16)0.0146 (16)0.0004 (15)
C20.062 (2)0.063 (3)0.032 (2)−0.008 (2)0.0096 (17)0.0012 (18)
C30.060 (3)0.065 (3)0.044 (2)0.001 (2)0.0033 (19)0.012 (2)
C40.043 (2)0.046 (2)0.055 (2)−0.0077 (17)0.0115 (17)0.0005 (18)
C50.062 (2)0.050 (2)0.040 (2)−0.0004 (19)0.0181 (18)−0.0006 (17)
C60.064 (2)0.048 (2)0.033 (2)0.0011 (19)0.0133 (17)0.0059 (16)
C70.064 (2)0.047 (2)0.0309 (19)−0.0177 (18)0.0199 (17)−0.0060 (16)
C80.070 (3)0.044 (2)0.042 (2)−0.0095 (19)0.0253 (19)−0.0063 (16)
C90.103 (5)0.054 (3)0.175 (7)−0.021 (3)0.084 (5)−0.028 (4)
C100.084 (4)0.079 (4)0.174 (7)−0.015 (3)0.075 (5)−0.011 (4)
C110.064 (3)0.095 (4)0.124 (5)0.012 (3)0.041 (3)−0.005 (4)
C120.094 (5)0.088 (5)0.189 (8)0.018 (4)0.064 (5)−0.036 (5)
C130.142 (6)0.055 (3)0.195 (9)0.010 (4)0.105 (6)−0.010 (4)
C140.069 (3)0.053 (3)0.087 (4)0.004 (2)0.031 (3)−0.006 (2)

Geometric parameters (Å, º)

S1—C81.651 (4)C5—H50.9300
O1—C71.226 (4)C6—H60.9300
O2—C41.356 (5)C9—C101.385 (9)
O2—C141.421 (6)C9—H9A0.9700
N1—C71.352 (5)C9—H9B0.9700
N1—C81.430 (5)C10—C111.521 (8)
N1—H10.84 (4)C10—H10A0.9700
N2—C81.323 (6)C10—H10B0.9700
N2—C91.487 (6)C11—C121.511 (9)
N2—C131.497 (7)C11—H11A0.9700
C1—C21.386 (6)C11—H11B0.9700
C1—C61.387 (5)C12—C131.358 (10)
C1—C71.484 (6)C12—H12A0.9700
C2—C31.367 (6)C12—H12B0.9700
C2—H20.9300C13—H13A0.9700
C3—C41.386 (6)C13—H13B0.9700
C3—H30.9300C14—H14A0.9600
C4—C51.377 (6)C14—H14B0.9600
C5—C61.381 (6)C14—H14C0.9600
C4—O2—C14117.8 (3)C10—C9—H9B109.0
C7—N1—C8122.2 (3)N2—C9—H9B109.0
C7—N1—H1117 (3)H9A—C9—H9B107.8
C8—N1—H1115 (3)C9—C10—C11113.3 (6)
C8—N2—C9125.8 (4)C9—C10—H10A108.9
C8—N2—C13122.0 (4)C11—C10—H10A108.9
C9—N2—C13111.3 (5)C9—C10—H10B108.9
C2—C1—C6117.9 (4)C11—C10—H10B108.9
C2—C1—C7118.1 (3)H10A—C10—H10B107.7
C6—C1—C7123.9 (3)C12—C11—C10110.2 (5)
C3—C2—C1120.8 (4)C12—C11—H11A109.6
C3—C2—H2119.6C10—C11—H11A109.6
C1—C2—H2119.6C12—C11—H11B109.6
C2—C3—C4121.0 (4)C10—C11—H11B109.6
C2—C3—H3119.5H11A—C11—H11B108.1
C4—C3—H3119.5C13—C12—C11115.8 (6)
O2—C4—C5124.9 (4)C13—C12—H12A108.3
O2—C4—C3116.1 (4)C11—C12—H12A108.3
C5—C4—C3119.0 (4)C13—C12—H12B108.3
C4—C5—C6119.9 (4)C11—C12—H12B108.3
C4—C5—H5120.0H12A—C12—H12B107.4
C6—C5—H5120.0C12—C13—N2113.8 (6)
C5—C6—C1121.4 (4)C12—C13—H13A108.8
C5—C6—H6119.3N2—C13—H13A108.8
C1—C6—H6119.3C12—C13—H13B108.8
O1—C7—N1120.0 (4)N2—C13—H13B108.8
O1—C7—C1122.1 (4)H13A—C13—H13B107.7
N1—C7—C1117.9 (3)O2—C14—H14A109.5
N2—C8—N1115.7 (3)O2—C14—H14B109.5
N2—C8—S1125.9 (3)H14A—C14—H14B109.5
N1—C8—S1118.4 (3)O2—C14—H14C109.5
C10—C9—N2112.9 (6)H14A—C14—H14C109.5
C10—C9—H9A109.0H14B—C14—H14C109.5
N2—C9—H9A109.0
C6—C1—C2—C3−0.5 (6)C2—C1—C7—N1−172.4 (4)
C7—C1—C2—C3−178.3 (4)C6—C1—C7—N110.0 (6)
C1—C2—C3—C40.3 (7)C9—N2—C8—N17.8 (8)
C14—O2—C4—C5−1.5 (6)C13—N2—C8—N1176.1 (6)
C14—O2—C4—C3180.0 (4)C9—N2—C8—S1−168.8 (5)
C2—C3—C4—O2178.7 (4)C13—N2—C8—S1−0.6 (9)
C2—C3—C4—C50.0 (6)C7—N1—C8—N274.8 (6)
O2—C4—C5—C6−178.6 (4)C7—N1—C8—S1−108.2 (4)
C3—C4—C5—C6−0.1 (6)C8—N2—C9—C10−137.5 (7)
C4—C5—C6—C1−0.2 (6)C13—N2—C9—C1053.2 (9)
C2—C1—C6—C50.5 (6)N2—C9—C10—C11−53.7 (9)
C7—C1—C6—C5178.1 (4)C9—C10—C11—C1248.7 (9)
C8—N1—C7—O1−9.5 (6)C10—C11—C12—C13−47.0 (10)
C8—N1—C7—C1171.5 (3)C11—C12—C13—N249.2 (11)
C2—C1—C7—O18.6 (6)C8—N2—C13—C12139.6 (7)
C6—C1—C7—O1−169.0 (4)C9—N2—C13—C12−50.6 (10)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C1–C6 benzene ring.

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.84 (4)2.12 (4)2.897 (4)154 (4)
C6—H6···O1i0.932.403.294 (5)160
C10—H10A···Cgii0.972.893.851 (8)170

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x+1, y, z.

Funding Statement

This work was funded by Universiti Kebangsaan Malaysia grants DIP-2012–11, DLP-2013–001, DPP-2013–043, and DPP-2014–048. Ministry of Higher Education, Malaysia grant FRGS/1/2014/ST01/UKM/02/2.

This paper was supported by the following grant(s):

Universiti Kebangsaan Malaysia DIP-2012–11DLP-2013–001DPP-2013–043DPP-2014–048.
Ministry of Higher Education, Malaysia FRGS/1/2014/ST01/UKM/02/2.

References

  • Al-abbasi, A. A., Mohamed Tahir, M. I. & Kassim, M. B. (2012). Acta Cryst. E68, o201. [PMC free article] [PubMed]
  • Arslan, H., Florke, U., Kulcu, N. & Kayhan, E. (2006). Turk. J. Chem. 30, 429–440.
  • Brahmachari, G. & Das, S. (2012). Tetrahedron Lett. 53, 1479–1484.
  • Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dillen, J., Woldu, M. G. & Koch, K. R. (2006). Acta Cryst. E62, o5225–o5227.
  • Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  • Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [PMC free article] [PubMed]
  • Isab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Evans, H. S. (2010). Polyhedron, 29, 1251–1256.
  • Kovačková, S., Dračínský, M. & Rejman, D. (2011). Tetrahedron, 67, 1485–1500.
  • Małecki, J. G. & Nycz, J. N. (2013). Polyhedron, 55, 49–56.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sheldrick, G. M. (2015). Acta Cryst C71, 3–8. [PMC free article] [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Suhud, K., Heng, L. Y., Hasbullah, S. A., Ahmad, M. & Kassim, M. B. (2015a). Acta Cryst. E71, o225–o226.
  • Suhud, K., Heng, L. Y., Rezayi, M., Al-abbasi, A. A., Hasbullah, S. A., Ahmad, M. & Kassim, M. B. (2015b). J. Solution Chem. 44, 181–192.
  • Tan, S. S., Al-abbasi, A. A., Tahir, M. I. M. & Kassim, M. B. (2014). Polyhedron, 68, 287–294.
  • Watson, P. S., Jiang, B. & Scott, B. (2000). Org. Lett. 2, 3679–3681. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography