Search tips
Search criteria 


Logo of actae2this articlesearchopen accesssubmitActa Crystallographica Section E: Crystallographic CommunicationsActa Crystallographica Section E: Crystallographic Communications
Acta Crystallogr E Crystallogr Commun. 2017 December 1; 73(Pt 12): 1855–1860.
Published online 2017 November 14. doi:  10.1107/S2056989017016152
PMCID: PMC5730239

Crystal structure of BaMn2(AsO4)2 containing discrete [Mn4O18]28− units


In our attempt to search for mixed alkaline-earth and transition metal arsenates, the title compound, barium dimanganese(II) bis­(arsenate), has been synthesized by employing a high-temperature RbCl flux. The crystal structure of BaMn2(AsO4)2 is made up of MnO6 octa­hedra and AsO4 tetra­hedra assembled by sharing corners and edges into infinite slabs with composition [Mn2(AsO4)2]2− that extend parallel to the ab plane. The barium cations reside between parallel slabs maintaining the inter­slab connectivity through coordination to eight oxygen anions. The layered anionic framework comprises weakly inter­acting [Mn4O18]28− tetra­meric units. In each tetra­mer, the manganese(II) cations are in a planar arrangement related by a center of inversion. Within the slabs, the tetra­meric units are separated from each other by 6.614 (2) Å (Mn(...)Mn distances). The title compound has isostructural analogues amongst synthetic SrM 2(XO4)2 compounds with M = Ni, Co, and X = As, P.

Keywords: orthoarsenate, tetra­meric units, layered framework stucture, bond-valence sum calculations, crystal structure

Chemical context  

Compounds of vanadates, phosphates, and arsenates with the general formula AM 2(XO4)2, where A = Pb or an alkaline earth metal, M = Mg or a divalent first row transition metal, and X = V, P or As, can adopt different structure types. They have attracted much attention in solid-state physics due to magnetic ordering at low temperatures and the occurrence of (multiple) phase transitions. For AM 2(XO4)2 compounds with Pb or an alkaline earth metal ion on the A 2+ site and a transition metal with partially filled 3d orbitals on the M 2+ site, one-dimensional magnetic properties with high anisotropy and weak inter­chain inter­actions have been reported (Bera et al., 2013  ). The crystal structures of some of these compounds comprise screw-chains made up of MO6 octa­hedra, separated by non-magnetic VO4 (V5+; 3d 0) tetra­hedra, resulting in a quasi one-dimensional structure. Five representatives of this family have been characterized crystallographically, viz. BaMg2(VO4)2 (Velikodnyi et al., 1982  ), BaCo2(VO4)2 (Wichmann & Müller-Buschbaum, 1986a  ), BaMn2(VO4)2, BaMgZn(VO4)2 and Ba1/2Sr1/2Ni2(VO4)2 (Von Postel & Müller-Buschbaum, 1992  ). They crystallize in the tetra­gonal crystal system in space group I41/acd (No. 142). For the related compounds SrMn2(VO4)2 (Niesen et al., 2011  ), SrCo2(VO4)2 (Osterloh & Müller-Buschbaum, 1994a  ), PbCo2(VO4)2 (He et al., 2007  ) and PbNi2(VO4)2 (Uchiyama et al., 1999  ), it was found that they adopt the SrNi2(VO4)2 structure type (Wichmann & Müller-Buschbaum, 1986b  ), crystallizing in space group I41 cd (No.110), a subgroup of the latter. The only copper(II) vanadate compound with an AM 2(XO4)2 composition is BaCu2(VO4)2 (Vogt & Müller-Buschbaum, 1990  ). The crystal structure is also tetra­gonal but belongs to space group I An external file that holds a picture, illustration, etc.
Object name is e-73-01855-efi1.jpg2d (No. 122), another subgroup of I41/acd. BaNi2(VO4)2 (Rogado et al., 2002  ) adopts a different structure type as it belongs to the rhombohedral space group R An external file that holds a picture, illustration, etc.
Object name is e-73-01855-efi2.jpg (No. 148) and represents the only quasi-two-dimensional system within the above-mentioned vanadates.

Phosphates containing transition metals have been widely investigated because of their variety of potential applications. They can adopt a plethora of different structure types and show various magnetic properties. With respect to the AM 2(XO4)2 family of compounds, the phosphates BaCu2(PO4)2 (Moqine et al., 1993  ), α-SrCo2(PO4)2 (El Bali et al., 1993a  ), β-SrCo2(PO4)2 (Yang et al., 2016  ), SrNi2(PO4)2 (El Bali et al., 1993b  ), SrNiZn(PO4)2 (El Bali et al., 2004  ) and SrMn2(PO4)2 (El Bali et al., 2000  ) crystallize in space group P An external file that holds a picture, illustration, etc.
Object name is e-73-01855-efi3.jpg (No. 2). SrCu2(PO4)2 (Belik et al., 2005  ) and PbCu2(PO4)2 (Belik et al., 2006  ) are isotypic and crystallize in the ortho­rhom­bic crystal system [space group Pccn (No. 56)]. The crystal structures of BaNi2(PO4)2 (Čabrić et al., 1982  ), and BaFe2(PO4)2 (Kabbour et al., 2012  ) possess trigonal symmetry in space group R An external file that holds a picture, illustration, etc.
Object name is e-73-01855-efi2.jpg (No. 148). BaCo2(PO4)2, in particular, can exist in several polymorphs such as the rhombohedral γ-phase [(R An external file that holds a picture, illustration, etc.
Object name is e-73-01855-efi2.jpg (No. 148); Bircsak & Harrison, 1998  ], the monoclinic α-phase [P21/a (No. 14)] and the trigonal β-phase [P An external file that holds a picture, illustration, etc.
Object name is e-73-01855-efi2.jpg (No. 147); David et al., 2013  ], depending on the synthetic conditions and thermal history. It has been reported that α-SrZn2(PO4)2 (Hemon & Courbion, 1990  ) and SrFe2(PO4)2 (Belik et al., 2001  ) adopt different structure types and crystallize in the monoclinic space group P21/c (No. 14).

Thus far, compared to vanadates and phosphates, only a few arsenates of the AM 2(XO4)2 family have been studied, viz. BaNi2(AsO4)2 (Eymond et al., 1969a  ), BaMg2(AsO4)2 and BaCo2(AsO4)2 (Eymond et al., 1969b  ) in space group R An external file that holds a picture, illustration, etc.
Object name is e-73-01855-efi2.jpg, and SrCo2(AsO4)2 (Osterloh & Müller-Buschbaum, 1994a  ) and BaCu2(AsO4)2 (Osterloh & Müller-Buschbaum, 1994b  ) in space groups P An external file that holds a picture, illustration, etc.
Object name is e-73-01855-efi3.jpg and P21/n, respectively. To extend our knowledge of the AM 2(XO4)2 system, we have undertaken an investigation of the BaO/MnO/As2O5 phase diagram and employed a flux method for crystal growth. The present work deals with the determination of the crystal structure of a new mixed-metal orthoarsenate, BaMn2(AsO4)2.

Structural commentary  

Besides Ba2Mn(AsO4)2 (Adams et al., 1996  ), BaMn2(AsO4)2 represents the second compound to be structurally characterized in the system BaO/MnO/As2O5. BaMn2(AsO4)2 is isotypic with β-SrCo2(PO4)2 (Yang et al., 2016  ), SrCo2(AsO4)2 (Osterloh & Müller-Buschbaum, 1994a  ) and SrNi2(PO4)2 (El Bali et al., 1993b  ) (for numerical data for these structures, see Supplementary Table 1  in the Supporting information). The crystal structure of BaMn2(AsO4)2 can be described as a three-dimensional framework containing slabs of composition [Mn2(AsO4)2]2− that are built up from two different MnO6 and two different AsO4 polyhedra (Fig. 1  ) and extend parallel to the ab plane (Fig. 2  ). Mn1 possesses a distorted octa­hedral coordination environment and exhibits five normal Mn—O bonds and one long Mn—O bond. Mn2 is also six-coordinated and has two long Mn—O bonds, again forming a distorted MnO6 octa­hedron (Table1, Fig. 3  a). Similar distortions in MnO6 octa­hedra have been observed previously (Adams et al., 1996  ; Weil & Kremer, 2017  ). The two arsenic atoms are part of AsO4 tetra­hedra (Fig. 3  b), with As—O bond lengths ranging from 1.663 (5)–1.710 (4) Å (Table 1  ) and O—As—O bond angles from 99.8 (2)–114.6 (2)°. The average As—O bond length (1.688 Å) in the title compound is identical to those of previously reported arsenates (Ulutagay-Kartin et al., 2003  ). The bond lengths are also consistent with the sum of the Shannon crystal radii (Shannon, 1976  ), 1.68 Å, of four-coordinate As5+ (0.475 Å) and two-coordinate O2− (1.21 Å). The barium cations reside between parallel slabs and maintain the inter­slab connectivity through coordination to eight oxygen anions (Fig. 3  c). The average Ba—O bond length, 2.83 Å, matches closely with 2.77 Å, the sum of the Shannon radii for eight-coordinate Ba2+ (1.56 Å) and two-coordinated O2− (1.21 Å) ions, and is in agreement with those of other barium arsenates (Weil, 2016  ).

Figure 1
(a) Perspective view of the crystal structure of BaMn2(AsO4)2 viewed along the a axis. The quasi-two-dimensional lattice is characterized by [Mn2(AsO4)2]2− slabs, which are highlighted by dark- and light-colored lines representing the Mn—O ...
Figure 2
(a) Quasi-two-dimensional structure of BaMn2(AsO4)2 shown by polyhedral and ball-and-stick drawing viewed along the b axis. (b) Ball-and-stick drawing of a portion of the manganese oxide network formed by inter­connected tetra­meric units. ...
Figure 3
(a) Part of the crystal structure showing Mn1O6 and Mn2O6 octa­hedra sharing corners (polyhedral drawing). To distinguish the two types of bonds (short and long), one is highlighted with solid Mn—O bonds (short) and the other in dotted ...
Table 1
Selected bond lengths (Å)

Fig. 4  a shows two Mn1O6 octa­hedra sharing a common edge, O1v—O1vii (symmetry codes refer to Table 1  ) to form a Mn2O10 unit with an Mn1(...)Mn1 separation of 3.1854 (17) Å and an Mn1—O1—Mn1 angle of 93.34 (18)°. Mn2O6 octa­hedra share corners with the Mn2O10 unit through O3 and O4, resulting in a tetra­meric [Mn4O18]28− unit (Fig. 4  b). These [Mn4O18]28− units are inter­linked through AsO4 tetra­hedra to give slabs with overall composition [Mn2(AsO4)2]2−. Each [Mn4O18]28− unit inter­acts weakly by sharing oxygen vertices with six other units, whereby the tetra­meric units are separated from each other along the b axis by 4.2616 (19) Å [Mn1(...)Mn2(1 − x, −y, 2 − z)] and along the a axis by 3.490 (18) Å [Mn1(...)Mn2(x, −1 + y, −1 + z)]. The distance between the Mn atoms of adjacent slabs [Mn2(...)Mn2(−x, 1 − y, −z)] is 6.614 (2) Å (Fig. 1  a).

Figure 4
(a) The ball-and-stick and polyhedral composite representation showing parts of the Mn—As—O framework. The polyhedral units represent AsO4 tetra­hedra. One of the [Mn4O18]28− units is located in the area outlined by a dotted ...

As shown in Fig. 4  a, the roles of the two arsenate groups are different. As1O4 tetra­hedra share oxygen atoms O1 with Mn1O6 octa­hedra, and O3 and O5 atoms with Mn1O6 and Mn2O6 octa­hedra while oxygen atom O6 points towards neighboring slabs to form a bond with a Ba2+ cation (Fig. 4  a). As2O4 tetra­hedra, on the other hand, share an edge (O4–O7) with Mn2O6 octa­hedra of one tetra­meric unit and share two corners (O7 and O8) with Mn1O6 and Mn2O6 octa­hedra of two other neighboring tetra­meric units. Thus As1O4 and As2O4 tetra­hedra inter­link two and three neighboring tetra­meric units, respectively. As shown in Fig. 1  c, As1O4 and As2O4 tetra­hedra alternate along the b axis, and this template-like arrangement allows the barium cations to propagate in a zigzag fashion to maintain the distance between the [Mn2(AsO4)2]2− slabs.

Bond-valence sum (BVS) calculations (Brese & O’Keefe, 1991  ) for BaMn2(AsO4)2 result in values of 2.19, 1.84, 4.87, 5.05 and 1.98 valence units for Mn1, Mn2, As1, As2 and Ba1, respectively, which in each case is close to the expected values of 2 for Mn, 5 for As and 2 for Ba.

It is important to note that the barium cations reside in the gaps between adjacent [Mn2(AsO4)2]2− slabs. The large inter-slab separation [6.614 (2) Å] leads us to believe that magnetic inter­actions that occur between these slabs are expected to be extremely weak, and the dominant magnetic exchange is expected to appear between Mn2+ ions in the tetra­meric units within a slab. Judging from the reported magnetic properties for related BaM 2(XO4)2 (M = Co, Ni; X = As, P) compounds with the magnetic ions sitting on a honeycomb lattice (Martin et al., 2012  ), or those of β-SrCo2(PO4)2 (Yang et al., 2016  ) and SrNi2(PO4)2 (He et al., 2008  ), we also expect inter­esting magnetic phenomena for BaMn2(AsO4)2.

Synthesis and crystallization  

Light-pink crystals of BaMn2(AsO4)2 were grown by employing an RbCl flux in a fused silica ampoule under vacuum. MnO (3.81 mmol, 99.999+%, Alfa), BaO (1.90 mmol, 99.99+%, Aldrich) and As2O5 (1.90 mmol, 99.9+%, Strem) were mixed and ground with RbCl (1:3 by weight) in a nitro­gen-blanketed drybox. The resulting mixture was heated to 818 K at 1 K min−1, isothermed for two days, heated to 1023 K at 1 K min−1, isothermed for another four days, then slowly cooled to 673 K at 0.1 K min−1, followed by furnace-cooling to room temperature. Prismatic crystals of BaMn2(AsO4)2 (Fig. 5  ) were retrieved upon washing off recrystallized RbCl with deionized water.

Figure 5
Single crystals of BaMn2(AsO4)2 obtained from a RbCl flux.


Crystal data, data collection and structure refinement details are summarized in Table 2  . The final Fourier difference synthesis showed the maximum residual electron density 0.96 Å from Ba1 and the minimum 0.83 Å from the same site.

Table 2
Experimental details

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017016152/wm5420sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017016152/wm5420Isup2.hkl

Supporting information file. DOI: 10.1107/S2056989017016152/wm5420sup3.pdf

CCDC reference: 1584656

Additional supporting information: crystallographic information; 3D view; checkCIF report


The Division of Science, Mathematics and Technology at Governors State University and the University Research Grant (URG) are gratefully acknowledged for their continuous support. Special thanks are due to Dr Liurukara D. Sanjeewa at Clemson University for X-ray crystallography expertise.

supplementary crystallographic information

Crystal data

BaMn2(AsO4)2Z = 2
Mr = 525.06F(000) = 472
Triclinic, P1Dx = 4.787 Mg m3
a = 5.7981 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.0938 (14) ÅCell parameters from 3100 reflections
c = 9.817 (2) Åθ = 2.3–25.2°
α = 109.75 (3)°µ = 17.78 mm1
β = 100.42 (3)°T = 293 K
γ = 98.40 (3)°Column, light pink
V = 364.26 (15) Å30.20 × 0.10 × 0.06 mm

Data collection

Rigaku AFC8S diffractometer1254 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
[var phi] and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan (REQAB; Rigaku, 1998)h = −6→7
Tmin = 0.808, Tmax = 1.000k = −8→8
3149 measured reflectionsl = −11→11
1330 independent reflections1 standard reflections every 1 reflections


Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039w = 1/[σ2(Fo2) + (0.0674P)2 + 0.2802P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097(Δ/σ)max = 0.001
S = 1.14Δρmax = 3.25 e Å3
1330 reflectionsΔρmin = −2.93 e Å3
119 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.076 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Ba10.24355 (7)0.79849 (6)0.05371 (4)0.0100 (2)
Mn10.36901 (17)1.15237 (15)0.44407 (11)0.0091 (3)
Mn20.00727 (18)0.59526 (15)0.35472 (12)0.0105 (3)
As1−0.15775 (11)1.02502 (10)0.30239 (7)0.0061 (3)
As20.40017 (11)0.42782 (10)0.24010 (7)0.0062 (3)
O1−0.3934 (8)0.9502 (7)0.3669 (5)0.0092 (10)
O20.3546 (8)0.1879 (7)0.2382 (5)0.0124 (10)
O30.0571 (8)0.8910 (7)0.3296 (5)0.0105 (10)
O40.3801 (8)0.5917 (7)0.4075 (5)0.0099 (10)
O5−0.0125 (8)1.2729 (7)0.4122 (5)0.0125 (10)
O6−0.2437 (9)0.9808 (7)0.1213 (5)0.0139 (11)
O70.1684 (8)0.4587 (7)0.1276 (6)0.0133 (11)
O80.6676 (8)0.4888 (7)0.2047 (5)0.0127 (10)

Atomic displacement parameters (Å2)

Ba10.0116 (3)0.0073 (3)0.0072 (3)−0.00194 (18)0.00103 (18)0.0003 (2)
Mn10.0061 (5)0.0097 (5)0.0073 (5)−0.0021 (4)0.0006 (4)0.0000 (4)
Mn20.0053 (5)0.0125 (6)0.0087 (6)0.0006 (4)0.0003 (4)−0.0009 (4)
As10.0043 (4)0.0072 (4)0.0043 (4)−0.0005 (3)0.0007 (3)−0.0001 (3)
As20.0036 (4)0.0060 (4)0.0069 (4)−0.0002 (3)0.0007 (3)0.0007 (3)
O10.006 (2)0.011 (2)0.010 (2)0.0021 (17)0.0015 (17)0.0034 (19)
O20.017 (2)0.006 (2)0.012 (3)0.0009 (18)0.0022 (19)0.0023 (19)
O30.006 (2)0.009 (2)0.016 (3)0.0021 (17)0.0009 (18)0.005 (2)
O40.009 (2)0.009 (2)0.008 (2)0.0015 (18)0.0040 (17)−0.0008 (18)
O50.013 (2)0.013 (2)0.006 (2)−0.0032 (18)0.0037 (18)−0.001 (2)
O60.017 (3)0.018 (3)0.004 (2)0.002 (2)−0.0009 (19)0.004 (2)
O70.008 (2)0.013 (2)0.016 (3)−0.0008 (18)−0.0042 (19)0.007 (2)
O80.006 (2)0.018 (2)0.011 (2)−0.0018 (18)0.0055 (18)0.002 (2)

Geometric parameters (Å, º)

Ba1—O2i2.647 (4)Mn2—O8viii2.094 (5)
Ba1—O7ii2.682 (5)Mn2—O42.136 (5)
Ba1—O6iii2.687 (5)Mn2—O5vii2.152 (5)
Ba1—O72.741 (5)Mn2—O32.178 (5)
Ba1—O8iv2.853 (5)Mn2—O72.518 (5)
Ba1—O6v2.921 (5)Mn2—O5ix2.526 (5)
Ba1—O33.000 (5)As1—O61.663 (5)
Ba1—O1v3.131 (5)As1—O11.697 (5)
Mn1—O4vi2.052 (5)As1—O51.709 (5)
Mn1—O2i2.108 (5)As1—O31.710 (4)
Mn1—O1v2.179 (4)As2—O71.669 (5)
Mn1—O1vii2.200 (5)As2—O21.677 (5)
Mn1—O32.202 (5)As2—O81.677 (4)
Mn1—O52.491 (5)As2—O41.698 (5)
Mn1—Mn1vi3.185 (2)
O2i—Ba1—O7ii133.63 (15)O8viii—Mn2—O5ix94.05 (18)
O2i—Ba1—O6iii74.41 (15)O4—Mn2—O5ix79.10 (17)
O7ii—Ba1—O6iii90.91 (15)O5vii—Mn2—O5ix81.45 (17)
O2i—Ba1—O7127.00 (15)O3—Mn2—O5ix173.25 (17)
O7ii—Ba1—O771.27 (16)O7—Mn2—O5ix94.82 (16)
O6iii—Ba1—O7158.19 (14)O6—As1—O1111.1 (2)
O2i—Ba1—O8iv144.78 (15)O6—As1—O5114.6 (2)
O7ii—Ba1—O8iv69.26 (14)O1—As1—O5110.1 (2)
O6iii—Ba1—O8iv79.72 (15)O6—As1—O3109.1 (2)
O7—Ba1—O8iv82.17 (15)O1—As1—O3109.0 (2)
O2i—Ba1—O6v67.93 (15)O5—As1—O3102.5 (2)
O7ii—Ba1—O6v152.74 (15)O7—As2—O2111.2 (2)
O6iii—Ba1—O6v78.74 (16)O7—As2—O8114.4 (3)
O7—Ba1—O6v111.37 (14)O2—As2—O8109.7 (2)
O8iv—Ba1—O6v84.02 (14)O7—As2—O499.8 (2)
O2i—Ba1—O363.79 (14)O2—As2—O4109.1 (2)
O7ii—Ba1—O394.34 (15)O8—As2—O4112.2 (2)
O6iii—Ba1—O3126.26 (14)As1—O1—Mn1viii121.9 (2)
O7—Ba1—O369.23 (14)As1—O1—Mn1vii125.5 (2)
O8iv—Ba1—O3150.59 (13)Mn1viii—O1—Mn1vii93.34 (18)
O6v—Ba1—O3112.17 (13)As1—O1—Ba1viii93.03 (18)
O2i—Ba1—O1v58.18 (14)Mn1viii—O1—Ba1viii85.45 (14)
O7ii—Ba1—O1v146.18 (14)Mn1vii—O1—Ba1viii133.22 (19)
O6iii—Ba1—O1v121.73 (13)As2—O2—Mn1ix117.6 (2)
O7—Ba1—O1v78.33 (13)As2—O2—Ba1ix141.9 (3)
O8iv—Ba1—O1v121.31 (13)Mn1ix—O2—Ba1ix100.46 (18)
O6v—Ba1—O1v54.34 (13)As1—O3—Mn2127.5 (2)
O3—Ba1—O1v60.47 (12)As1—O3—Mn198.5 (2)
O4vi—Mn1—O2i102.96 (19)Mn2—O3—Mn1127.0 (2)
O4vi—Mn1—O1v99.75 (17)As1—O3—Ba1104.3 (2)
O2i—Mn1—O1v82.98 (19)Mn2—O3—Ba1101.98 (16)
O4vi—Mn1—O1vii84.93 (19)Mn1—O3—Ba188.38 (16)
O2i—Mn1—O1vii167.89 (17)As2—O4—Mn1vi127.8 (3)
O1v—Mn1—O1vii86.66 (18)As2—O4—Mn299.8 (2)
O4vi—Mn1—O3166.2 (2)Mn1vi—O4—Mn2121.3 (2)
O2i—Mn1—O388.15 (19)As1—O5—Mn2vii122.2 (3)
O1v—Mn1—O389.68 (17)As1—O5—Mn188.39 (19)
O1vii—Mn1—O385.54 (18)Mn2vii—O5—Mn197.19 (19)
O4vi—Mn1—O5104.50 (16)As1—O5—Mn2i129.8 (3)
O2i—Mn1—O579.89 (17)Mn2vii—O5—Mn2i98.55 (17)
O1v—Mn1—O5152.85 (16)Mn1—O5—Mn2i116.29 (18)
O1vii—Mn1—O5107.30 (17)As1—O6—Ba1iii137.3 (3)
O3—Mn1—O568.96 (16)As1—O6—Ba1viii101.6 (2)
O8viii—Mn2—O4150.46 (18)Ba1iii—O6—Ba1viii101.26 (16)
O8viii—Mn2—O5vii116.23 (18)As2—O7—Mn287.0 (2)
O4—Mn2—O5vii91.36 (18)As2—O7—Ba1ii132.7 (2)
O8viii—Mn2—O392.31 (19)Mn2—O7—Ba1ii96.77 (16)
O4—Mn2—O396.40 (18)As2—O7—Ba1116.9 (2)
O5vii—Mn2—O393.72 (19)Mn2—O7—Ba1100.85 (16)
O8viii—Mn2—O785.61 (17)Ba1ii—O7—Ba1108.73 (16)
O4—Mn2—O766.64 (17)As2—O8—Mn2v127.9 (3)
O5vii—Mn2—O7157.97 (16)As2—O8—Ba1iv116.1 (2)
O3—Mn2—O787.90 (17)Mn2v—O8—Ba1iv102.60 (17)

Symmetry codes: (i) x, y+1, z; (ii) −x, −y+1, −z; (iii) −x, −y+2, −z; (iv) −x+1, −y+1, −z; (v) x+1, y, z; (vi) −x+1, −y+2, −z+1; (vii) −x, −y+2, −z+1; (viii) x−1, y, z; (ix) x, y−1, z.


  • Adams, R., Layland, R. & Payen, C. (1996). Polyhedron, 15, 1235–1239.
  • Belik, A. A., Azuma, M., Matsuo, A., Kaji, T., Okubo, S., Ohta, H., Kindo, K. & Takano, M. (2006). Phys. Rev. B, 73, 024429-1–024429-7.
  • Belik, A. A., Azuma, M., Matsuo, A., Whangbo, M., Koo, H. J., Kikuchi, J., Kaji, T., Okubo, S., Ohta, H., Kindo, K. & Takano, M. (2005). Inorg. Chem. 44, 6632–6640. [PubMed]
  • Belik, A. A., Lazoryak, B. I., Pokholok, K. V., Terekhina, T. P., Leonidov, I. A., Mitberg, E. B., Karelina, V. V. & Kellerman, D. G. (2001). J. Solid State Chem. 162, 113–121.
  • Bera, A. K., Lake, B., Islam, A. T. M. N., Klemke, B., Faulhaber, E. & Law, J. M. (2013). Phys. Rev. B, 87, 224423-1–224423-10.
  • Bircsak, Z. & Harrison, W. T. A. (1998). Acta Cryst. C54, 1554–1556.
  • Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Brese, N. E. & O’Keeffe, M. (1991). Acta Cryst. B47, 192–197.
  • Čabrić, B., Žižić, B. & Napijalo, M. L. (1982). J. Cryst. Growth, 60, 169–171.
  • David, R., Kabbour, H., Pautrat, A. & Mentré, O. (2013). Inorg. Chem. 52, 8732–8737. [PubMed]
  • El Bali, B., Boukhari, A., Aride, J. & Abraham, F. (1993b). J. Solid State Chem. 104, 453–459.
  • El Bali, B., Boukhari, A., Glaum, R., Gerk, M. & Maass, K. (2000). Z. Anorg. Allg. Chem. 626, 2557–2562.
  • El Bali, B., Boukhari, A., Holt, E. M. & Aride, J. (1993a). J. Crystallogr. Spectrosc. Res. 23, 1001–1004.
  • El Bali, B., Lachkar, M., Allouchi, H. & Narymbetov, B. (2004). Phosphorus Res. Bull. 15, 125–130.
  • Eymond, S., Martin, M. & Durif, A. (1969a). C. R. Acad. Sci. Ser. C, 286, 1694–1696.
  • Eymond, S., Martin, M. & Durif, A. (1969b). Mater. Res. Bull. 4, 595–599.
  • He, Z. Z., Chen, S. C., Lue, C. S., Cheng, W. D. & Ueda, Y. (2008). Phys. Rev. B, 78, 212410-1–212410-4.
  • He, Z., Ueda, Y. & Itoh, M. (2007). J. Solid State Chem. 180, 1770–1774.
  • Hemon, A. & Courbion, G. (1990). J. Solid State Chem. 85, 164–168.
  • Kabbour, H., David, R., Pautrat, A., Koo, H. J., Whangbo, M. H., André, G. & Mentré, O. (2012). Angew. Chem. Int. Ed. 51, 11745–11749. [PubMed]
  • Martin, N., Regnault, L. P. & Klimko, S. (2012). J. Phys. Conf. Ser. 340, 012012-1–012012-9.
  • Moqine, A., Boukhari, A. & Darriet, J. (1993). J. Solid State Chem. 107, 362–367.
  • Niesen, S. K., Heyer, O., Lorenz, T. & Valldor, M. (2011). J. Magn. Magn. Mater. 323, 2575–2578.
  • Osterloh, D. & Müller-Buschbaum, H. (1994a). Z. Naturforsch. Teil B, 49, 923–926.
  • Osterloh, D. & Müller-Buschbaum, H. (1994b). Z. Anorg. Allg. Chem. 620, 651–654.
  • Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
  • Rigaku (2006). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  • Rogado, N., Huang, Q., Lynn, J., Ramirez, A. P., Huse, D. & Cava, R. J. (2002). Phys. Rev. B, 65, 144443-1–144443-7.
  • Shannon, R. D. (1976). Acta Cryst. A32, 751–767.
  • Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. [PMC free article] [PubMed]
  • Uchiyama, Y., Sasago, Y., Tsukada, I., Uchinokura, K., Zheludev, A., Hayashi, T., Miura, N. & Böni, P. (1999). Phys. Rev. Lett. 83, 632–635.
  • Ulutagay-Kartin, M., Hwu, S.-J. & Clayhold, J. A. (2003). Inorg. Chem. 42, 2405–2409.
  • Velikodnyi, Y. A., Trunov, V. K., Zhuravlev, V. D. & Makarevich, L. G. (1982). Sov. Phys. Crystallogr. 27, 226–229.
  • Vogt, R. & Müller-Buschbaum, H. (1990). Z. Anorg. Allg. Chem. 591, 167–173.
  • Von Postel, M. & Müller-Buschbaum, H. (1992). Z. Anorg. Allg. Chem. 615, 97–100.
  • Weil, M. (2016). Cryst. Growth Des. 16, 908–921.
  • Weil, M. & Kremer, R. K. (2017). J. Solid State Chem. 245, 115–126.
  • Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  • Wichmann, R. & Müller-Buschbaum, H. (1986a). Z. Anorg. Allg. Chem. 534, 153–158.
  • Wichmann, R. & Müller-Buschbaum, Hk. (1986b). Rev. Chim. Miner. 23, 1–7.
  • Yang, M., Zhang, S. Y., Guo, W. B. & He, Z. Z. (2016). Solid State Sci. 52, 72–77.

Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography