PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actae2this articlesearchopen accesssubmitActa Crystallographica Section E: Crystallographic CommunicationsActa Crystallographica Section E: Crystallographic Communications
 
Acta Crystallogr E Crystallogr Commun. 2017 December 1; 73(Pt 12): 1820–1822.
Published online 2017 November 3. doi:  10.1107/S2056989017015778
PMCID: PMC5730231

Crystal structure of N-[6-amino-5-(benzo[d]thia­zol-2-yl)-3-cyano-4-methyl­sulfanyl-2-oxo-1,2-di­hydro­pyridin-1-yl]-4-methyl­benzene­sulfonamide di­methyl­formamide monosolvate

Abstract

In the title compound, C21H17N5O3S3·C3H7NO, the toluene­sulfonamide ring and the combined ring system involving the pyridone and benzo­thia­zole rings subtend an inter­planar angle of 39.86 (4)°. The pyridone and benzo­thiazyl rings are linked by the intra­molecular hydrogen bond N—Hamine(...)Nthia­zole. The DMF O atom accepts two classical hydrogen bonds. The mol­ecules are linked by hydrogen bonds and an S(...)O contact to form layers parallel to the bc plane.

Keywords: crystal structure, 2-pyridone, benzo­thia­zole, di­methyl­formamide

Chemical context  

Cyano­ketene di­thio­acetals are versatile synthetic inter­mediates (Elgemeie et al., 2003a  , 2015  ) that have been utilized as building blocks for the synthesis of a wide range of heterocyclic compounds (Elgemeie et al., 2009  , 2017a  ); they are also of general inter­est in pharmaceutical chemistry (Elgemeie & Abou-Zeid, 2015  ; Elgemeie et al., 2016  ). Recently, we have described the synthesis of various anti­metabolites starting from cyano­ketene di­thio­acetals and related compounds, viz. cyano­ketene S,S-acetals (Elgemeie, Mohamed, 2006  ), cyano­ketene N,S-acetals (Elgemeie et al. 2017b  ), and cyano­ketene N,N-acetals (Elgemeie et al., 2003b  ). As a part of this programme, the reaction of 2-(benzo[d]thia­zol-2-yl)-3,3-bis­(methyl­thio)­acrylo­nitrile (1) with N-(2-cyano­acet­yl)-4-methyl­benzene­sulfono­hydrazide (2) was investigated. The reaction between 1 and 2 in KOH–DMF gives an adduct for which four possible isomeric structures were considered (structures 36). Spectroscopic methods did not allow us to identify the product unambiguously and therefore the X-ray crystal structure was determined, confirming the exclusive presence of structure 6 in the solid state. The formation of 6 from the reaction of 1 and 2 is assumed to proceed via initial addition of the active methyl­ene carbon atom of 2 to the double bond of 1, followed by elimination of CH3SH and cyclization via addition of the NH group to the cyano group of benzo­thia­zole to give the favoured, kinetically and thermodynamically controlled product 6. The 1H NMR spectra of the product revealed the presence of an amino group at δ = 8.84 p.p.m. and a pyridine methyl­thio group at δ = 2.45 p.p.m. in solution. Compound 6 and its derivatives showed inter­esting preclinical biological results and are currently being patented (Elgemeie et al., 2017c  ).

An external file that holds a picture, illustration, etc.
Object name is e-73-01820-scheme1.jpg

Structural commentary  

The solid-state structure of 6 is shown in Fig. 1  , the structure analysis thereby confirming the nature of the product. The mol­ecule essentially consists of two planes; the toluene­sulfonamide ring and the combined ring system involving the pyridone and benzo­thia­zole rings. The former has a r.m.s. deviation of 0.04 Å and the latter of 0.01 Å (including all direct substituents), and the inter­planar angle is 39.86 (4)°. The pyridone and benzo­thiazyl rings are held coplanar by the intra­molecular hydrogen bond N4—H03(...)N3 (Table 1  ). The contact N4—H02(...)N1 might also be classified as a hydrogen bond, with H(...)N 2.24 (2) Å, but its angle is only 105.7 (15)°. The nitro­gen N4 is planar (angle sum 359.7°) but N1 is pyramidalized (343.9°).

Figure 1
The structure of the title compound in the crystal. Displacement ellipsoids represent 50% probability levels.
Table 1
Hydrogen-bond geometry (Å, °)

Supra­molecular features  

The oyxgen atom of the di­methyl­formamide accepts two classical hydrogen bonds. The clearest packing feature is the formation of layers parallel to the bc plane (Fig. 2  ), in which the hydrogen bonds H02(...)O99, H7(...)O3ii and H97C(...)N5iv are involved (Table 1  ), together with the short contact S1(...)O3(x, 1 + y, z) 3.2662 (10) Å. The hydrogen bond H01(...)O99i connects the layers in the third dimension.

Figure 2
Packing diagram of the title compound viewed perpendicular to the bc plane. Dashed lines indicate classical hydrogen bonds (thick) or C—H(...)X and S(...)O inter­actions (thin).

Database survey  

The 2-pyridone ring displays the usual features of a narrow angle at nitro­gen and a wide angle at the carbonyl carbon (Table 2  ). A database search gave 555 hits (745 values) for the 2-pyridone ring, with average angles of 123.9° at nitro­gen and 115.3° at C=O. No other structures could be found in which a 2-pyridone ring is attached at the 5-position to the C2 atom of a thia­zol ring.

Table 2
Selected bond angles (°)

Synthesis and crystallization  

2-(Benzo[d]thia­zol-2-yl)-3,3-bis­(methyl­thio)­acrylo­nitrile (1) (2.78 g, 0.01 mol) was added to a solution of N-(2-cyano­acet­yl)-4-methyl­benzene­sulfono­hydrazide (2) (2.53 g., 0.01 mol) in dry DMF (30 ml) containing pulverized potassium hydrox­ide (0.56 g, 0.01 mol). The reaction mixture was refluxed with stirring for 2 h (TLC monitoring). After cooling, the reaction mixture was poured into ice-cold water and neutralized with HCl. The solid product was filtered off, washed with water, and dried. It was further purified from hot ethyl acetate: petroleum ether (1:1). The precipitated solid was crystallized from DMF to give yellow crystals, m.p. = 494 K, yield 78%.

IR (KBr, cm−1): ν 3393, 3208 (NH, NH2), 3072 (ArCH), 2922 (CH3), 2210 (CN), 1677 (CO), 1594 (C=N), 1350, 1170 (O=S=O); 1H NMR (400 MHz, DMSO-d 6): δ 2.42 (s, 3H, CH3), 2.45 (s, 3H, SCH3), 7.42 (d, J = 8 Hz, 2H, C6H4), 7.49 (t, J = 8 Hz, 1H, benzo­thia­zole H), 7.56 (t, J = 8 Hz, 1H, benzo­thia­zole H), 7.71 (d, J = 8 Hz, 2H, C6H4), 8.06 (d, J = 8 Hz, 1H, benzo­thia­zole H), 8.13 (d, J = 8 Hz, 1H, benzo­thia­zole H), 8.84 (br, 2H, NH2), 11.44 (s, 1H, NH). Analysis calculated for C21H17N5O3S3 (483.59): C 52.16, H 3.54, N 14.48%; found: C 52.11; H 3.48; N 14.50%; MS m/z (%): 484 (M+1, 1.03%), 384 (84%), 356 (100%), 283 (60%), 117 (77%).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3  . NH hydrogen atoms were refined freely. Methyl hydrogen atoms were refined as idealized rigid groups allowed to rotate but not tip (AFIX 137), with C—H 0.98 Å and H—C—H 109.5°. Other hydrogen atoms were included using a riding model starting from calculated positions (C—Haromatic 0.95, C—Hmethine 1.00 Å) with U iso(H) = 1.5U eq(C) for methyl H atoms and 1.2U eq(C) for all others.

Table 3
Experimental details

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017015778/hg5500sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017015778/hg5500Isup2.hkl

CCDC reference: 1582798

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C21H17N5O3S3·C3H7NOZ = 2
Mr = 556.67F(000) = 580
Triclinic, P1Dx = 1.450 Mg m3
a = 9.9916 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.7805 (6) ÅCell parameters from 19857 reflections
c = 11.9776 (6) Åθ = 2.3–30.6°
α = 88.809 (4)°µ = 0.34 mm1
β = 79.159 (4)°T = 100 K
γ = 67.245 (5)°Tablet, yellow
V = 1274.80 (12) Å30.5 × 0.4 × 0.2 mm

Data collection

Oxford Diffraction Xcalibur Eos diffractometer7630 independent reflections
Radiation source: fine-focus sealed X-ray tube6682 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.036
ω–scanθmax = 31.1°, θmin = 2.3°
Absorption correction: multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015)h = −14→14
Tmin = 0.972, Tmax = 1.000k = −16→16
68326 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: mixed
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0337P)2 + 0.772P] where P = (Fo2 + 2Fc2)/3
7630 reflections(Δ/σ)max = 0.001
350 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = −0.36 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.20917 (3)1.05419 (3)0.44384 (2)0.01311 (6)
C20.17424 (12)0.91906 (10)0.43367 (10)0.0117 (2)
N30.13892 (11)0.90316 (9)0.33646 (8)0.01298 (18)
C3A0.13978 (12)0.99549 (11)0.26319 (10)0.0130 (2)
C40.10933 (14)1.00118 (12)0.15352 (10)0.0165 (2)
H40.0861430.9388090.1229410.020*
C50.11382 (14)1.10006 (12)0.09052 (11)0.0183 (2)
H50.0940631.1053100.0156220.022*
C60.14719 (14)1.19255 (12)0.13597 (11)0.0185 (2)
H60.1481371.2600420.0914740.022*
C70.17885 (14)1.18784 (11)0.24436 (11)0.0167 (2)
H70.2016121.2505660.2747400.020*
C7A0.17590 (13)1.08692 (11)0.30715 (10)0.0134 (2)
C80.18455 (12)0.82947 (10)0.52233 (10)0.0113 (2)
C90.21641 (12)0.84103 (10)0.63037 (10)0.0119 (2)
C100.22112 (13)0.75420 (11)0.71150 (10)0.0130 (2)
C110.19296 (13)0.64662 (11)0.69151 (10)0.0126 (2)
C120.16105 (12)0.72035 (10)0.49822 (9)0.0112 (2)
C130.25168 (14)0.76681 (11)0.82143 (11)0.0161 (2)
C140.44732 (16)0.90452 (15)0.64337 (18)0.0375 (4)
H14A0.4829090.8321000.6881750.056*
H14B0.4842760.9657110.6634530.056*
H14C0.4832270.8798480.5620980.056*
S20.28523 (3)0.39958 (3)0.51130 (2)0.01363 (7)
S30.24867 (3)0.97028 (3)0.67335 (3)0.01445 (7)
O10.18556 (10)0.56948 (8)0.75942 (7)0.01650 (17)
O20.39814 (10)0.43053 (8)0.44172 (8)0.01993 (19)
O30.22015 (11)0.32617 (8)0.46616 (8)0.01989 (19)
N10.14142 (11)0.53246 (9)0.55209 (8)0.01215 (18)
H010.0686 (19)0.5236 (16)0.6018 (15)0.024 (4)*
N20.17243 (11)0.63362 (9)0.57965 (8)0.01120 (18)
N40.13014 (12)0.69607 (10)0.40197 (9)0.01497 (19)
H020.116 (2)0.6318 (18)0.3914 (16)0.031 (5)*
H030.118 (2)0.7536 (18)0.3545 (16)0.030 (5)*
N50.27764 (14)0.77140 (11)0.91037 (10)0.0249 (2)
C150.35093 (13)0.32693 (11)0.63125 (10)0.0142 (2)
C160.27838 (14)0.25780 (11)0.69169 (11)0.0162 (2)
H160.1966470.2500180.6679580.019*
C170.32777 (14)0.20066 (11)0.78708 (11)0.0174 (2)
H170.2782680.1542750.8293140.021*
C180.44894 (14)0.21006 (11)0.82216 (11)0.0173 (2)
C190.51825 (14)0.28051 (12)0.76017 (11)0.0184 (2)
H190.6002930.2881720.7834990.022*
C200.46997 (13)0.33974 (11)0.66507 (11)0.0168 (2)
H200.5175660.3880920.6239970.020*
C210.50385 (16)0.14328 (14)0.92318 (12)0.0247 (3)
H21A0.4193380.1523640.9842400.037*
H21B0.5672300.1783180.9501520.037*
H21C0.5607790.0556390.9010040.037*
C970.20835 (19)0.51005 (15)−0.00331 (12)0.0303 (3)
H97A0.1058030.547512−0.0143050.045*
H97B0.2584310.429728−0.0455750.045*
H97C0.2598930.563981−0.0312590.045*
C980.35300 (17)0.44892 (18)0.15100 (14)0.0356 (4)
H98A0.3393230.4413220.2336010.053*
H98B0.4005020.5072000.1298600.053*
H98C0.4156560.3681410.1123430.053*
C990.08612 (15)0.51648 (12)0.19300 (11)0.0186 (2)
H99−0.0036770.5416040.1655240.022*
N990.20970 (13)0.49363 (11)0.11715 (9)0.0198 (2)
O990.07862 (10)0.50763 (9)0.29665 (7)0.01853 (18)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.01528 (13)0.01090 (13)0.01511 (13)−0.00706 (10)−0.00348 (10)0.00176 (10)
C20.0104 (5)0.0097 (5)0.0145 (5)−0.0042 (4)−0.0008 (4)0.0002 (4)
N30.0147 (4)0.0121 (4)0.0126 (4)−0.0060 (4)−0.0022 (3)0.0015 (3)
C3A0.0114 (5)0.0121 (5)0.0137 (5)−0.0038 (4)−0.0004 (4)0.0013 (4)
C40.0173 (5)0.0168 (5)0.0156 (5)−0.0069 (4)−0.0032 (4)0.0016 (4)
C50.0184 (6)0.0200 (6)0.0148 (5)−0.0059 (5)−0.0029 (4)0.0046 (4)
C60.0188 (6)0.0156 (6)0.0195 (6)−0.0062 (5)−0.0020 (5)0.0059 (4)
C70.0174 (5)0.0130 (5)0.0198 (6)−0.0067 (4)−0.0021 (4)0.0038 (4)
C7A0.0124 (5)0.0122 (5)0.0143 (5)−0.0042 (4)−0.0013 (4)0.0020 (4)
C80.0114 (5)0.0092 (5)0.0130 (5)−0.0041 (4)−0.0016 (4)−0.0003 (4)
C90.0108 (5)0.0108 (5)0.0139 (5)−0.0041 (4)−0.0017 (4)−0.0015 (4)
C100.0140 (5)0.0127 (5)0.0123 (5)−0.0049 (4)−0.0032 (4)−0.0008 (4)
C110.0133 (5)0.0126 (5)0.0108 (5)−0.0039 (4)−0.0023 (4)−0.0005 (4)
C120.0115 (5)0.0105 (5)0.0113 (5)−0.0044 (4)−0.0007 (4)0.0004 (4)
C130.0178 (5)0.0139 (5)0.0172 (6)−0.0060 (4)−0.0053 (4)0.0001 (4)
C140.0149 (6)0.0276 (8)0.0685 (12)−0.0089 (6)−0.0016 (7)−0.0143 (8)
S20.01854 (14)0.00982 (12)0.01155 (13)−0.00509 (10)−0.00151 (10)−0.00011 (9)
S30.01584 (13)0.01206 (13)0.01707 (14)−0.00662 (10)−0.00418 (10)−0.00170 (10)
O10.0234 (4)0.0140 (4)0.0126 (4)−0.0076 (3)−0.0040 (3)0.0024 (3)
O20.0211 (4)0.0179 (4)0.0164 (4)−0.0061 (4)0.0033 (3)0.0016 (3)
O30.0315 (5)0.0121 (4)0.0181 (4)−0.0088 (4)−0.0089 (4)−0.0005 (3)
N10.0155 (5)0.0092 (4)0.0131 (4)−0.0067 (4)−0.0018 (4)0.0001 (3)
N20.0153 (4)0.0090 (4)0.0108 (4)−0.0063 (3)−0.0028 (3)0.0000 (3)
N40.0237 (5)0.0127 (5)0.0129 (5)−0.0107 (4)−0.0062 (4)0.0025 (4)
N50.0317 (6)0.0252 (6)0.0212 (6)−0.0117 (5)−0.0121 (5)0.0009 (5)
C150.0168 (5)0.0100 (5)0.0139 (5)−0.0038 (4)−0.0017 (4)0.0002 (4)
C160.0190 (6)0.0137 (5)0.0177 (6)−0.0080 (4)−0.0046 (4)0.0019 (4)
C170.0210 (6)0.0139 (5)0.0172 (6)−0.0073 (5)−0.0030 (4)0.0025 (4)
C180.0171 (5)0.0147 (5)0.0152 (5)−0.0013 (4)−0.0026 (4)−0.0005 (4)
C190.0130 (5)0.0194 (6)0.0208 (6)−0.0040 (4)−0.0030 (4)−0.0009 (5)
C200.0145 (5)0.0151 (5)0.0190 (6)−0.0054 (4)0.0001 (4)−0.0003 (4)
C210.0214 (6)0.0284 (7)0.0198 (6)−0.0041 (5)−0.0063 (5)0.0065 (5)
C970.0417 (9)0.0361 (8)0.0130 (6)−0.0163 (7)−0.0027 (6)0.0032 (5)
C980.0233 (7)0.0561 (11)0.0247 (7)−0.0136 (7)−0.0018 (6)−0.0001 (7)
C990.0228 (6)0.0182 (6)0.0164 (6)−0.0094 (5)−0.0045 (5)0.0006 (4)
N990.0238 (5)0.0229 (5)0.0126 (5)−0.0098 (4)−0.0021 (4)0.0011 (4)
O990.0248 (5)0.0228 (5)0.0127 (4)−0.0153 (4)−0.0016 (3)−0.0004 (3)

Geometric parameters (Å, º)

S1—C7A1.7375 (12)S2—N11.6678 (10)
S1—C21.7677 (12)S2—C151.7597 (12)
C2—N31.3153 (15)N1—N21.4020 (13)
C2—C81.4706 (15)N1—H010.888 (18)
N3—C3A1.3848 (14)N4—H020.84 (2)
C3A—C41.3977 (17)N4—H030.86 (2)
C3A—C7A1.4013 (17)C15—C201.3872 (17)
C4—C51.3855 (17)C15—C161.3955 (17)
C4—H40.9500C16—C171.3875 (17)
C5—C61.4031 (19)C16—H160.9500
C5—H50.9500C17—C181.3970 (18)
C6—C71.3880 (18)C17—H170.9500
C6—H60.9500C18—C191.3948 (18)
C7—C7A1.4005 (16)C18—C211.5034 (18)
C7—H70.9500C19—C201.3894 (18)
C8—C91.4108 (16)C19—H190.9500
C8—C121.4372 (15)C20—H200.9500
C9—C101.3897 (16)C21—H21A0.9800
C9—S31.7781 (12)C21—H21B0.9800
C10—C131.4295 (16)C21—H21C0.9800
C10—C111.4340 (16)C97—N991.4536 (17)
C11—O11.2213 (14)C97—H97A0.9800
C11—N21.4132 (14)C97—H97B0.9800
C12—N41.3124 (15)C97—H97C0.9800
C12—N21.3851 (14)C98—N991.4554 (19)
C13—N51.1499 (17)C98—H98A0.9800
C14—S31.7952 (15)C98—H98B0.9800
C14—H14A0.9800C98—H98C0.9800
C14—H14B0.9800C99—O991.2343 (15)
C14—H14C0.9800C99—N991.3242 (17)
S2—O31.4317 (10)C99—H990.9500
S2—O21.4326 (9)
C7A—S1—C289.58 (6)N2—N1—S2117.20 (8)
N3—C2—C8121.49 (10)N2—N1—H01113.6 (11)
N3—C2—S1113.55 (8)S2—N1—H01113.1 (11)
C8—C2—S1124.95 (9)C12—N2—N1115.94 (9)
C2—N3—C3A112.58 (10)C12—N2—C11125.63 (10)
N3—C3A—C4125.08 (11)N1—N2—C11117.88 (9)
N3—C3A—C7A114.40 (10)C12—N4—H02121.2 (13)
C4—C3A—C7A120.52 (11)C12—N4—H03114.9 (13)
C5—C4—C3A118.33 (12)H02—N4—H03123.6 (18)
C5—C4—H4120.8C20—C15—C16121.33 (11)
C3A—C4—H4120.8C20—C15—S2120.72 (9)
C4—C5—C6120.82 (12)C16—C15—S2117.94 (9)
C4—C5—H5119.6C17—C16—C15118.80 (12)
C6—C5—H5119.6C17—C16—H16120.6
C7—C6—C5121.60 (11)C15—C16—H16120.6
C7—C6—H6119.2C16—C17—C18121.22 (12)
C5—C6—H6119.2C16—C17—H17119.4
C6—C7—C7A117.34 (12)C18—C17—H17119.4
C6—C7—H7121.3C19—C18—C17118.44 (11)
C7A—C7—H7121.3C19—C18—C21121.38 (12)
C7—C7A—C3A121.37 (11)C17—C18—C21120.17 (12)
C7—C7A—S1128.74 (10)C20—C19—C18121.46 (12)
C3A—C7A—S1109.88 (8)C20—C19—H19119.3
C9—C8—C12116.48 (10)C18—C19—H19119.3
C9—C8—C2125.41 (10)C15—C20—C19118.73 (11)
C12—C8—C2118.11 (10)C15—C20—H20120.6
C10—C9—C8122.53 (10)C19—C20—H20120.6
C10—C9—S3115.37 (9)C18—C21—H21A109.5
C8—C9—S3122.08 (9)C18—C21—H21B109.5
C9—C10—C13122.46 (11)H21A—C21—H21B109.5
C9—C10—C11122.30 (10)C18—C21—H21C109.5
C13—C10—C11115.24 (10)H21A—C21—H21C109.5
O1—C11—N2119.46 (11)H21B—C21—H21C109.5
O1—C11—C10127.10 (11)N99—C97—H97A109.5
N2—C11—C10113.44 (10)N99—C97—H97B109.5
N4—C12—N2116.83 (10)H97A—C97—H97B109.5
N4—C12—C8123.94 (11)N99—C97—H97C109.5
N2—C12—C8119.23 (10)H97A—C97—H97C109.5
N5—C13—C10176.92 (13)H97B—C97—H97C109.5
S3—C14—H14A109.5N99—C98—H98A109.5
S3—C14—H14B109.5N99—C98—H98B109.5
H14A—C14—H14B109.5H98A—C98—H98B109.5
S3—C14—H14C109.5N99—C98—H98C109.5
H14A—C14—H14C109.5H98A—C98—H98C109.5
H14B—C14—H14C109.5H98B—C98—H98C109.5
O3—S2—O2121.42 (6)O99—C99—N99125.03 (13)
O3—S2—N1102.99 (5)O99—C99—H99117.5
O2—S2—N1106.32 (5)N99—C99—H99117.5
O3—S2—C15106.76 (6)C99—N99—C97121.56 (12)
O2—S2—C15109.03 (6)C99—N99—C98121.18 (12)
N1—S2—C15109.88 (5)C97—N99—C98117.25 (12)
C9—S3—C1498.98 (6)
C7A—S1—C2—N3−0.89 (9)C2—C8—C12—N4−0.37 (17)
C7A—S1—C2—C8178.19 (10)C9—C8—C12—N2−0.79 (15)
C8—C2—N3—C3A−178.06 (10)C2—C8—C12—N2179.01 (10)
S1—C2—N3—C3A1.06 (13)C10—C9—S3—C1483.40 (11)
C2—N3—C3A—C4178.78 (11)C8—C9—S3—C14−98.15 (12)
C2—N3—C3A—C7A−0.70 (14)O3—S2—N1—N2−167.59 (8)
N3—C3A—C4—C5179.67 (11)O2—S2—N1—N2−38.90 (9)
C7A—C3A—C4—C5−0.89 (17)C15—S2—N1—N278.95 (9)
C3A—C4—C5—C6−0.39 (18)N4—C12—N2—N1−3.39 (15)
C4—C5—C6—C70.93 (19)C8—C12—N2—N1177.19 (10)
C5—C6—C7—C7A−0.15 (18)N4—C12—N2—C11−174.61 (10)
C6—C7—C7A—C3A−1.15 (17)C8—C12—N2—C115.97 (17)
C6—C7—C7A—S1−179.72 (9)S2—N1—N2—C12103.12 (10)
N3—C3A—C7A—C7−178.80 (11)S2—N1—N2—C11−84.95 (11)
C4—C3A—C7A—C71.70 (17)O1—C11—N2—C12172.21 (11)
N3—C3A—C7A—S10.01 (13)C10—C11—N2—C12−7.76 (16)
C4—C3A—C7A—S1−179.49 (9)O1—C11—N2—N11.15 (16)
C2—S1—C7A—C7179.17 (12)C10—C11—N2—N1−178.82 (9)
C2—S1—C7A—C3A0.47 (9)O3—S2—C15—C20152.17 (10)
N3—C2—C8—C9−177.62 (11)O2—S2—C15—C2019.34 (12)
S1—C2—C8—C93.36 (16)N1—S2—C15—C20−96.82 (10)
N3—C2—C8—C122.61 (16)O3—S2—C15—C16−28.68 (11)
S1—C2—C8—C12−176.41 (8)O2—S2—C15—C16−161.51 (9)
C12—C8—C9—C10−1.79 (16)N1—S2—C15—C1682.33 (10)
C2—C8—C9—C10178.44 (11)C20—C15—C16—C17−0.33 (18)
C12—C8—C9—S3179.88 (8)S2—C15—C16—C17−179.47 (9)
C2—C8—C9—S30.10 (16)C15—C16—C17—C18−0.79 (19)
C8—C9—C10—C13−179.23 (11)C16—C17—C18—C191.19 (18)
S3—C9—C10—C13−0.79 (15)C16—C17—C18—C21−177.66 (12)
C8—C9—C10—C11−0.40 (18)C17—C18—C19—C20−0.49 (19)
S3—C9—C10—C11178.04 (9)C21—C18—C19—C20178.35 (12)
C9—C10—C11—O1−175.15 (12)C16—C15—C20—C191.01 (18)
C13—C10—C11—O13.76 (18)S2—C15—C20—C19−179.87 (9)
C9—C10—C11—N24.82 (16)C18—C19—C20—C15−0.59 (19)
C13—C10—C11—N2−176.27 (10)O99—C99—N99—C97−178.03 (13)
C9—C8—C12—N4179.84 (11)O99—C99—N99—C983.0 (2)

Hydrogen-bond geometry (Å, º)

D—H···AD—HH···AD···AD—H···A
N1—H01···O99i0.888 (18)1.872 (18)2.7583 (13)175.7 (16)
N4—H02···O990.84 (2)2.05 (2)2.8334 (14)154.6 (18)
N4—H03···N30.86 (2)1.86 (2)2.5760 (15)139.9 (17)
N4—H02···N10.84 (2)2.237 (19)2.5932 (14)105.7 (15)
C7—H7···O3ii0.952.543.3161 (16)139
C20—H20···O2iii0.952.643.5605 (16)164
C97—H97C···N5iv0.982.593.504 (2)155

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y+1, z; (iii) −x+1, −y+1, −z+1; (iv) x, y, z−1.

References

  • Elgemeie, G. H. & Abou-Zeid, M. (2015). Nucleosides Nucleotides Nucleic Acids, 34, 834–847. [PubMed]
  • Elgemeie, G. H., Abou-Zeid, M., Alsaid, S., Hebishy, A. & Essa, H. (2015). Nucleosides Nucleotides Nucleic Acids, 34, 659–673. [PubMed]
  • Elgemeie, G. H., Abou-Zeid, M. & Azzam, R. (2016). Nucleosides Nucleotides Nucleic Acids, 35, 211–222. [PubMed]
  • Elgemeie, G. H., Azzam, R. A. & Elsayed, R. E. (2017c). Patent No. 1554/2017. Egyptian Academy of Scientific Research.
  • Elgemeie, G. H., El-Ezbawy, S. R. & Sood, S. A. (2003a). Synth. Commun. 33, 2095–2101.
  • Elgemeie, G. H., Elghandour, A. H. & Abd Elaziz, G. W. (2003b). Synth. Commun. 33, 1659–1664.
  • Elgemeie, G. H., Elsayed, S. H. & Hassan, A. S. (2009). Synth. Commun. 39, 1781–1792.
  • Elgemeie, G. H., Fathy, N., Zaghary, W. & Farag, A. (2017b). Nucleosides Nucleotides Nucleic Acids, 36, 198–212. [PubMed]
  • Elgemeie, G. H. & Mohamed, M. A. (2006). Synth. Commun. 36, 1025–1038.
  • Elgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017a). Nucleosides Nucleotides Nucleic Acids, 36, 213–223. [PubMed]
  • Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Abingdon, UK.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. [PMC free article] [PubMed]
  • Siemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, Wisconsin USA.

Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography