PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actae2this articlesearchopen accesssubmitActa Crystallographica Section E: Crystallographic CommunicationsActa Crystallographica Section E: Crystallographic Communications
 
Acta Crystallogr E Crystallogr Commun. 2017 July 1; 73(Pt 8): 1255–1258.
Published online 2017 July 25. doi:  10.1107/S2056989017010659
PMCID: PMC5598860

A temperature-dependent phase transformation of (E)-2-[(4-chloro­phen­yl)imino]­ace­naphthylen-1-one

Abstract

The crystal structure determination based on 90 K data of the title imine ligand, C18H10ClNO, revealed non-merohedral twinning with three twin domains. In our experience, this is an indication of an ordering phase transition. Consequently, the structure was redetermined with higher temperature data, and a reversible phase transition was discovered. The higher temperature phase is indeed an ordered structure. At the higher temperature, the 4-chloro­phenyl group has rotated by ca 7° into a crystallographic mirror plane. Warming the crystal from 90 K to 250 K changes the space group from triclinic P-1, to monoclinic P21/m. Diverse non-classical inter­actions are present in the crystal packing, and these are described for the phase change reported in this work. The crystal structure of the title imine ligand, measured at 100 K, has been reported on previously [Kovach et al. (2011  ). J. Mol. Struct. 992, 33–38].

Keywords: crystal structure, ordering phase transition, reversible phase transition, non-merohedral twinning, C—H(...)π inter­actions

Chemical context  

Transition metal complexes that can photochemically release carbon monoxide upon exposure to visible light have been reported recently (Chakraborty et al., 2014  ; Stenger-Smith et al., 2017  ). Facile release of carbon monoxide has been observed in manganese carbonyls containing ace­naphthalene derivatives (Carrington et al., 2015  ) including the ligand MIAN {2-[(4-chloro­phen­yl)imino]­acenapthylen-1-one}, the subject of this study, shown in the Scheme. Our crystal structure determination of MIAN at 90 K agrees with the structure reported by Kovach et al. (2011  ) at 100 K. In particular, the structure occurs in the triclinic space group P An external file that holds a picture, illustration, etc.
Object name is e-73-01255-efi1.jpg and it is found to be a twin. In the NMR study of MIAN by Kovach et al., major and minor species were detected in CDCl3 at room temperature and a single species at 388 K in DMSO-d 6. They suggested that an E to Z equilibration with the E form dominant takes place at the elevated temperature. The occurrence of a low-symmetry space group and twinning are indicative of a solid–solid phase change, and we were curious about the structure at higher temperatures. While a change of conformation from E to Z would be a very large solid-state change, an alternative structural change would be possible. At 250 K, a small solid-state change was indicated and the new space group is P21/m (α phase). The only difference, aside from small differences in unit-cell dimensions, is a rotation of the imino­acenapthylen-1-one group into a crystallographic mirror plane. In each phase, the mol­ecule remains in the E conformation.

An external file that holds a picture, illustration, etc.
Object name is e-73-01255-scheme1.jpg

Structural commentary  

The crystal structure was initially determined at 90 K. Three twin domains were found, with relative contributions of 0.441 (2), 0.058 (3), 0.060 (3). Redetermination of the structure at higher temperatures validated our suspicion that the structure was temperature-sensitive. In order to more easily compare the low-temperature and room-temperature crystal structures, a non-standard setting for the triclinic form was selected. In this setting the shortest axis is the b axis. The b axis is then the unique axis in the monoclinic setting of P21/m. Since minor changes in unit-cell dimensions occur, the exact temperature of the phase change was difficult to determine, but examination of the diffraction images revealed obvious twinning between 90 and 208 K, coalescence of diffraction spots occurring at 230 K, and by 250 K it was clear that the twinning had vanished and the space-group symmetry had changed. Solution of the two structures showed that the structural effect of the temperature change goes from triclinic, P An external file that holds a picture, illustration, etc.
Object name is e-73-01255-efi1.jpg with Z = 2 (Z′ = 1) to monoclinic, P21/m with Z = 2 (Z′ = 0.5). The most obvious structural change involves rotation and a change in the dihedral angle between the two mol­ecular planes that brings the acenapthyl group into the crystallographic mirror plane. At 250 K the dihedral angle is 90° while at 90 K it is 83.16 (4)°. The unit-cell volume is 2.5% larger at the higher temperature. As would be expected, thermal motion is greater at high temperature, with U eq averaging 0.047 Å2 vs 0.017 Å2 at low temperature. Thermal motion in the 4-chloro­phenyl ring is slightly greater than the acenapthyl group at both temperatures, 13.5% greater in the α-phase (90 K) and 10.0% in the β-phase (250 K). Figs. 1  and 2  , depict the high (α-phase) and low (β-phase) temperature structures, respectively. The similarity in the packing is evident from Figs. 3  and 4  .

Figure 1
Mol­ecular structure of the title compound at 250 K (α-phase), showing 50% thermal displacement parameters and the atom-numbering scheme. Atoms C14 and C15 are related related to atoms C14A and C15A, respectively, by mirror symmetry. ...
Figure 2
Mol­ecular structure of the title compound at 90 K (β-phase), showing 50% thermal displacement parameters and the atom-numbering scheme.
Figure 3
A view of the packing of the room temperature structure (α-phase). The crystallographic mirror planes are shown in blue. Orange dots indicate the crystallographic centers of inversion.
Figure 4
A view of the packing of the low temperature structure (β-phase). Orange dots indicate the crystallographic centers of inversion.

Supra­molecular features  

The two rings are perpendicular within each polymorph, likely due to a steric effect between H9, bonded to C9, and one of the ortho hydrogen atoms on the 4-chloro­phenyl ring (with centroid Cg). As a result of the perpendicular arrangement of the two ring systems, there is an intra­molecular H9(...)Cg distance of 2.90 Å in the 250 K structure and 2.85 Å in the 90 K structure (Tables 1  and 2  ). Neither structure has solvent-accessible voids. We looked for intra- and inter­molecular inter­actions that might be influential in the structural change. The only significant non-classical hydrogen bond of the C—H(...)A type present is found in the crystal structure of the low-temperature structure (β-phase), with a C—H(...)Cli hydrogen bond linking neighbouring mol­ecules to form chains along the c-axis direction (Table 2  ). There is, however, π–π stacking between the acenapthyl groups in each case: the inter­planar distance is 3.438 Å at 250 K and 3.409 Å at 90 K. In both phases there is a C—H(...)π inter­action on both sides of the phenyl ring, one intra­molecular and one inter­molecular (Tables 1  and 2  , and Fig. 5  ). Temperature-driven phase changes such as this one that occur without major structural reorganization or ordering transitions have been reported in many cases: see, for example, Takahashi & Ito (2010  ) and Takanabe et al. (2017  ) and references therein.

Figure 5
A view of the C—H(...)π inter­action linking mol­ecules together in the low temperature structure (β-phase). A similar inter­action occurs in the room-temperature structure (α-phase). Symmetry ...
Table 1
Hydrogen-bond geometry (Å, °) for the α-phase
Table 2
Hydrogen-bond geometry (Å, °) for the β-phase

Synthesis and crystallization  

(E)-2-[(4-Chloro­phen­yl)imino]­ace­naphthylen-1-one (MIAN) was synthesized following a reported procedure (Kovach et al., 2011  ). Yellow block-like crystals were obtained by layering technical grade mixed hexa­nes over a solution of the compound in CH2Cl2.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3  . For both polymorphs, H atoms were included in calculated positions and treated as riding: C—H = 0.94 Å in the high temperature α-phase and 0.95 Å in the low temperature β-phase, with U iso(H) = 1.2U eq(C).

Table 3
Experimental details

Supplementary Material

Crystal structure: contains datablock(s) alpha, beta, New_Global_Publ_Block. DOI: 10.1107/S2056989017010659/su5384sup1.cif

Structure factors: contains datablock(s) alpha. DOI: 10.1107/S2056989017010659/su5384alphasup2.hkl

Structure factors: contains datablock(s) beta. DOI: 10.1107/S2056989017010659/su5384betasup3.hkl

CCDC references: 1563032, 1563031

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Samantha Carrington for a sample of MIAN. LB thanks the China Scholarship Council for support of a joint PhD visit.

supplementary crystallographic information

(E)-2-[(4-Chlorophenyl)imino]acenaphthylen-1-one (alpha)   Crystal data

C18H10ClNOF(000) = 300
Mr = 291.72Dx = 1.431 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 9.0447 (12) ÅCell parameters from 1908 reflections
b = 6.8764 (9) Åθ = 5.7–52.3°
c = 10.9021 (14) ŵ = 0.28 mm1
β = 92.959 (2)°T = 250 K
V = 677.15 (15) Å3Block, yellow
Z = 20.30 × 0.20 × 0.20 mm

(E)-2-[(4-Chlorophenyl)imino]acenaphthylen-1-one (alpha)   Data collection

Bruker APEXII diffractometer1496 independent reflections
Radiation source: fine focus sealed tube1227 reflections with I > 2σ(I)
Detector resolution: 8.3 pixels mm-1Rint = 0.022
ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2014)h = −10→11
Tmin = 0.684, Tmax = 0.745k = −8→8
5458 measured reflectionsl = −13→13

(E)-2-[(4-Chlorophenyl)imino]acenaphthylen-1-one (alpha)   Refinement

Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.037P)2 + 0.2756P] where P = (Fo2 + 2Fc2)/3
1496 reflections(Δ/σ)max < 0.001
121 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = −0.38 e Å3

(E)-2-[(4-Chlorophenyl)imino]acenaphthylen-1-one (alpha)   Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-2-[(4-Chlorophenyl)imino]acenaphthylen-1-one (alpha)   Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl1−0.05474 (8)0.250000−0.19593 (6)0.0739 (3)
O10.75377 (18)0.2500000.29014 (16)0.0547 (5)
N10.4932 (2)0.2500000.12642 (17)0.0442 (5)
C10.4858 (2)0.2500000.2426 (2)0.0366 (5)
C20.6292 (2)0.2500000.3259 (2)0.0395 (5)
C30.5810 (2)0.2500000.4537 (2)0.0366 (5)
C40.6571 (3)0.2500000.5661 (2)0.0440 (6)
H40.7611420.2500000.5718810.053*
C50.5750 (3)0.2500000.6722 (2)0.0475 (6)
H50.6261140.2500000.7494600.057*
C60.4230 (3)0.2500000.6670 (2)0.0473 (6)
H60.3725120.2500000.7402350.057*
C70.1855 (3)0.2500000.5310 (2)0.0564 (7)
H70.1241530.2500000.5980290.068*
C80.1232 (3)0.2500000.4135 (2)0.0584 (7)
H80.0195010.2500000.4021690.070*
C90.2096 (2)0.2500000.3087 (2)0.0455 (6)
H90.1641530.2500000.2292060.055*
C100.3610 (2)0.2500000.32570 (19)0.0361 (5)
C110.4247 (2)0.2500000.44731 (19)0.0347 (5)
C120.3414 (3)0.2500000.5522 (2)0.0419 (5)
C130.3601 (2)0.2500000.05083 (19)0.0398 (5)
C140.29812 (19)0.0762 (3)0.00977 (15)0.0479 (4)
H140.342774−0.0422080.0337290.058*
C150.17066 (19)0.0757 (3)−0.06642 (15)0.0514 (5)
H150.127910−0.042285−0.0935240.062*
C160.1076 (3)0.250000−0.1018 (2)0.0471 (6)

(E)-2-[(4-Chlorophenyl)imino]acenaphthylen-1-one (alpha)   Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0487 (4)0.1311 (8)0.0411 (4)0.000−0.0069 (3)0.000
O10.0345 (9)0.0793 (13)0.0506 (10)0.0000.0053 (7)0.000
N10.0405 (10)0.0580 (13)0.0342 (10)0.0000.0025 (8)0.000
C10.0366 (11)0.0376 (12)0.0357 (12)0.0000.0026 (9)0.000
C20.0357 (12)0.0408 (13)0.0420 (12)0.0000.0007 (9)0.000
C30.0395 (12)0.0338 (11)0.0364 (11)0.000−0.0005 (9)0.000
C40.0430 (13)0.0447 (14)0.0433 (13)0.000−0.0084 (10)0.000
C50.0613 (16)0.0465 (14)0.0335 (12)0.000−0.0088 (11)0.000
C60.0611 (16)0.0473 (14)0.0337 (12)0.0000.0060 (11)0.000
C70.0450 (14)0.081 (2)0.0442 (14)0.0000.0130 (11)0.000
C80.0350 (12)0.089 (2)0.0517 (15)0.0000.0075 (11)0.000
C90.0361 (12)0.0619 (16)0.0383 (12)0.000−0.0010 (9)0.000
C100.0369 (11)0.0374 (12)0.0340 (11)0.0000.0025 (9)0.000
C110.0379 (11)0.0312 (11)0.0350 (11)0.0000.0005 (9)0.000
C120.0458 (13)0.0424 (13)0.0377 (12)0.0000.0056 (10)0.000
C130.0396 (12)0.0523 (14)0.0280 (10)0.0000.0072 (9)0.000
C140.0494 (9)0.0480 (10)0.0465 (9)0.0010 (8)0.0034 (7)0.0022 (8)
C150.0499 (10)0.0593 (12)0.0452 (9)−0.0073 (9)0.0038 (8)−0.0108 (9)
C160.0401 (12)0.0743 (18)0.0269 (11)0.0000.0028 (9)0.000

(E)-2-[(4-Chlorophenyl)imino]acenaphthylen-1-one (alpha)   Geometric parameters (Å, º)

Cl1—C161.747 (2)C7—C81.372 (4)
O1—C21.211 (3)C7—C121.417 (3)
N1—C11.272 (3)C7—H70.9400
N1—C131.423 (3)C8—C91.417 (3)
C1—C101.484 (3)C8—H80.9400
C1—C21.545 (3)C9—C101.372 (3)
C2—C31.481 (3)C9—H90.9400
C3—C41.373 (3)C10—C111.418 (3)
C3—C111.413 (3)C11—C121.402 (3)
C4—C51.406 (3)C13—C141.385 (2)
C4—H40.9400C13—C14i1.385 (2)
C5—C61.373 (4)C14—C151.386 (2)
C5—H50.9400C14—H140.9400
C6—C121.420 (3)C15—C161.374 (2)
C6—H60.9400C15—H150.9400
C1—N1—C13119.39 (19)C10—C9—C8118.6 (2)
N1—C1—C10133.5 (2)C10—C9—H9120.7
N1—C1—C2120.02 (19)C8—C9—H9120.7
C10—C1—C2106.45 (17)C9—C10—C11118.7 (2)
O1—C2—C3128.8 (2)C9—C10—C1134.7 (2)
O1—C2—C1125.3 (2)C11—C10—C1106.63 (18)
C3—C2—C1105.91 (18)C12—C11—C3122.6 (2)
C4—C3—C11119.9 (2)C12—C11—C10123.6 (2)
C4—C3—C2132.9 (2)C3—C11—C10113.79 (19)
C11—C3—C2107.22 (19)C11—C12—C7116.0 (2)
C3—C4—C5118.2 (2)C11—C12—C6116.3 (2)
C3—C4—H4120.9C7—C12—C6127.7 (2)
C5—C4—H4120.9C14—C13—C14i119.3 (2)
C6—C5—C4122.4 (2)C14—C13—N1120.24 (11)
C6—C5—H5118.8C14i—C13—N1120.24 (11)
C4—C5—H5118.8C13—C14—C15120.43 (18)
C5—C6—C12120.7 (2)C13—C14—H14119.8
C5—C6—H6119.7C15—C14—H14119.8
C12—C6—H6119.7C16—C15—C14119.13 (18)
C8—C7—C12120.6 (2)C16—C15—H15120.4
C8—C7—H7119.7C14—C15—H15120.4
C12—C7—H7119.7C15i—C16—C15121.4 (2)
C7—C8—C9122.4 (2)C15i—C16—Cl1119.28 (11)
C7—C8—H8118.8C15—C16—Cl1119.28 (11)
C9—C8—H8118.8
C13—N1—C1—C100.000 (1)C2—C3—C11—C12180.000 (1)
C13—N1—C1—C2180.000 (1)C4—C3—C11—C10180.000 (1)
N1—C1—C2—O10.000 (1)C2—C3—C11—C100.000 (1)
C10—C1—C2—O1180.000 (1)C9—C10—C11—C120.000 (1)
N1—C1—C2—C3180.000 (1)C1—C10—C11—C12180.000 (1)
C10—C1—C2—C30.000 (1)C9—C10—C11—C3180.000 (1)
O1—C2—C3—C40.000 (1)C1—C10—C11—C30.000 (1)
C1—C2—C3—C4180.000 (1)C3—C11—C12—C7180.000 (1)
O1—C2—C3—C11180.000 (1)C10—C11—C12—C70.000 (1)
C1—C2—C3—C110.000 (1)C3—C11—C12—C60.000 (1)
C11—C3—C4—C50.000 (1)C10—C11—C12—C6180.000 (1)
C2—C3—C4—C5180.000 (1)C8—C7—C12—C110.000 (1)
C3—C4—C5—C60.000 (1)C8—C7—C12—C6180.000 (1)
C4—C5—C6—C120.000 (1)C5—C6—C12—C110.000 (1)
C12—C7—C8—C90.000 (1)C5—C6—C12—C7180.000 (1)
C7—C8—C9—C100.000 (1)C1—N1—C13—C14−92.57 (18)
C8—C9—C10—C110.000 (1)C1—N1—C13—C14i92.57 (18)
C8—C9—C10—C1180.000 (1)C14i—C13—C14—C15−3.4 (3)
N1—C1—C10—C90.000 (1)N1—C13—C14—C15−178.35 (17)
C2—C1—C10—C9180.000 (1)C13—C14—C15—C160.7 (3)
N1—C1—C10—C11180.000 (1)C14—C15—C16—C15i2.0 (3)
C2—C1—C10—C110.000 (1)C14—C15—C16—Cl1−179.01 (14)
C4—C3—C11—C120.000 (1)

Symmetry code: (i) x, −y+1/2, z.

(E)-2-[(4-Chlorophenyl)imino]acenaphthylen-1-one (alpha)   Hydrogen-bond geometry (Å, º)

Cg is the centroid of the 4-chlorophenyl ring (C13–C16/C14A/C15A).

D—H···AD—HH···AD···AD—H···A
C6—H6···Cgii0.942.863.803 (2)177
C9—H9···Cg0.942.883.668 (11)128

Symmetry code: (ii) x+1, y, z+1.

(E)-2-[(4-Chlorophenyl)imino]acenaphthylen-1-one (beta)   Crystal data

C18H10ClNOZ = 2
Mr = 291.72F(000) = 300
Triclinic, P1Dx = 1.468 Mg m3
a = 9.0764 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.8187 (8) ÅCell parameters from 9928 reflections
c = 10.7450 (12) Åθ = 4.5–55.2°
α = 90.880 (2)°µ = 0.29 mm1
β = 92.780 (2)°T = 90 K
γ = 96.259 (2)°Block, yellow
V = 660.12 (13) Å30.30 × 0.20 × 0.20 mm

(E)-2-[(4-Chlorophenyl)imino]acenaphthylen-1-one (beta)   Data collection

Bruker APEXII diffractometer2949 independent reflections
Radiation source: fine focus sealed tube2726 reflections with I > 2σ(I)
Detector resolution: 8.3 pixels mm-1Rint = 0.023
ω scansθmax = 27.6°, θmin = 1.9°
Absorption correction: multi-scan (TWINABS; Bruker, 2014)h = −11→11
Tmin = 0.629, Tmax = 0.746k = −8→8
34083 measured reflectionsl = −13→13

(E)-2-[(4-Chlorophenyl)imino]acenaphthylen-1-one (beta)   Refinement

Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0535P)2 + 0.1518P] where P = (Fo2 + 2Fc2)/3
2949 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.24 e Å3

(E)-2-[(4-Chlorophenyl)imino]acenaphthylen-1-one (beta)   Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 4-component twin.

(E)-2-[(4-Chlorophenyl)imino]acenaphthylen-1-one (beta)   Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl1−0.06705 (4)0.27235 (6)−0.20019 (3)0.02295 (12)
O10.74526 (11)0.24307 (17)0.28273 (9)0.0189 (2)
N10.48366 (13)0.23262 (19)0.11662 (11)0.0160 (3)
C10.47710 (15)0.2430 (2)0.23456 (13)0.0132 (3)
C20.62087 (15)0.2429 (2)0.31934 (13)0.0138 (3)
C30.57248 (15)0.2463 (2)0.44935 (13)0.0136 (3)
C40.64841 (16)0.2421 (2)0.56328 (13)0.0160 (3)
H40.7527140.2371520.5688270.019*
C50.56597 (16)0.2455 (2)0.67222 (13)0.0172 (3)
H50.6169290.2426530.7514020.021*
C60.41399 (16)0.2527 (2)0.66699 (13)0.0171 (3)
H60.3630470.2561110.7420370.021*
C70.17740 (16)0.2579 (2)0.52922 (14)0.0200 (3)
H70.1158710.2607230.5981220.024*
C80.11510 (16)0.2563 (3)0.40886 (14)0.0212 (3)
H80.0107920.2575250.3971120.025*
C90.20184 (15)0.2531 (2)0.30235 (13)0.0165 (3)
H90.1562810.2520260.2208220.020*
C100.35329 (15)0.2514 (2)0.31941 (12)0.0136 (3)
C110.41694 (15)0.2523 (2)0.44327 (13)0.0132 (3)
C120.33329 (16)0.2552 (2)0.55003 (13)0.0156 (3)
C130.35083 (15)0.2411 (2)0.04076 (12)0.0148 (3)
C140.27646 (16)0.0687 (2)−0.01417 (13)0.0173 (3)
H140.313778−0.054584−0.0009520.021*
C150.14723 (16)0.0784 (2)−0.08846 (14)0.0184 (3)
H150.094740−0.038308−0.1248080.022*
C160.09615 (15)0.2603 (2)−0.10873 (12)0.0167 (3)
C170.17291 (16)0.4341 (2)−0.05980 (13)0.0178 (3)
H170.1387490.558005−0.0775200.021*
C180.30080 (16)0.4234 (2)0.01565 (13)0.0170 (3)
H180.3542300.5407770.0501930.020*

(E)-2-[(4-Chlorophenyl)imino]acenaphthylen-1-one (beta)   Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.01595 (18)0.0391 (2)0.01433 (17)0.00712 (15)−0.00253 (11)−0.00184 (15)
O10.0136 (5)0.0254 (6)0.0180 (5)0.0036 (4)0.0023 (4)0.0018 (4)
N10.0151 (6)0.0200 (6)0.0133 (5)0.0039 (5)−0.0001 (4)0.0016 (5)
C10.0122 (6)0.0124 (6)0.0152 (6)0.0022 (5)0.0006 (5)0.0013 (5)
C20.0146 (6)0.0129 (7)0.0139 (6)0.0023 (5)−0.0007 (5)0.0012 (5)
C30.0153 (7)0.0105 (7)0.0148 (6)0.0011 (5)0.0006 (5)0.0000 (5)
C40.0166 (7)0.0153 (7)0.0159 (6)0.0022 (5)−0.0012 (5)0.0007 (5)
C50.0232 (7)0.0160 (7)0.0123 (6)0.0023 (5)−0.0024 (5)0.0008 (5)
C60.0226 (7)0.0163 (7)0.0125 (6)0.0008 (5)0.0034 (5)0.0006 (5)
C70.0173 (7)0.0261 (8)0.0167 (7)0.0011 (6)0.0051 (5)0.0005 (6)
C80.0124 (6)0.0307 (9)0.0207 (7)0.0022 (6)0.0026 (5)0.0019 (6)
C90.0154 (7)0.0203 (7)0.0136 (6)0.0011 (5)−0.0002 (5)0.0009 (5)
C100.0159 (7)0.0122 (7)0.0128 (6)0.0013 (5)0.0019 (5)0.0011 (5)
C110.0151 (6)0.0104 (6)0.0140 (6)0.0007 (5)0.0006 (5)0.0012 (5)
C120.0185 (7)0.0140 (7)0.0140 (6)0.0007 (5)0.0015 (5)0.0007 (5)
C130.0129 (6)0.0225 (8)0.0098 (6)0.0035 (5)0.0024 (5)0.0019 (5)
C140.0181 (7)0.0189 (7)0.0157 (7)0.0047 (5)0.0036 (5)0.0014 (6)
C150.0157 (7)0.0220 (8)0.0173 (7)0.0014 (5)0.0020 (5)−0.0035 (6)
C160.0123 (6)0.0287 (8)0.0097 (6)0.0046 (6)0.0011 (5)0.0015 (6)
C170.0191 (7)0.0211 (8)0.0144 (6)0.0066 (6)0.0023 (5)0.0024 (6)
C180.0180 (7)0.0181 (7)0.0149 (6)0.0025 (5)0.0006 (5)−0.0011 (5)

(E)-2-[(4-Chlorophenyl)imino]acenaphthylen-1-one (beta)   Geometric parameters (Å, º)

Cl1—C161.7478 (14)C7—H70.9500
O1—C21.2133 (17)C8—C91.4214 (19)
N1—C11.2728 (18)C8—H80.9500
N1—C131.4292 (17)C9—C101.3793 (19)
C1—C101.4863 (18)C9—H90.9500
C1—C21.5548 (18)C10—C111.4246 (18)
C2—C31.4851 (19)C11—C121.4070 (19)
C3—C41.3777 (19)C13—C181.394 (2)
C3—C111.4151 (19)C13—C141.398 (2)
C4—C51.421 (2)C14—C151.395 (2)
C4—H40.9500C14—H140.9500
C5—C61.384 (2)C15—C161.387 (2)
C5—H50.9500C15—H150.9500
C6—C121.4249 (19)C16—C171.390 (2)
C6—H60.9500C17—C181.393 (2)
C7—C81.385 (2)C17—H170.9500
C7—C121.424 (2)C18—H180.9500
C1—N1—C13118.79 (12)C9—C10—C11118.72 (12)
N1—C1—C10133.62 (13)C9—C10—C1134.58 (12)
N1—C1—C2119.95 (12)C11—C10—C1106.67 (11)
C10—C1—C2106.41 (11)C12—C11—C3122.84 (13)
O1—C2—C3128.96 (13)C12—C11—C10123.41 (13)
O1—C2—C1125.29 (12)C3—C11—C10113.74 (12)
C3—C2—C1105.75 (11)C11—C12—C7116.47 (13)
C4—C3—C11120.05 (13)C11—C12—C6116.28 (13)
C4—C3—C2132.53 (13)C7—C12—C6127.25 (13)
C11—C3—C2107.41 (12)C18—C13—C14120.11 (13)
C3—C4—C5117.97 (13)C18—C13—N1119.71 (13)
C3—C4—H4121.0C14—C13—N1120.07 (13)
C5—C4—H4121.0C15—C14—C13119.71 (14)
C6—C5—C4122.29 (13)C15—C14—H14120.1
C6—C5—H5118.9C13—C14—H14120.1
C4—C5—H5118.9C16—C15—C14119.29 (14)
C5—C6—C12120.57 (13)C16—C15—H15120.4
C5—C6—H6119.7C14—C15—H15120.4
C12—C6—H6119.7C15—C16—C17121.63 (13)
C8—C7—C12120.26 (13)C15—C16—Cl1119.34 (12)
C8—C7—H7119.9C17—C16—Cl1119.02 (12)
C12—C7—H7119.9C16—C17—C18118.81 (14)
C7—C8—C9122.29 (13)C16—C17—H17120.6
C7—C8—H8118.9C18—C17—H17120.6
C9—C8—H8118.9C17—C18—C13120.32 (14)
C10—C9—C8118.85 (13)C17—C18—H18119.8
C10—C9—H9120.6C13—C18—H18119.8
C8—C9—H9120.6
C13—N1—C1—C104.4 (2)C2—C3—C11—C100.57 (17)
C13—N1—C1—C2−177.46 (12)C9—C10—C11—C12−0.1 (2)
N1—C1—C2—O13.7 (2)C1—C10—C11—C12−178.59 (13)
C10—C1—C2—O1−177.65 (14)C9—C10—C11—C3178.77 (13)
N1—C1—C2—C3−177.25 (13)C1—C10—C11—C30.33 (17)
C10—C1—C2—C31.36 (14)C3—C11—C12—C7−178.99 (13)
O1—C2—C3—C4−3.2 (3)C10—C11—C12—C7−0.2 (2)
C1—C2—C3—C4177.87 (15)C3—C11—C12—C60.3 (2)
O1—C2—C3—C11177.79 (15)C10—C11—C12—C6179.11 (13)
C1—C2—C3—C11−1.18 (15)C8—C7—C12—C110.4 (2)
C11—C3—C4—C5−0.4 (2)C8—C7—C12—C6−178.80 (16)
C2—C3—C4—C5−179.39 (14)C5—C6—C12—C11−0.7 (2)
C3—C4—C5—C60.0 (2)C5—C6—C12—C7178.45 (15)
C4—C5—C6—C120.6 (2)C1—N1—C13—C1881.00 (18)
C12—C7—C8—C9−0.3 (3)C1—N1—C13—C14−102.89 (16)
C7—C8—C9—C100.0 (2)C18—C13—C14—C15−3.6 (2)
C8—C9—C10—C110.2 (2)N1—C13—C14—C15−179.75 (12)
C8—C9—C10—C1178.14 (16)C13—C14—C15—C161.3 (2)
N1—C1—C10—C9−0.8 (3)C14—C15—C16—C171.9 (2)
C2—C1—C10—C9−179.12 (16)C14—C15—C16—Cl1−179.20 (10)
N1—C1—C10—C11177.30 (16)C15—C16—C17—C18−2.7 (2)
C2—C1—C10—C11−1.04 (15)Cl1—C16—C17—C18178.37 (10)
C4—C3—C11—C120.3 (2)C16—C17—C18—C130.3 (2)
C2—C3—C11—C12179.49 (13)C14—C13—C18—C172.8 (2)
C4—C3—C11—C10−178.61 (13)N1—C13—C18—C17178.94 (12)

(E)-2-[(4-Chlorophenyl)imino]acenaphthylen-1-one (beta)   Hydrogen-bond geometry (Å, º)

Cg is the centroid of the 4-chlorophenyl ring (C13–C18).

D—H···AD—HH···AD···AD—H···A
C7—H7···Cl1i0.952.803.748 (2)179
C6—H6···Cgii0.952.753.698 (4)177
C9—H9···Cg0.952.873.644 (4)142

Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1.

References

  • Bruker (2014). APEX2, SAINT, SADABS and TWINABS. Bruker-Nonius AXS Inc. Madison, Wisconsin, USA.
  • Carrington, S. J., Chakraborty, I. & Mascharak, P. K. (2015). Dalton Trans. 44, 13828–13834. [PubMed]
  • Chakraborty, I., Carrington, S. J. & Mascharak, P. K. (2014). Acc. Chem. Res. 47, 2603–2611. [PubMed]
  • Kovach, J., Peralta, M., Brennessel, W. W. & Jones, W. D. (2011). J. Mol. Struct. 992, 33–38.
  • Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. [PMC free article] [PubMed]
  • Stenger-Smith, J., Chakraborty, I., Carrington, S. & Mascharak, P. (2017). Acta Cryst. C73, 357–361. [PubMed]
  • Takahashi, H. & Ito, Y. (2010). CrystEngComm, 12, 1628–1634.
  • Takanabe, A., Katsufuji, T., Johmoto, K., Uekusa, H., Shiro, M., Koshima, H. & Asahi, T. (2017). Crystals, 7, 7; doi:10.3390/cryst7010007.

Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography