PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actae2this articlesearchopen accesssubmitActa Crystallographica Section E: Crystallographic CommunicationsActa Crystallographica Section E: Crystallographic Communications
 
Acta Crystallogr E Crystallogr Commun. 2017 July 1; 73(Pt 8): 1140–1142.
Published online 2017 July 7. doi:  10.1107/S2056989017009884
PMCID: PMC5598835

Crystal structure of triphenylphosphonium­meth­yl­enetrifluoroborate

Abstract

The title compound, C19H17BF3P {alternative name: triphen­yl[(tri­fluoro­boran­yl)meth­yl]phosphanium}, was formed by the reaction of tri­phenyl­phosphine with potassium iodo­methyl­tri­fluoro­borate. The mol­ecule features a nearly staggered conformation along the P—C bond and a less than staggered conformation along the C—B bond. In the crystal, weak C—H(...)F hydrogen bonds between the meta-phenyl C—H groups and the tri­fluoro­borate B—F groups form chains of R 2 2(16) rings along [100]. These chains are are further stabilized by weak C—H(...)π inter­actions. A weak intra­molecular C—H(...)F hydrogen bond is also observed.

Keywords: crystal structure, tri­fluoro­borates, zwitterions, phospho­nium

Chemical context  

Alkyl­tri­phenyl­phospho­nium (Ph3PRX) salts are widely used as precursors in the preparation of phospho­rus ylides for Wittig-type olefination (Julia, 1985  ). Such olefination reactions continue to be one of the most important means of alkene generation. Potassium organotri­fluoro­borates (KRBF3) are common substrates used in Suzuki–Miyaura coupling as stable boronic acid precursors. Additionally, they may be used to produce organodihaloboranes (RBX 2) (Darses & Genet, 2008  ). Seyferth & Grim (1961  ) showed that reaction of tri­phenyl­phosphine­methyl­ene ylide (Ph3PCH2 ) with boron trifluoride di­ethyl­etherate (BF3-OEt2) yields triphen­yl[(tri­fluoro­boran­yl)meth­yl]phosphonium (Ph3PCH2BF3). We have synthesized Ph3PCH2BF3 via an alternate route, by reacting tri­phenyl­phosphine (PPh3) with potassium iodo­methyl­tri­fluoro­borate (ICH2BF3K) in 45% yield.

An external file that holds a picture, illustration, etc.
Object name is e-73-01140-scheme2.jpg

There are many examples of zwitterionic organotri­fluoro­borates containing ammonium moieties, but very few containing phospho­nium groups have been reported (see Database survey). Phospho­nium tri­fluoro­borates have been shown to enhance the hydrolytic stability of the RBF3 moiety (Wade et al., 2010  .) In this context we synthesized Ph3PCH2BF3 and report herein its crystal structure.

An external file that holds a picture, illustration, etc.
Object name is e-73-01140-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1  . A weak intra­molecular C—H(...)F hydrogen bond forms an S(7) ring (Table 1  ). The mol­ecule features a nearly anti conformation along the P1—C1 bond [B1—C1—P1—C8 torsion angle = 172.4 (2)°] and a less staggered conformation along the C1—B1 bond [F2—B1—C1—P1 torsion angle = 158.3 (2)°].

Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
Table 1
Hydrogen-bond geometry (Å, °)

The B-F bond lengths fall within normal ranges for organotri­fluoro­borate compounds. The methyl­ene C—P bond length [1.787 (4) Å] and the C—B bond length [1.636 (4) Å] also fall within the normal range for similar compounds (Allen et al., 1987  ). In terms of the surrounding angles, the B and P atoms appear to be sp3 hybridized. The methyl­ene carbon is predominantly sp3 hybridized, but has a distorted tetra­hedral geometry with a P1—C1—B1 angle of 119.7 (2)°.

Supra­molecular features  

In the crystal, two weak C—H(...)F hydrogen bonds between the meta hydrogen atoms on the tri­phenyl­phospho­nium rings and the tri­fluoro­borate moiety (Table 1  ) fall within the range of distances observed in other tri­phenyl­phospho­nium tri­fluoro­borates (Wade et al., 2010  ) and form chains of An external file that holds a picture, illustration, etc.
Object name is e-73-01140-efi1.jpg(16) rings along the [100] axis (Fig. 2  ). These chains are further stabilized by herringbone edge-to-face weak C—H(...)π inter­actions (Fig. 3  ).

Figure 2
Part of the crystal structure, showing weak C—H(...)F hydrogen bonds as dashed lines.
Figure 3
Part of the crystal structure, showing weak C—H(...)π inter­actions along [100] as dashed lines. Only the H atoms involved in these inter­actions are shown.

Database survey  

A search of the Cambridge Structural Database (Version 5.37, update February 2017; Groom et al., 2016  ) for phospho­nium-containing tri­fluoro­borates yielded only five structures: FUYDIN (Wade et al., 2010  ), OZOJOD (Gott et al., 2011  ), PUXWEL (Piskunov et al., 2010  ), ZEKLEI (Li et al., 2012  ) and ZEKLOS (Zibo et al., 2012  ).

Synthesis and crystallization  

Potassium iodo­methyl­tri­fluoro­borate (1.00 g, 4.04 mmol) and tri­phenyl­phosphine (1.11 g, 4.23 mmol) were combined in a pressure flask containing a stir bar under nitro­gen, and anhydrous THF (25.0 mL) was added. The flask was sealed and heated to 343 K for 18 h. The reaction was cooled to room temperature and the solvent was removed in vacuo. The residue was washed with Et2O (3 x 10 mL) and the resulting solid was dissolved in a minimal amount of acetone and the product was precipitated with water and collected by filtration, to afford a white solid (0.63 g, 1.82 mmol, 45%.) X-ray quality crystals were grown by slow diffusion of pentane into a solution of the title compound dissolved in di­chloro­methane.

1H NMR (500 MHz, CDCl3) δ (ppm): 7.66 (m, 9H), 7.56 (m, 6H), 2.07 (br d, 2H, J = 15 Hz). 13C NMR (126 MHz, CDCl3) δ (ppm): 133.7 (d, J = 3 Hz), 133.5 (d, J = 10 Hz), 129.6 (d, J = 12 Hz) 123.2 (d, J = 87 Hz) (C—B not observed). 11B NMR (160 MHz, CDCl3) δ (ppm): 2.49 (q, J = 47 Hz). 19F NMR (470 MHz, CDCl3) δ (ppm): −138.9 (q, J = 37 Hz). FTIR (ATR, cm−1): 3070, 2960, 1587, 1484, 1438, 1146, 1104, 1025, 994, 969, 824, 754, 725, 691, 511, 497.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 2  . All H atoms were refined independently with isotropic displacement parameters.

Table 2
Experimental details

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017009884/lh5846sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017009884/lh5846Isup2.hkl

CCDC reference: 1560028

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C19H17BF3PZ = 2
Mr = 344.10F(000) = 356
Triclinic, P1Dx = 1.366 Mg m3
a = 9.514 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.870 (3) ÅCell parameters from 2126 reflections
c = 9.883 (3) Åθ = 2.3–23.9°
α = 64.609 (6)°µ = 0.19 mm1
β = 87.539 (7)°T = 173 K
γ = 86.660 (7)°Plate, colorless
V = 836.8 (4) Å30.13 × 0.07 × 0.01 mm

Data collection

Bruker APEXII CCD diffractometer2090 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.061
[var phi] and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2012)h = −11→11
Tmin = 0.925, Tmax = 1.000k = −10→11
11811 measured reflectionsl = −11→11
2953 independent reflections

Refinement

Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041All H-atom parameters refined
wR(F2) = 0.094w = 1/[σ2(Fo2) + (0.0458P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2953 reflectionsΔρmax = 0.26 e Å3
285 parametersΔρmin = −0.29 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
P10.88100 (6)0.18041 (7)0.68950 (7)0.01697 (18)
B10.6884 (3)0.2752 (3)0.8793 (3)0.0230 (7)
F10.58103 (14)0.26765 (16)0.79007 (15)0.0321 (4)
F20.66153 (16)0.40289 (16)0.90564 (16)0.0385 (4)
F30.68558 (16)0.14803 (16)1.01567 (15)0.0381 (4)
C10.8421 (3)0.2870 (3)0.7950 (3)0.0208 (6)
C20.7769 (2)0.2468 (2)0.5241 (2)0.0159 (5)
C30.7246 (3)0.3952 (3)0.4576 (3)0.0244 (6)
C40.6496 (3)0.4457 (3)0.3269 (3)0.0290 (6)
C50.6268 (3)0.3508 (3)0.2611 (3)0.0260 (6)
C60.6785 (3)0.2042 (3)0.3260 (3)0.0270 (6)
C70.7526 (3)0.1511 (3)0.4578 (3)0.0227 (6)
C81.0645 (2)0.1992 (2)0.6332 (2)0.0177 (5)
C91.1081 (3)0.2542 (3)0.4834 (3)0.0208 (6)
C101.2509 (3)0.2685 (3)0.4467 (3)0.0271 (6)
C111.3487 (3)0.2274 (3)0.5571 (3)0.0282 (6)
C121.3064 (3)0.1730 (3)0.7066 (3)0.0249 (6)
C131.1648 (2)0.1596 (3)0.7452 (3)0.0224 (6)
C140.8521 (2)−0.0170 (3)0.7952 (2)0.0175 (5)
C150.9617 (3)−0.1247 (3)0.8201 (3)0.0221 (6)
C160.9361 (3)−0.2760 (3)0.8966 (3)0.0276 (6)
C170.8011 (3)−0.3208 (3)0.9478 (3)0.0296 (6)
C180.6919 (3)−0.2144 (3)0.9237 (3)0.0293 (6)
C190.7161 (3)−0.0636 (3)0.8475 (3)0.0234 (6)
H1A0.860 (3)0.389 (3)0.727 (3)0.034 (8)*
H1B0.913 (3)0.256 (3)0.864 (3)0.036 (8)*
H30.736 (3)0.457 (3)0.510 (3)0.048 (8)*
H40.616 (2)0.547 (3)0.282 (2)0.024 (7)*
H50.578 (2)0.385 (3)0.171 (3)0.029 (7)*
H60.662 (3)0.139 (3)0.281 (3)0.032 (7)*
H70.785 (2)0.043 (3)0.508 (2)0.022 (6)*
H91.043 (2)0.282 (2)0.404 (2)0.019 (6)*
H101.279 (2)0.310 (3)0.342 (3)0.030 (7)*
H111.441 (3)0.233 (3)0.535 (3)0.028 (7)*
H121.374 (3)0.148 (3)0.784 (3)0.039 (8)*
H131.135 (2)0.119 (2)0.851 (3)0.024 (6)*
H151.055 (2)−0.099 (2)0.789 (2)0.020 (6)*
H161.014 (3)−0.352 (3)0.915 (3)0.036 (7)*
H170.785 (3)−0.429 (3)1.000 (3)0.042 (8)*
H180.603 (3)−0.246 (3)0.958 (3)0.032 (7)*
H190.639 (2)0.011 (3)0.829 (2)0.023 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
P10.0150 (3)0.0181 (4)0.0176 (3)−0.0004 (2)−0.0011 (2)−0.0073 (3)
B10.0240 (16)0.0278 (18)0.0209 (15)0.0002 (13)−0.0003 (12)−0.0141 (13)
F10.0175 (7)0.0438 (10)0.0395 (9)0.0008 (6)−0.0033 (6)−0.0220 (8)
F20.0425 (9)0.0369 (10)0.0466 (10)−0.0011 (7)0.0079 (7)−0.0287 (8)
F30.0475 (10)0.0350 (9)0.0237 (8)0.0007 (7)0.0056 (7)−0.0058 (7)
C10.0199 (13)0.0252 (16)0.0203 (13)−0.0003 (11)−0.0050 (11)−0.0123 (12)
C20.0132 (12)0.0185 (14)0.0163 (12)−0.0006 (10)0.0006 (9)−0.0078 (10)
C30.0286 (14)0.0200 (15)0.0252 (13)−0.0005 (11)−0.0048 (11)−0.0100 (12)
C40.0344 (16)0.0198 (16)0.0270 (14)0.0022 (12)−0.0058 (12)−0.0044 (12)
C50.0255 (14)0.0309 (17)0.0167 (13)−0.0010 (12)−0.0047 (11)−0.0051 (12)
C60.0273 (14)0.0368 (17)0.0250 (14)−0.0013 (12)−0.0035 (11)−0.0205 (13)
C70.0283 (14)0.0198 (15)0.0220 (13)0.0021 (11)−0.0040 (11)−0.0108 (12)
C80.0173 (12)0.0140 (13)0.0212 (12)−0.0012 (10)−0.0003 (10)−0.0069 (10)
C90.0215 (13)0.0191 (14)0.0224 (13)−0.0003 (10)−0.0006 (11)−0.0093 (11)
C100.0301 (15)0.0254 (16)0.0269 (15)−0.0053 (12)0.0085 (12)−0.0124 (12)
C110.0174 (14)0.0246 (16)0.0433 (17)−0.0053 (11)0.0070 (13)−0.0153 (13)
C120.0182 (14)0.0222 (15)0.0332 (15)−0.0034 (11)−0.0032 (12)−0.0102 (12)
C130.0190 (13)0.0228 (14)0.0221 (13)−0.0027 (10)0.0001 (11)−0.0063 (11)
C140.0188 (12)0.0195 (14)0.0152 (12)−0.0023 (10)−0.0021 (9)−0.0081 (10)
C150.0210 (14)0.0238 (15)0.0205 (13)−0.0042 (11)−0.0007 (11)−0.0082 (11)
C160.0343 (16)0.0196 (15)0.0277 (14)0.0022 (12)−0.0050 (12)−0.0091 (12)
C170.0448 (18)0.0187 (16)0.0238 (14)−0.0086 (13)0.0007 (12)−0.0070 (12)
C180.0292 (16)0.0316 (17)0.0293 (15)−0.0142 (13)0.0073 (12)−0.0145 (13)
C190.0192 (13)0.0257 (15)0.0264 (14)−0.0030 (12)0.0012 (11)−0.0120 (12)

Geometric parameters (Å, º)

P1—C11.787 (2)C8—C131.401 (3)
P1—C21.796 (2)C9—C101.390 (3)
P1—C81.805 (2)C9—H90.96 (2)
P1—C141.804 (2)C10—C111.373 (4)
B1—F31.394 (3)C10—H100.96 (2)
B1—F21.400 (3)C11—C121.388 (4)
B1—F11.404 (3)C11—H110.89 (2)
B1—C11.636 (4)C12—C131.383 (3)
C1—H1A0.96 (3)C12—H120.95 (3)
C1—H1B0.92 (3)C13—H130.99 (2)
C2—C31.394 (3)C14—C151.395 (3)
C2—C71.395 (3)C14—C191.401 (3)
C3—C41.383 (3)C15—C161.385 (3)
C3—H30.97 (3)C15—H150.94 (2)
C4—C51.380 (4)C16—C171.385 (4)
C4—H40.95 (2)C16—H160.99 (3)
C5—C61.377 (4)C17—C181.385 (4)
C5—H50.94 (2)C17—H170.99 (3)
C6—C71.385 (3)C18—C191.378 (3)
C6—H60.95 (2)C18—H180.92 (3)
C7—H71.00 (2)C19—H190.97 (2)
C8—C91.394 (3)
C1—P1—C2111.67 (12)C9—C8—C13119.8 (2)
C1—P1—C8108.25 (11)C9—C8—P1122.17 (18)
C2—P1—C8108.48 (10)C13—C8—P1118.04 (17)
C1—P1—C14113.04 (12)C10—C9—C8119.6 (2)
C2—P1—C14107.54 (10)C10—C9—H9117.9 (13)
C8—P1—C14107.70 (11)C8—C9—H9122.5 (13)
F3—B1—F2109.0 (2)C11—C10—C9120.4 (2)
F3—B1—F1108.4 (2)C11—C10—H10121.1 (14)
F2—B1—F1108.5 (2)C9—C10—H10118.5 (14)
F3—B1—C1110.9 (2)C10—C11—C12120.6 (2)
F2—B1—C1109.1 (2)C10—C11—H11121.3 (15)
F1—B1—C1110.84 (19)C12—C11—H11118.1 (15)
B1—C1—P1119.66 (17)C13—C12—C11119.9 (2)
B1—C1—H1A111.2 (15)C13—C12—H12119.0 (15)
P1—C1—H1A105.1 (15)C11—C12—H12121.1 (15)
B1—C1—H1B110.3 (16)C12—C13—C8119.8 (2)
P1—C1—H1B103.3 (16)C12—C13—H13120.1 (13)
H1A—C1—H1B106 (2)C8—C13—H13120.1 (13)
C3—C2—C7119.4 (2)C15—C14—C19119.2 (2)
C3—C2—P1120.63 (17)C15—C14—P1121.19 (17)
C7—C2—P1119.90 (17)C19—C14—P1119.50 (18)
C4—C3—C2119.7 (2)C16—C15—C14120.3 (2)
C4—C3—H3122.1 (16)C16—C15—H15117.2 (14)
C2—C3—H3118.0 (16)C14—C15—H15122.5 (14)
C5—C4—C3120.6 (3)C17—C16—C15120.0 (3)
C5—C4—H4120.7 (14)C17—C16—H16120.0 (15)
C3—C4—H4118.7 (14)C15—C16—H16120.0 (15)
C6—C5—C4120.0 (2)C16—C17—C18120.1 (3)
C6—C5—H5118.9 (15)C16—C17—H17118.8 (15)
C4—C5—H5121.1 (15)C18—C17—H17121.2 (15)
C5—C6—C7120.3 (2)C19—C18—C17120.4 (3)
C5—C6—H6119.8 (15)C19—C18—H18120.3 (16)
C7—C6—H6119.9 (15)C17—C18—H18119.2 (16)
C6—C7—C2120.0 (2)C18—C19—C14120.0 (2)
C6—C7—H7120.3 (13)C18—C19—H19120.6 (13)
C2—C7—H7119.6 (13)C14—C19—H19119.4 (13)
F3—B1—C1—P181.6 (2)C2—P1—C8—C13177.28 (18)
F2—B1—C1—P1−158.33 (17)C14—P1—C8—C13−66.6 (2)
F1—B1—C1—P1−38.9 (3)C13—C8—C9—C100.4 (3)
C2—P1—C1—B168.2 (2)P1—C8—C9—C10178.94 (18)
C8—P1—C1—B1−172.42 (19)C8—C9—C10—C110.6 (4)
C14—P1—C1—B1−53.2 (2)C9—C10—C11—C12−0.8 (4)
C1—P1—C2—C325.8 (2)C10—C11—C12—C130.1 (4)
C8—P1—C2—C3−93.4 (2)C11—C12—C13—C80.8 (4)
C14—P1—C2—C3150.38 (18)C9—C8—C13—C12−1.1 (3)
C1—P1—C2—C7−156.73 (19)P1—C8—C13—C12−179.71 (19)
C8—P1—C2—C784.1 (2)C1—P1—C14—C15−119.9 (2)
C14—P1—C2—C7−32.2 (2)C2—P1—C14—C15116.40 (19)
C7—C2—C3—C4−0.1 (4)C8—P1—C14—C15−0.3 (2)
P1—C2—C3—C4177.32 (19)C1—P1—C14—C1963.0 (2)
C2—C3—C4—C5−0.3 (4)C2—P1—C14—C19−60.7 (2)
C3—C4—C5—C60.2 (4)C8—P1—C14—C19−177.42 (18)
C4—C5—C6—C70.5 (4)C19—C14—C15—C16−0.4 (3)
C5—C6—C7—C2−1.0 (4)P1—C14—C15—C16−177.49 (18)
C3—C2—C7—C60.8 (4)C14—C15—C16—C170.4 (4)
P1—C2—C7—C6−176.70 (18)C15—C16—C17—C18−0.5 (4)
C1—P1—C8—C9−122.6 (2)C16—C17—C18—C190.6 (4)
C2—P1—C8—C9−1.3 (2)C17—C18—C19—C14−0.6 (4)
C14—P1—C8—C9114.8 (2)C15—C14—C19—C180.5 (3)
C1—P1—C8—C1355.9 (2)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C2–C7 ring.

D—H···AD—HH···AD···AD—H···A
C4—H4···F1i0.95 (3)2.44 (2)3.293 (4)149.7 (17)
C12—H12···F1ii0.96 (3)2.37 (3)3.084 (3)131 (2)
C19—H19···F10.97 (2)2.43 (2)3.263 (3)143.9 (18)
C11—H11···Cgii0.89 (3)2.77 (3)3.639 (3)165 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z.

Funding Statement

This work was funded by Eastern Washington University Faculty Grants for Research and Creative Works grant .

This paper was supported by the following grant(s):

Eastern Washington University Faculty Grants for Research and Creative Works .

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–S19.
  • Bruker (2012). APEX2, SAINT, SADABS and SHELXS97. Bruker AXS inc., Madison, Wisconsin, USA.
  • Darses, S. & Genet, J.-P. (2008). Chem. Rev. 108, 288–325. [PubMed]
  • Gott, A. L., Piers, W. E., Dutton, J. L., McDonald, R. & Parvez, M. (2011). Organometallics, 30, 4236–4249.
  • Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [PMC free article] [PubMed]
  • Julia, M. (1985). Pure Appl. Chem. 57, 763–768.
  • Li, Z., Chansaenpak, K., Liu, S., Wade, C. R., Conti, P. S. & Gabbaï, F. P. (2012). Med. Chem. Commun. 3, 1305–1308.
  • Piskunov, A. V., Mescheryakova, I. N., Fukin, G. K., Cherkasov, V. K. & Abakumov, G. A. (2010). New J. Chem. 34, 1746–1750.
  • Seyferth, D. & Grim, S. O. (1961). J. Am. Chem. Soc. 83, 1613–1616.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. [PMC free article] [PubMed]
  • Wade, C. R., Zhao, H. & Gabbai, F. (2010). Chem. Commun. 46, 6830–6831.

Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography