PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actae2this articlesearchopen accesssubmitActa Crystallographica Section E: Crystallographic CommunicationsActa Crystallographica Section E: Crystallographic Communications
 
Acta Crystallogr E Crystallogr Commun. 2017 September 1; 73(Pt 9): 1375–1378.
Published online 2017 August 25. doi:  10.1107/S2056989017011999
PMCID: PMC5588584

Crystal structure of dipotassium N-carbodi­thio­ato-l-prolinate trihydrate

Abstract

The mol­ecular and crystal structure of the l-proline-derived di­thio­carbamate–carboxyl­ate compound poly[tri-μ-aqua-(μ-2-carboxyl­atopyrrolidine-1-carbodi­thio­ato)dipotassium], [K2(C6H7NO2S2)(H2O)3]n or K2(SSC–NC4H7–COO)·3H2O, has been determined. The di­thio­carbamate moiety displays a unique coordination mode, comprising a ‘side-on’ π-coordinated K+ cation besides a commonly σ-chelated K+ cation. By bridging coordination of the CSS group, COO group and water mol­ecules, the K+ cations are linked into a two-dimensional coordination polymer extending parallel to the ab plane. These layers are again inter­connected by O—H(...)S hydrogen bonds.

Keywords: crystal structure, proline, amino acid, di­thio­carbamate, π-coordination, coordination polymer, hydrogen bond

Chemical context  

Natural amino acids react readily with carbon di­sulfide in an alkaline environment to give di­thio­carbamate-functionalized carboxyl­ates. Since the first report on a series of barium salts in the 1950s (Zahradnik, 1956  ), numerous transition metal complexes have been explored. More recently, various late transition metal complexes of this family have been investigated due to their biological activity (e.g. Giovagnini et al., 2005  ; Cachapa et al., 2006  ; Nagy et al., 2012  ). In most cases, the di­thio­carbamate moiety acts as a classical small-bite chelate ligand, while the carboxyl­ate group (often esterified) does not contribute to metal coordination. The structural chemistry of main group derivatives of di­thio­carbamate-derived amino acids is much less explored, even though alkali metal and alkaline earth metal salts are frequently used as precursors for other metal complexes. A key inter­mediate in our ongoing reasearch on coordination polymers with di­thio­carbamate–carboxyl­ates is the l-proline-derived potassium salt K2(SSC–NC4H7–COO). This compound crystallizes from aqueous solution as a trihydrate, which has been structurally characterized in the course of this work.

An external file that holds a picture, illustration, etc.
Object name is e-73-01375-scheme1.jpg

Structural commentary  

The title compound, K2(SSC–NC4H7–COO)·3H2O, crystallized as colourless plates in the ortho­rhom­bic space group P212121, with one formula moiety in the asymmetric unit (Fig. 1  ). One K atom (K2) is bonded in a typical chelating fashion by the CSS group, while K1 is coordinated ‘side-on’ to the CSS group, certainly under participation of the delocalized π electrons. This rather uncommon coordination mode might be supported by additional coordination of a carboxyl­ate O atom (O1) to K1. K1 adopts a low-symmetric seven-coordination by four carboxyl­ate O atoms, two H2O mol­ecules and the π-coordinating CSS group. K2 is eight-coordinated by three S atoms and five H2O mol­ecules (Fig. 2  ). Consequently, the full coordination mode of the carboxyl­ate group is μ34 O,O′:O:O′, and the di­thio­carbamate group adopts a μ36 S,S′,C:S,S′:S coordination. One H2O mol­ecule displays a μ3-coordination (O3) and the remaining two H2O mol­ecules are coordinating in a μ-bridging mode (O4 and O5). The K—S distances at the σ-chelated K+ cation (K2) are 3.2176 (8) and 3.2650 (9) Å, while the K—S separations at the π-coordinated K+ cation (K1) are significantly longer at 3.2956 (9) and 3.4463 (8) Å. The coordination mode of the di­thio­carbamate group in the title compound [see (C) in Fig. 3  ] is unique, to our knowledge. The most frequently observed coordination pattern in di­thio­carbamates of the heavier alkali metals (K, Rb and Cs) is a symmetric double-chelating mode, leading to a puckered S2 M 2 ring (e.g. Howie et al., 2008  ; Reyes-Martínez et al., 2009  ; Mafud, 2012  ; see (B) in Fig. 3  ]. Nonetheless, the values of the K—S separations in the title compound cover the same range as observed in the reference compounds. A simple chelating coordination with significantly shorter K—S contacts is realized when the K+ cation is coordinatively highly saturated, as has been observed in a crown ether complex [Arman et al., 2013  ; see (A) in Fig. 3  ]. In the title compound, three of the four K—O(carboxyl­ate) contacts are in a range 2.676 (2)–2.802 (2) Å, which is consistent with the values observed in other potassium carboxyl­ates (e.g. Ilczyszyn et al., 2009  ; Liebing et al., 2016  ). However, one contact (K1′—O1) is strongly elongated to 3.358 (2) Å. The K—O(H2O) bond lengths cover a range of 2.723 (2)–3.065 (3) Å.

Figure 1
The asymmetric unit of the title compound. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level and H atoms attached to C atoms have been omitted for clarity. Adjacent symmetry-related K+ cations are illustrated as semi-transparent ...
Figure 2
Illustration of the coordination environment of the two K+ cations.
Figure 3
The different coordination modes of the di­thio­carbamate group in potassium complexes: single-chelating (A), symmetric double-chelating (B) and single-chelating combined with π-coordination (this work; C).

Supra­molecular features  

As a result of the bridging coordination of the carboxyl­ate group, the di­thio­carbamate group and the water mol­ecules, a two-dimensional polymeric structure parallel to the ab plane is built (Figs. 4  and 5  ). This arrangement is likely supported by O3—H(...)O1i, O3—H(...)S2ii, O4—H(...)O2iii and O5—H(...)O1 hydrogen bonds within the layer (Table 1  ). The layer surfaces are defined by the hydro­phobic hydro­carbon backbones, but additionally the two-dimensional arrays are apparently inter­connected by O5—H(...)S1iv hydrogen bonds.

Figure 4
Supramolecular crystal structure comprising polymeric layers extending parallel to (001), viewed in a projection on (100). The bold black lines mark the unit-cell dimensions.
Figure 5
The supra­molecular layer illustrated in Fig. 4  , viewed in a projection on (010).
Table 1
Hydrogen-bond geometry (Å, °)

Database survey  

For other potassium di­thio­carbamates, see e.g. Cambridge Structural Database (CSD; Groom et al., 2016  ) refcode AGEHIF (Arman et al., 2013  ), KOLLIH (Howie et al., 2008  ), LEHRUN (Mafud, 2012  ).

For other potassium carboxyl­ates, see e.g. CONWOS (Ilczyszyn et al., 2009  ), and BIFMIN01 and BIFMUZ01 (Liebing et al., 2016  ).

Synthesis and crystallization  

A slight excess of carbon di­sulfide (approximately 4 ml, 0.06 mol) was added to a solution of l-proline (5.76 g, 0.05 mol) and potassium hydroxide (5.61 g, 0.10 mol) in 30 ml water and the resulting solution was stirred vigorously overnight. The yellow solution obtained was filtered and reduced to dryness in vacuo. The crystalline residue was washed with several portions of tetra­hydro­furan and diethyl ether, and dried in vacuo, providing analytically pure K2(SSC–NC4H7–COO)·3H2O in almost qu­anti­tative (>95%) yield as colourless to light-brown low-melting plates, which are very soluble in water. Single crystals suitable for X-ray structure analysis were obtained by slow evaporation of a concentrated aqueous solution at room temperature. IR: 3372 (s br), 3226 (sh br), 2985 (m), 2949 (m), 2875 (w), 1641 (sh), 1603 (sh), 1587 (s), 1497 (s), 1443 (s), 1374 (s), 1338 (m), 1316 (w), 1290 (s), 1257 (m), 1230 (w), 1176 (m), 1155 (s), 1083 (w), 1050 (w), 1003 (m), 948 (m), 918 (m), 899 (w), 846 (m), 794 (m), 666 (s br), 562 (s), 479 (s), 446 (m) cm−1. 1H NMR [400 MHz, D2O, 298 (2) K]: δ 1.89–1.98 (3 × m, 3H; 3-CH 2 + 4-CH 2), 2.24 (m, 1H; 3-CH 2), 3.75 (m, 1H; 5-CH 2), 3.83 (m, 1H; 5-CH 2), 4.72 (dd, J 1 = 8.7, J 2 = 3.2 Hz, 1H; 2-CH). 13C NMR [100 MHz, D2O, 298 (2) K]: δ 24.6 (4-CH2), 31.5 (3-CH2), 55.7 (5-CH2), 69.5 (2-CH), 179.9 (COO), 205.8 (CSS).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2  . H atoms on C atoms were fixed geometrically and refined using a riding model, with U iso(H) = 1.2U eq(C). C—H distances within the CH2 groups were constrained to 0.99 Å and that within the CH group to 1.00 Å. The water H-atom sites were located in difference Fourier maps and refined using restraints on the O—H distance [target value = 0.84 (2) Å]. The corresponding U iso(H) values were set at 1.5U eq(O). The reflection (002) disagreed strongly with the structural model and was therefore omitted from the refinement.

Table 2
Experimental details

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017011999/zl2712sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017011999/zl2712Isup2.hkl

CCDC reference: 1569563

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

General financial support of this work by the Otto-von-Guericke-Universität Magdeburg, Germany, is gratefully acknowledged.

supplementary crystallographic information

Crystal data

[K2(C6H7NO2S2)(H2O)3]Dx = 1.673 Mg m3
Mr = 321.49Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 10736 reflections
a = 7.1700 (3) Åθ = 2.5–29.2°
b = 8.9723 (4) ŵ = 1.07 mm1
c = 19.8379 (7) ÅT = 153 K
V = 1276.20 (9) Å3Plate, colorless
Z = 40.44 × 0.10 × 0.07 mm
F(000) = 664

Data collection

Stoe IPDS 2T diffractometer2794 independent reflections
Radiation source: fine-focus sealed tube2511 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.038
ω scanθmax = 27.0°, θmin = 2.5°
Absorption correction: numerical (X-AREA and X-RED; Stoe & Cie, 2002)h = −9→9
Tmin = 0.741, Tmax = 0.935k = −11→11
8831 measured reflectionsl = −22→25

Refinement

Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.023w = 1/[σ2(Fo2) + (0.0175P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.042(Δ/σ)max = 0.001
S = 0.97Δρmax = 0.25 e Å3
2794 reflectionsΔρmin = −0.22 e Å3
164 parametersExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
6 restraintsExtinction coefficient: 0.0051 (7)
Primary atom site location: heavy-atom methodAbsolute structure: Flack x determined using 979 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.00 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.0231 (3)0.2133 (3)0.89993 (13)0.0120 (5)
C2−0.0116 (3)0.3153 (3)0.83918 (13)0.0103 (5)
H1−0.0988140.3977150.8518160.012*
C30.2180 (4)0.3035 (3)0.74906 (14)0.0140 (6)
H30.3485360.2681340.7516360.017*
H20.2057120.3726180.7103950.017*
C40.0837 (4)0.1734 (3)0.74238 (15)0.0157 (6)
H50.1353070.0825390.7636490.019*
H40.0560060.1521750.6944390.019*
C5−0.0907 (4)0.2267 (3)0.77943 (14)0.0156 (6)
H6−0.1665260.1413240.7951800.019*
H7−0.1683140.2908720.7501110.019*
C60.2657 (3)0.4759 (3)0.84517 (12)0.0098 (5)
N0.1619 (3)0.3766 (2)0.81226 (11)0.0092 (4)
O10.1821 (2)0.1556 (2)0.90730 (10)0.0157 (4)
O2−0.1122 (2)0.1894 (2)0.93751 (12)0.0207 (4)
O30.7663 (3)0.5383 (3)0.98964 (10)0.0217 (4)
H80.856 (4)0.512 (4)0.9680 (15)0.033*
H90.747 (4)0.471 (4)1.0179 (15)0.033*
O40.9025 (3)0.8561 (2)0.92654 (13)0.0280 (5)
H100.999 (4)0.821 (4)0.912 (2)0.042*
H110.914 (5)0.943 (3)0.934 (2)0.042*
O50.4779 (3)0.0059 (2)0.85399 (10)0.0240 (5)
H130.373 (3)0.038 (4)0.8575 (18)0.036*
H120.505 (4)−0.005 (4)0.8144 (12)0.036*
K10.53230 (8)0.28003 (6)0.93500 (3)0.01712 (14)
K20.54335 (7)0.76029 (6)0.93744 (3)0.01595 (13)
S10.47870 (8)0.52667 (8)0.81344 (3)0.01487 (14)
S20.18705 (8)0.54540 (7)0.92079 (3)0.01487 (15)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0121 (11)0.0107 (12)0.0133 (13)−0.0024 (9)−0.0008 (10)−0.0016 (9)
C20.0068 (11)0.0108 (11)0.0134 (13)0.0003 (9)−0.0006 (10)0.0007 (9)
C30.0154 (14)0.0153 (13)0.0112 (14)−0.0017 (10)0.0030 (10)−0.0030 (11)
C40.0192 (14)0.0133 (13)0.0145 (15)−0.0047 (10)−0.0023 (10)−0.0031 (11)
C50.0151 (12)0.0151 (14)0.0167 (15)−0.0028 (10)−0.0038 (10)−0.0007 (11)
C60.0097 (10)0.0096 (11)0.0100 (12)0.0016 (10)−0.0005 (8)0.0021 (11)
N0.0095 (9)0.0086 (10)0.0096 (11)−0.0024 (8)−0.0003 (8)−0.0004 (8)
O10.0135 (8)0.0164 (9)0.0171 (11)0.0057 (8)0.0000 (8)0.0034 (8)
O20.0127 (8)0.0312 (12)0.0183 (11)−0.0002 (7)0.0040 (9)0.0082 (10)
O30.0206 (9)0.0208 (10)0.0237 (11)0.0048 (8)0.0084 (8)0.0098 (10)
O40.0223 (10)0.0214 (11)0.0403 (16)−0.0048 (8)0.0009 (10)−0.0010 (12)
O50.0233 (9)0.0330 (13)0.0158 (10)0.0126 (9)0.0033 (8)0.0009 (9)
K10.0115 (2)0.0201 (3)0.0197 (3)0.0003 (2)−0.0003 (3)0.0014 (2)
K20.0146 (3)0.0140 (3)0.0192 (3)−0.0005 (2)−0.0023 (3)−0.0006 (2)
S10.0125 (3)0.0187 (3)0.0134 (3)−0.0058 (3)0.0023 (2)−0.0005 (3)
S20.0135 (3)0.0182 (3)0.0129 (3)−0.0022 (3)0.0020 (2)−0.0062 (3)

Geometric parameters (Å, º)

C1—O21.242 (3)O3—K13.060 (2)
C1—O11.261 (3)O3—H80.81 (2)
C1—C21.533 (4)O3—H90.83 (2)
C1—K1i3.276 (3)O4—K22.723 (2)
C2—N1.462 (3)O4—K2iii3.065 (3)
C2—C51.536 (4)O4—H100.81 (2)
C2—H11.0000O4—H110.80 (2)
C3—N1.471 (3)O5—K2iv2.796 (2)
C3—C41.519 (4)O5—K12.964 (2)
C3—H30.9900O5—H130.81 (2)
C3—H20.9900O5—H120.81 (2)
C4—C51.527 (4)K1—O2v2.6758 (19)
C4—H50.9900K1—O2vi2.747 (2)
C4—H40.9900K1—C1vi3.276 (3)
C5—H60.9900K1—S13.2956 (9)
C5—H70.9900K1—O1vi3.358 (2)
C6—N1.332 (3)K1—S23.4463 (8)
C6—S11.714 (2)K1—H92.83 (4)
C6—S21.719 (3)K1—H132.90 (4)
C6—K13.150 (2)K2—O5vii2.796 (2)
O1—K12.8023 (19)K2—O3viii3.050 (2)
O1—K1i3.358 (2)K2—O4viii3.065 (3)
O2—K1ii2.6758 (19)K2—S23.2176 (8)
O2—K1i2.747 (2)K2—S13.2650 (9)
O3—K22.756 (2)K2—S2iii3.4656 (9)
O3—K2iii3.050 (2)S2—K2viii3.4656 (9)
O2—C1—O1124.5 (2)C6—K1—K257.29 (5)
O2—C1—C2116.6 (2)C1vi—K1—K288.33 (4)
O1—C1—C2118.9 (2)S1—K1—K248.625 (16)
O2—C1—K1i54.47 (14)O1vi—K1—K279.14 (4)
O1—C1—K1i82.72 (15)S2—K1—K247.420 (14)
C2—C1—K1i141.07 (16)O2v—K1—K1vi35.39 (5)
N—C2—C1111.93 (19)O2vi—K1—K1vi77.43 (4)
N—C2—C5103.1 (2)O1—K1—K1vi141.94 (4)
C1—C2—C5110.9 (2)O5—K1—K1vi108.66 (4)
N—C2—H1110.2O3—K1—K1vi56.26 (4)
C1—C2—H1110.2C6—K1—K1vi152.21 (5)
C5—C2—H1110.2C1vi—K1—K1vi55.88 (5)
N—C3—C4104.1 (2)S1—K1—K1vi126.83 (2)
N—C3—H3110.9O1vi—K1—K1vi39.01 (3)
C4—C3—H3110.9S2—K1—K1vi135.23 (3)
N—C3—H2110.9K2—K1—K1vi95.725 (18)
C4—C3—H2110.9O2v—K1—H969.9 (7)
H3—C3—H2109.0O2vi—K1—H967.0 (6)
C3—C4—C5103.7 (2)O1—K1—H9147.4 (6)
C3—C4—H5111.0O5—K1—H9152.8 (7)
C5—C4—H5111.0O3—K1—H915.6 (5)
C3—C4—H4111.0C6—K1—H9108.6 (6)
C5—C4—H4111.0C1vi—K1—H954.5 (5)
H5—C4—H4109.0S1—K1—H994.6 (5)
C4—C5—C2103.4 (2)O1vi—K1—H935.0 (5)
C4—C5—H6111.1S2—K1—H991.1 (6)
C2—C5—H6111.1K2—K1—H951.5 (6)
C4—C5—H7111.1K1vi—K1—H945.5 (6)
C2—C5—H7111.1O2v—K1—H1399.1 (5)
H6—C5—H7109.0O2vi—K1—H13114.5 (7)
N—C6—S1119.70 (18)O1—K1—H1340.8 (5)
N—C6—S2119.16 (17)O5—K1—H1315.8 (4)
S1—C6—S2121.09 (15)O3—K1—H13166.5 (6)
N—C6—K1104.05 (16)C6—K1—H1383.0 (6)
S1—C6—K179.34 (8)C1vi—K1—H13122.4 (7)
S2—C6—K184.71 (9)S1—K1—H1394.0 (7)
C6—N—C2123.2 (2)O1vi—K1—H13138.6 (7)
C6—N—C3124.3 (2)S2—K1—H13101.0 (5)
C2—N—C3112.12 (18)K2—K1—H13139.7 (7)
C1—O1—K1132.01 (16)K1vi—K1—H13122.3 (6)
C1—O1—K1i75.41 (15)H9—K1—H13167.8 (8)
K1—O1—K1i92.03 (5)O4—K2—O373.12 (7)
C1—O2—K1ii132.87 (17)O4—K2—O5vii82.11 (7)
C1—O2—K1i103.94 (16)O3—K2—O5vii152.81 (6)
K1ii—O2—K1i110.25 (8)O4—K2—O3viii117.80 (6)
K2—O3—K2iii97.35 (7)O3—K2—O3viii128.88 (4)
K2—O3—K195.52 (6)O5vii—K2—O3viii72.82 (6)
K2iii—O3—K1166.87 (8)O4—K2—O4viii119.29 (6)
K2—O3—H8118 (2)O3—K2—O4viii67.29 (6)
K2iii—O3—H885 (3)O5vii—K2—O4viii137.28 (6)
K1—O3—H892 (3)O3viii—K2—O4viii64.51 (6)
K2—O3—H9133 (2)O4—K2—S2158.71 (6)
K2iii—O3—H9103 (2)O3—K2—S293.79 (5)
K1—O3—H966 (2)O5vii—K2—S2106.15 (5)
H8—O3—H9106 (3)O3viii—K2—S283.48 (4)
K2—O4—K2iii97.70 (8)O4viii—K2—S267.94 (5)
K2—O4—H10135 (3)O4—K2—S1106.09 (6)
K2iii—O4—H1084 (3)O3—K2—S184.35 (5)
K2—O4—H11113 (2)O5vii—K2—S192.06 (5)
K2iii—O4—H1198 (3)O3viii—K2—S1130.18 (4)
H10—O4—H11111 (4)O4viii—K2—S1113.44 (5)
K2iv—O5—K1108.11 (6)S2—K2—S154.915 (17)
K2iv—O5—H13113 (3)O4—K2—S2iii67.95 (6)
K1—O5—H1377 (3)O3—K2—S2iii83.46 (5)
K2iv—O5—H12116 (3)O5vii—K2—S2iii97.70 (5)
K1—O5—H12126 (3)O3viii—K2—S2iii60.71 (4)
H13—O5—H12110 (3)O4viii—K2—S2iii63.57 (5)
O2v—K1—O2vi111.87 (5)S2—K2—S2iii128.38 (2)
O2v—K1—O1137.40 (6)S1—K2—S2iii167.58 (2)
O2vi—K1—O183.24 (6)O4—K2—K1109.40 (5)
O2v—K1—O583.31 (6)O3—K2—K144.96 (5)
O2vi—K1—O5122.17 (6)O5vii—K2—K1141.10 (5)
O1—K1—O556.29 (5)O3viii—K2—K1125.84 (4)
O2v—K1—O372.61 (6)O4viii—K2—K170.31 (4)
O2vi—K1—O378.76 (6)S2—K2—K152.061 (16)
O1—K1—O3149.61 (6)S1—K2—K149.238 (17)
O5—K1—O3153.24 (6)S2iii—K2—K1121.17 (2)
O2v—K1—C6139.31 (7)O4—K2—K2iii44.10 (5)
O2vi—K1—C6103.67 (6)O3—K2—K2iii43.88 (5)
O1—K1—C664.38 (6)O5vii—K2—K2iii120.53 (5)
O5—K1—C694.38 (6)O3viii—K2—K2iii106.88 (4)
O3—K1—C696.35 (6)O4viii—K2—K2iii75.86 (5)
O2v—K1—C1vi90.35 (7)S2—K2—K2iii133.26 (3)
O2vi—K1—C1vi21.59 (6)S1—K2—K2iii121.19 (2)
O1—K1—C1vi100.67 (6)S2iii—K2—K2iii46.809 (17)
O5—K1—C1vi123.68 (6)K1—K2—K2iii88.808 (18)
O3—K1—C1vi69.09 (6)O4—K2—K2viii146.64 (6)
C6—K1—C1vi122.90 (6)O3—K2—K2viii103.43 (5)
O2v—K1—S1109.19 (5)O5vii—K2—K2viii103.43 (4)
O2vi—K1—S1124.25 (4)O3viii—K2—K2viii38.77 (4)
O1—K1—S191.12 (4)O4viii—K2—K2viii38.20 (4)
O5—K1—S198.34 (4)S2—K2—K2viii51.744 (13)
O3—K1—S179.31 (4)S1—K2—K2viii106.540 (19)
C6—K1—S130.73 (4)S2iii—K2—K2viii78.70 (2)
C1vi—K1—S1135.80 (5)K1—K2—K2viii87.075 (19)
O2v—K1—O1vi74.35 (6)K2iii—K2—K2viii110.46 (3)
O2vi—K1—O1vi41.03 (5)O4—K2—K1vii72.51 (5)
O1—K1—O1vi122.54 (5)O3—K2—K1vii137.42 (5)
O5—K1—O1vi133.64 (5)O5vii—K2—K1vii37.15 (4)
O3—K1—O1vi50.52 (5)O3viii—K2—K1vii53.25 (4)
C6—K1—O1vi128.70 (6)O4viii—K2—K1vii110.14 (5)
C1vi—K1—O1vi21.87 (5)S2—K2—K1vii125.77 (2)
S1—K1—O1vi127.12 (4)S1—K2—K1vii129.17 (2)
O2v—K1—S2153.59 (5)S2iii—K2—K1vii60.694 (17)
O2vi—K1—S274.66 (4)K1—K2—K1vii177.62 (2)
O1—K1—S267.40 (4)K2iii—K2—K1vii93.565 (18)
O5—K1—S2115.75 (4)K2viii—K2—K1vii91.962 (18)
O3—K1—S284.23 (4)C6—S1—K291.16 (9)
C6—K1—S229.79 (5)C6—S1—K169.92 (8)
C1vi—K1—S293.14 (5)K2—S1—K182.14 (2)
S1—K1—S252.585 (17)C6—S2—K292.67 (8)
O1vi—K1—S2100.79 (4)C6—S2—K165.51 (8)
O2v—K1—K2106.61 (4)K2—S2—K180.519 (19)
O2vi—K1—K284.08 (4)C6—S2—K2viii171.04 (10)
O1—K1—K2114.65 (4)K2—S2—K2viii81.447 (18)
O5—K1—K2146.95 (4)K1—S2—K2viii119.65 (2)
O3—K1—K239.52 (4)
O2—C1—C2—N160.5 (2)C4—C3—N—C2−8.5 (3)
O1—C1—C2—N−21.9 (3)O2—C1—O1—K1−116.4 (2)
K1i—C1—C2—N95.0 (3)C2—C1—O1—K166.3 (3)
O2—C1—C2—C5−84.9 (3)K1i—C1—O1—K1−79.32 (18)
O1—C1—C2—C592.6 (3)O2—C1—O1—K1i−37.0 (2)
K1i—C1—C2—C5−150.4 (2)C2—C1—O1—K1i145.6 (2)
N—C3—C4—C528.1 (3)O1—C1—O2—K1ii−176.93 (17)
C3—C4—C5—C2−37.1 (3)C2—C1—O2—K1ii0.5 (3)
N—C2—C5—C431.5 (3)K1i—C1—O2—K1ii135.8 (2)
C1—C2—C5—C4−88.5 (3)O1—C1—O2—K1i47.3 (3)
S1—C6—N—C2173.28 (17)C2—C1—O2—K1i−135.35 (18)
S2—C6—N—C2−4.1 (3)N—C6—S1—K2178.61 (19)
K1—C6—N—C287.7 (2)S2—C6—S1—K2−4.09 (15)
S1—C6—N—C30.5 (3)K1—C6—S1—K2−81.19 (4)
S2—C6—N—C3−176.82 (19)N—C6—S1—K1−100.2 (2)
K1—C6—N—C3−85.1 (2)S2—C6—S1—K177.11 (14)
C1—C2—N—C6−68.8 (3)N—C6—S2—K2−178.53 (19)
C5—C2—N—C6171.9 (2)S1—C6—S2—K24.15 (15)
C1—C2—N—C3104.8 (2)K1—C6—S2—K278.32 (4)
C5—C2—N—C3−14.5 (3)N—C6—S2—K1103.2 (2)
C4—C3—N—C6165.0 (2)S1—C6—S2—K1−74.17 (14)

Symmetry codes: (i) x−1/2, −y+1/2, −z+2; (ii) x−1, y, z; (iii) x+1/2, −y+3/2, −z+2; (iv) x, y−1, z; (v) x+1, y, z; (vi) x+1/2, −y+1/2, −z+2; (vii) x, y+1, z; (viii) x−1/2, −y+3/2, −z+2.

Hydrogen-bond geometry (Å, º)

D—H···AD—HH···AD···AD—H···A
O3—H9···O1vi0.83 (2)1.93 (2)2.752 (3)170 (4)
O3—H8···S2v0.81 (2)2.57 (2)3.3123 (19)153 (3)
O4—H11···O2ix0.80 (2)2.22 (2)3.000 (3)166 (4)
O5—H13···O10.81 (2)1.99 (3)2.724 (3)150 (3)
O5—H12···S1x0.81 (2)2.55 (2)3.341 (2)163 (3)

Symmetry codes: (v) x+1, y, z; (vi) x+1/2, −y+1/2, −z+2; (ix) x+1, y+1, z; (x) −x+1, y−1/2, −z+3/2.

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  • Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2013). Acta Cryst. E69, m479–m480. [PMC free article] [PubMed]
  • Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Cachapa, A., Mederos, A., Gili, P., Hernández-Molina, R., Domínguez, S., Chinea, E., López Rodríguez, M., Feliz, M., Llusar, R., Brito, F., Ruiz de Galarreta, C. M., Tarbraue, C. & Gallardo, G. (2006). Polyhedron, 25, 3366–3378.
  • Giovagnini, L., Ronconi, L., Aldinucci, D., Lorenzon, D., Sitran, S. & Fregona, D. (2005). J. Med. Chem. 48, 1588–1595. [PubMed]
  • Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [PMC free article] [PubMed]
  • Howie, A. R., de Lima, G. M., Menezes, D. C., Wardell, J. L., Wardell, S. M. S. V., Young, D. J. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 1626–1637.
  • Ilczyszyn, M. M., Lis, T., Wierzejewska, M. & Zatajska, M. (2009). J. Mol. Struct. 919, 303–311.
  • Liebing, P., Zaeni, A., Olbrich, F. & Edelmann, F. T. (2016). Acta Cryst. E72, 1757–1761. [PMC free article] [PubMed]
  • Mafud, A. C. (2012). Acta Cryst. E68, m1025. [PMC free article] [PubMed]
  • Nagy, E. M., Sitran, S., Montopoli, M., Favaro, M., Marchiò, L., Caparrotta, L. & Fregona, D. (2012). J. Inorg. Biochem. 117, 131–139. [PubMed]
  • Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [PMC free article] [PubMed]
  • Reyes-Martínez, R., Höpfl, H., Godoy-Alcántar, C., Medrano, F. & Tlahuext, H. (2009). CrystEngComm, 11, 2417–2424.
  • Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. [PMC free article] [PubMed]
  • Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.
  • Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  • Zahradnik, R. (1956). Chem. Listy Vedu Prum. 50, 1892–1898.

Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography