Search tips
Search criteria 


Logo of neuroscibullNeuroscience Bulletin
Neurosci Bull. 2009 October; 25(5): 237.
Published online 2009 October 7. doi:  10.1007/s12264-009-0905-4
PMCID: PMC5552607

Language: English | Chinese

Roles of the hippocampal formation in pain information processing



Pain is a complex experience consisting of sensory-discriminative, affective-motivational, and cognitive-evaluative dimensions. Now it has been gradually known that noxious information is processed by a widely-distributed, hierarchically-interconnected neural network, referred to as neuromatrix, in the brain. Thus, identifying the multiple neural networks subserving these functional aspects and harnessing this knowledge to manipulate the pain response in new and beneficial ways are challenging tasks. Albeit with elaborate research efforts on the cortical responses to painful stimuli or clinical pain, involvement of the hippocampal formation (HF) in pain is still a matter of controversy. Here, we integrate previous animal and human studies from the viewpoint of HF and pain, sequentially representing anatomical, behavioral, electrophysiological, molecular/biochemical and functional imaging evidence supporting the role of HF in pain processing. At last, we further expound on the relationship between pain and memory and present some unresolved issues.

Keywords: pain, hippocampal formation, anatomy, behavior, electrophysiology, functional imaging


众所周知, 疼痛是一种复杂的体验与经历, 包括感觉识辨、 情绪动机和认知评价三个主要组成部分。 近年来, 人们已经逐渐认识到外周传来的伤害性信息是由脑内一个广泛存在的、 阶梯分明的神经元网络(也可称为疼痛基质)完成的。 因此, 鉴定出这些负责疼痛各功能要素的多级神经元网络, 并利用所获知识更好地治疗疼痛, 已经成为摆在人们面前的艰巨任务。 虽然关于痛刺激或者临床痛激发的皮层反应相关研究已经很多, 但是对海马结构在痛觉处理中的作用仍存在分歧。 在这里, 我们整合了前人在动物和人的海马与痛的关系方面的研究工作, 依次提供解剖学、 行为学、 电生理学、 分子生物学或生物化学及功能成像方面的证据, 证明海马结构与痛觉信息处理的相关性。 最后, 简单阐述痛与记忆之间的关系, 并提出尚未解决的问题, 以指导将来的研究。

关键词: 痛, 海马结构, 解剖, 行为, 电生理, 功能成像


[1] Melzack R., Casey K.L. Sensory, motivational, and central control determinants of pain. In: Kenshalo D.R., editor. The skin senses. Springfield (IL): Charles C. Thomas; 1968. pp. 423–439.
[2] Price D.D. Psychological mechanisms of pain and analgesia. Seattle: IASP Press; 1999.
[3] Bushnell M.C., Apkarian A.V. Representation of pain in the brain. In: McMahon S.B., Koltzenburg M., editors. Wall and Melzack’s Textbook of Pain. 5. China: Elsevier Ltd., Churchill Livingstone; 2006. pp. 107–124.
[4] Rainville P. Brain mechanisms of pain affect and pain modulation. Curr Opin Neurobiol. 2002;12:195–204. doi: 10.1016/S0959-4388(02)00313-6. [PubMed] [Cross Ref]
[5] Willis W.D. Nociceptive pathways: anatomy and physiology of nociceptive ascending pathways. Philos Trans R Soc Lond B Bio Sci. 1985;308:253–268. doi: 10.1098/rstb.1985.0025. [PubMed] [Cross Ref]
[6] Melzack R. Evaluation of the neuromatrix theory of pain. Pain Pract. 2005;5:85–94. doi: 10.1111/j.1533-2500.2005.05203.x. [PubMed] [Cross Ref]
[7] Melzack R. The future of pain. Nat Rev Drug Discov. 2008;7:629. doi: 10.1038/nrd2640. [PubMed] [Cross Ref]
[8] Dick B.D., Rashiq S. Disruption of attention and working memory traces in individuals with chronic pain. Anesth Analg. 2007;104:1223–1229. doi: 10.1213/01.ane.0000263280.49786.f5. [PubMed] [Cross Ref]
[9] Fishbain D.A., Cutler R., Rosomoff H.L., Rosomoff R.S. Chronic pain-associated depression: antecedent or consequence chronic pain? A review. Clin J Pain. 1997;13:116–137. doi: 10.1097/00002508-199706000-00006. [PubMed] [Cross Ref]
[10] Ling J., Campbell C., Heffernan T.M., Greenough C.G. Short-term prospective memory deficits in chronic back pain patients. Psychosom Med. 2007;69:144–148. doi: 10.1097/PSY.0b013e31802e0f22. [PubMed] [Cross Ref]
[11] Narita M., Kaneko C., Miyoshi K., Nagumo Y., Kuzumaki N., Nakajima M., et al. Chronic pain induces anxiety with concomitant changes in opioidergic function in the amygdala. Neuropsychopharmacology. 2006;31:739–750. doi: 10.1038/sj.npp.1300858. [PubMed] [Cross Ref]
[12] Zhao XY, Liu MG, Yuan DL, Wang Y, Zhang FK, Chen XF et al. Nociception-induced spatial and temporal plasticity of synaptic connection and function in the hippocampal formation of rats: a multi-electrode array recording. Mol Pain 2009 (in press). [PMC free article] [PubMed]
[13] Casey K.L. The imaging of pain: background and rationale. In: Casey K.L., Bushnell M.C., editors. Pain imaging. Seattle: IASP Press; 2000. pp. 1–29.
[14] Talbot J.D., Marrett S., Evans A.C., Meyer E., Bushnell M.C., Duncan G.H. Multiple representations of pain in human cerebral cortex. Science. 1991;251:1355–1358. doi: 10.1126/science.2003220. [PubMed] [Cross Ref]
[15] Tracey I., Mantyh P.W. The cerebral signature for pain perception and its modulation. Neuron. 2007;55:377–391. doi: 10.1016/j.neuron.2007.07.012. [PubMed] [Cross Ref]
[16] Treede R.D., Kenshal D.R., Gracely R.H., Jones A.K.P. The cortical representation of pain. Pain. 1999;79:105–111. doi: 10.1016/S0304-3959(98)00184-5. [PubMed] [Cross Ref]
[17] Duvernoy H.M. The Human Hippocampus. Berlin: Springer-Verlag; 2005.
[18] Papez J.W. A proposed mechanism of emotion. Arch Neurol Psychiat. 1937;38:725–744.
[19] Aloisi A.M., Casamenti F., Scali C., Pepeu G., Carli G. Effects of novelty, pain and stress on hippocampal extracellular acetylcholine levels in male rats. Brain Res. 1997;748:219–226. doi: 10.1016/S0006-8993(96)01304-2. [PubMed] [Cross Ref]
[20] Bird C.M., Burgess N. The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci. 2008;9:182–194. doi: 10.1038/nrn2335. [PubMed] [Cross Ref]
[21] Eichenbaum H. Conscious awareness, memory and the hippocampus. Nat Neurosci. 1999;2:775–776. doi: 10.1038/12137. [PubMed] [Cross Ref]
[22] Eichenbaum H. A cortical-hippocampal system for declarative memory. Nat Rev Neurosci. 2000;1:41–50. doi: 10.1038/35036213. [PubMed] [Cross Ref]
[23] Jaffard R., Meunier M. Role of the hippocampal formation in learning and memory. Hippocampus. 1993;3:203–217. [PubMed]
[24] Duric V., McCarson K.E. Hippocampal neurokinin-1 receptor and brain-derived neurotrophic factor gene expression is decreased in rat models of pain and stress. Neuroscience. 2005;133:999–1006. doi: 10.1016/j.neuroscience.2005.04.002. [PubMed] [Cross Ref]
[25] Duric V., McCarson K.E. Neurokinin-1 (NK-1) receptor and brainderived neurotrophic factor (BDNF) gene expression is differentially modulated in the rat spinal dorsal horn and hippocampus during inflammatory pain. Mol Pain. 2007;3:32. doi: 10.1186/1744-8069-3-32. [PMC free article] [PubMed] [Cross Ref]
[26] Oddie S.D., Bland B.H. Hippocampal formation theta activity and movement selection. Neurosci Biobehav Rev. 1998;22:221–231. doi: 10.1016/S0149-7634(97)00003-1. [PubMed] [Cross Ref]
[27] Al Amin H.A., Atweh S.F., Jabbur S.J., Saade N.E. Effects of ventral hippocampal lesion on thermal and mechanical nociception in neonates and adult rats. Eur J Neurosci. 2004;20:3027–3034. doi: 10.1111/j.1460-9568.2004.03762.x. [PubMed] [Cross Ref]
[28] Echeverry M.B., Guimarães F.S., Del Bel E.A. Acute and delayed restraint stress-induced changes in nitric oxide producing neurons in limbic regions. Neuroscience. 2004;125:981–993. doi: 10.1016/j.neuroscience.2003.12.046. [PubMed] [Cross Ref]
[29] Favaroni Mendes L.A., Menescal-de-Oliveira L. Role of cholinergic, opioidergic and GABAergic neurotransmission of the dorsal hippocampus in the modulation of nociception in guinea pigs. Life Sci. 2008;83:644–650. doi: 10.1016/j.lfs.2008.09.006. [PubMed] [Cross Ref]
[30] Khanna S., Chang L.S., Jiang F., Koh H.C. Nociception-driven decreased induction of Fos protein in ventral hippocampus field CA1 of the rat. Brain Res. 2004;1004:167–176. doi: 10.1016/j.brainres.2004.01.026. [PubMed] [Cross Ref]
[31] Lathe R. Hormones and the hippocampus. J Endocrinol. 2001;169:205–231. doi: 10.1677/joe.0.1690205. [PubMed] [Cross Ref]
[32] McKenna J.E., Melzack R. Analgesia produced by lidocaine microinjection into the dentate gyrus. Pain. 1992;49:105–112. doi: 10.1016/0304-3959(92)90195-H. [PubMed] [Cross Ref]
[33] McKenna J.E., Melzack R. Blocking NMDA receptors in the hippocampal dentate gyrus with AP5 produces analgesia in the formalin pain test. Exp Neurol. 2001;172:92–99. doi: 10.1006/exnr.2001.7777. [PubMed] [Cross Ref]
[34] Soleimannejad E., Naghdi N., Semnanian S., Fathollahi Y., Kazemnejad A. Antinociceptive effect of intra-hippocampal CA1 and dentate gyrus injection of MK801 and AP5 in the formalin test in adult male rats. Eur J Pharmacol. 2007;562:39–46. doi: 10.1016/j.ejphar.2006.11.051. [PubMed] [Cross Ref]
[35] Soleimannejad E., Semnanian S., Fathollahi Y., Naghdi N. Microinjection of ritanserin into the dorsal hippocampal CA1 and dentate gyrus decrease nociceptive behavior in adult male rat. Behav Brain Res. 2006;168:221–225. doi: 10.1016/j.bbr.2005.11.011. [PubMed] [Cross Ref]
[36] Yamamotov’a A., Franìk M., Vaculín, Št’astny’ F., Bubeníkov’a-Valešov’a V., Rokyta R. Different transfer of nociceptive sensitivity from rats with postnatal hippocampal lesions to control rats. Eur J Neurosci. 2007;26:446–450. doi: 10.1111/j.1460-9568.2007.05666.x. [PubMed] [Cross Ref]
[37] Teyler T.J., DiScenna P. The topological anatomy of the hippocampus. Brain Res Bull. 1984;12:711–719. doi: 10.1016/0361-9230(84)90152-7. [PubMed] [Cross Ref]
[38] van Strien N.M., Cappaert N.L.M., Witter M.P. The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network. Nat Rev Neurosci. 2009;10:272–282. doi: 10.1038/nrn2614. [PubMed] [Cross Ref]
[39] Amaral D.G., Witter M.P. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience. 1989;31:571–591. doi: 10.1016/0306-4522(89)90424-7. [PubMed] [Cross Ref]
[40] Amaral D.G., Lavenex P. The Hippocampus Book. New York: Oxford Univ Press; 2007.
[41] Jones R.S.G. Entorhinal-hippocampal connections: a speculative view of their function. Trends Neurosci. 1993;16:58–64. doi: 10.1016/0166-2236(93)90018-H. [PubMed] [Cross Ref]
[42] Wyss J.M. An autoradiographic study of the efferent connections of the entorhinal cortex in the rat. J Comp Neurol. 1981;199:495–512. doi: 10.1002/cne.901990405. [PubMed] [Cross Ref]
[43] Cajal S.R. The structure of Ammon’s Horn (trans. L Kraft) Springfield, MA: CC Thomas; 1968.
[44] Dolorfo C.L., Amaral D.G. Entorhinal cortex of the rat: topographic organization of the cells of origin of the perforant path projection to the dentate gyrus. J Comp Neurol. 1998;398:25–48. doi: 10.1002/(SICI)1096-9861(19980817)398:1<25::AID-CNE3>3.0.CO;2-B. [PubMed] [Cross Ref]
[45] Witter M.P., Groenewegen H.J., Lopes da Silva F.H., Lohman A.H. Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog Neurobiol. 1989;33:161–253. doi: 10.1016/0301-0082(89)90009-9. [PubMed] [Cross Ref]
[46] Kohler C. A projection from the deep layers of the entorhinal area to the hippocampal formation in the rat brain. Neurosci Lett. 1985;56:13–19. doi: 10.1016/0304-3940(85)90433-1. [PubMed] [Cross Ref]
[47] Witter M.P., Griffioen A.W., Jorritsma-Byham B., Krijnen J.L. Entorhinal projections to the hippocampal CA1 region in the rat: an underestimated pathway. Neurosci Lett. 1988;85:193–198. doi: 10.1016/0304-3940(88)90350-3. [PubMed] [Cross Ref]
[48] Hjorth-Simonsen A., Jeune B. Origin and termination of the hippocampal perforant path in the rat studied by silver impregnation. J Comp Neurol. 1972;144:215–232. doi: 10.1002/cne.901440206. [PubMed] [Cross Ref]
[49] Steward O. Topographic organization of the projections from the entorhinal area to the hippocampal formation of the rat. J Comp Neurol. 1976;167:285–314. doi: 10.1002/cne.901670303. [PubMed] [Cross Ref]
[50] Steward O., Scoville S.A. Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. J Comp Neurol. 1976;169:347–370. doi: 10.1002/cne.901690306. [PubMed] [Cross Ref]
[51] Colbert C.M., Levy W.B. Electrophysiological and pharmacological characterization of perforant path synapses in CA1 mediation by glutamate receptors. J Neurophysiol. 1992;68:1–8. [PubMed]
[52] Doller H.J., Weight F.F. Perforant pathway activation of hippocampal CA1 stratum pyramidale neurons: electrophysiological evidence for a direct pathway. Brain Res. 1982;237:1–13. doi: 10.1016/0006-8993(82)90553-4. [PubMed] [Cross Ref]
[53] Empson R.M., Heinemann U. The perforant path projection to hippocampal area CA1 in the rat hippocampal-entorhinal cortex combined slice. J Physiol. 1995;484:707–720. [PubMed]
[54] Lømo T. Patterns of activation in a monosynaptic cortical pathway: the perforant path input to the dentate area of the hippocampal formation. Exp Brain Res. 1971;12:18–45. [PubMed]
[55] Yeckel M.F., Berger T.W. Feedforward excitation of the hippocampus by afferents from the entorhinal cortex: redefinition of the role of the trisynaptic pathway. Proc Natl Acad Sci. 1990;87:5832–5836. doi: 10.1073/pnas.87.15.5832. [PubMed] [Cross Ref]
[56] Khanna S. Dorsal hippocampus field CA1 pyramidal cell responses to a persistent versus an acute nociceptive stimulus and their septal modulation. Neuroscience. 1997;77:713–721. doi: 10.1016/S0306-4522(96)00456-3. [PubMed] [Cross Ref]
[57] Zheng F., Khanna S. Selective destruction of medial septal cholinergic neurons attenuates pyramidal cell suppression, but not excitation in dorsal hippocampus field CA1 induced by subcutaneous injection of formalin. Neuroscience. 2001;103:985–998. doi: 10.1016/S0306-4522(01)00006-9. [PubMed] [Cross Ref]
[58] Zheng F., Khanna S. Intra-hippocampal tonic inhibition influences formalin pain-induced pyramidal cell suppression, but not excitation in dorsal field CA1 of rat. Brain Res Bull. 2008;77:374–381. doi: 10.1016/j.brainresbull.2008.09.004. [PubMed] [Cross Ref]
[59] Henke P.G. The telencephalic limbic system and experimental gastric pathology: a review. Neurosci Biobehav Rev. 1982;6:381–390. doi: 10.1016/0149-7634(82)90047-1. [PubMed] [Cross Ref]
[60] Domesick V.B. The fasciculus cinguli in the rat. Brain Res. 1970;20:19–32. doi: 10.1016/0006-8993(70)90150-2. [PubMed] [Cross Ref]
[61] Pandya J. The connections of the cingulate gyrus. Exp Brain Res. 1981;42:319–330. doi: 10.1007/BF00237497. [PubMed] [Cross Ref]
[62] Foltz E.L., White L.E. Pain “relief” by frontal cingulumotomy. J Neurosurg. 1962;19:89–100. doi: 10.3171/jns.1962.19.2.0089. [PubMed] [Cross Ref]
[63] Vaccarino A.L., Melzack R. Temporal processes of formalin pain: differential role of the cingulum bundle, fornix pathway and medial bulboreticular formation. Pain. 1992;49:257–271. doi: 10.1016/0304-3959(92)90150-A. [PubMed] [Cross Ref]
[64] Friedman D.P., Murray E.A., O’Neill J.B., Mishkin M. Cortical connections of the somatosensory fields of the lateral sulcus of macaques: evidence for a corticolimbic pathway for touch. J Comp Neurol. 1986;252:323–347. doi: 10.1002/cne.902520304. [PubMed] [Cross Ref]
[65] Mesulam M.M., Mufson E.J. Insula of the old world monkey. III: Efferent cortical output and comments on function. J Comp Neurol. 1982;212:38–52. doi: 10.1002/cne.902120104. [PubMed] [Cross Ref]
[66] Klossika I., Flor H., Kamping S., Bleichhardt G., Trautmann N., Treede R.D., et al. Emotional modulation of pain: a clinical perspective. Pain. 2006;124:264–268. doi: 10.1016/j.pain.2006.08.007. [PubMed] [Cross Ref]
[67] Price D.D. Psychological and neural mechanisms of the affective dimension of pain. Science. 2000;288:1769–1772. doi: 10.1126/science.288.5472.1769. [PubMed] [Cross Ref]
[68] Amaral D.G., Kurz J. An analysis of the origins of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat. J Comp Neurol. 1985;240:37–59. doi: 10.1002/cne.902400104. [PubMed] [Cross Ref]
[69] Dutar P., Bassant M.H., Senut M.C., Lamour Y. The septohippocampal pathway: structure and function of a central system. Physiol Rev. 1995;75:393–427. [PubMed]
[70] Fibiger H.C. The organization and projections of cholinergic neurons of the mammalian forebrain. Brain Res Rev. 1982;257:327–388. doi: 10.1016/0165-0173(82)90011-X. [PubMed] [Cross Ref]
[71] Fonnum F., Walaas I. The effect of intrahippocampal kainic acid injections and surgical lesions on neurotransmitters in the hippocampus and septum. J Neurochem. 1978;31:1173–1181. doi: 10.1111/j.1471-4159.1978.tb06241.x. [PubMed] [Cross Ref]
[72] Aloisi A.M. Sex differences in pain-induced effects on the septohippocampal system. Brain Res Rev. 1997;25:397–406. doi: 10.1016/S0165-0173(97)00030-1. [PubMed] [Cross Ref]
[73] Swanson L.W., Cowan W.M. The connections of the septal region in the rat. J Comp Neurol. 1979;186:621–656. doi: 10.1002/cne.901860408. [PubMed] [Cross Ref]
[74] Dutar P., Lamour Y., Jobert A. Activation of identified septohippocampal neurons by noxious peripheral stimulation. Brain Res. 1985;328:15–21. doi: 10.1016/0006-8993(85)91317-4. [PubMed] [Cross Ref]
[75] Khanna S., Sinclair J.G. Responses in the CA1 region of the rat hippocampus to a noxious stimulus. Exp Neurol. 1992;117:28–35. doi: 10.1016/0014-4886(92)90107-2. [PubMed] [Cross Ref]
[76] Meibach R.C., Siegel A. Efferent connections of the hippocampal formation in the rat. Brain Res. 1977;124:197–224. doi: 10.1016/0006-8993(77)90880-0. [PubMed] [Cross Ref]
[77] Powell E.W., Hines G. Septohippocampal interface. In: Isaacson R.L., Pribram K.H., editors. The Hippocampus. New York: Plenum; 1975.
[78] Siegel A., Ohgami S., Edinger H. Projections of the hippocampus to the septal area in the squirrel monkey. Brain Res. 1975;99:247–260. doi: 10.1016/0006-8993(75)90027-X. [PubMed] [Cross Ref]
[79] Hjorth-Simonsen A. Hippocampal efferents to the ipsilateral entorhinal area: an experimental study in the rat. J Comp Neurol. 1971;142:417–437. doi: 10.1002/cne.901420403. [PubMed] [Cross Ref]
[80] Swanson L.W., Cowan W.M. An audioradographic study of the organization of efferent connections of the hippocampal formation in the rat. J Comp Neurol. 1977;172:48–84. doi: 10.1002/cne.901720104. [PubMed] [Cross Ref]
[81] Lico M.C., Hoffmann A., Covian M.R. Influence of some limbic structures upon somatic and autonomic manifestations of pain. Physiol Behav. 1974;12:805–811. doi: 10.1016/0031-9384(74)90017-1. [PubMed] [Cross Ref]
[82] Prado W.A., Roberts H.T. An assessment of the antinociceptive and aversive effects of stimulating identified sites in the rat brain. Brain Res. 1985;340:219–238. doi: 10.1016/0006-8993(85)90917-5. [PubMed] [Cross Ref]
[83] Yeung J.C., Yaksh T.L., Rudy T.A. Concurrent mapping of brain sites for sensitivity to the direct application of morphine and focal electrical stimulation in the production of antinociception in the rat. Pain. 1977;4:23–40. doi: 10.1016/0304-3959(77)90084-7. [PubMed] [Cross Ref]
[84] Sinha R., Sharma R., Mathur R., Nayar U. Hypothalamo-limbic involvement in modulation of tooth-pump stimulation evoked nociceptive response in rats. Indian J Physiol Pharmacol. 1999;43:323–331. [PubMed]
[85] MacLean P.D., Delgado J.M.R. Electrical and chemical stimulation of frontotemporal portion of limbic system in the waking animal. Electroenceph Clin Neurophysiol. 1953;5:91–100. doi: 10.1016/0013-4694(53)90056-X. [PubMed] [Cross Ref]
[86] Abbott F.V., Melzack R. Analgesia produced by stimulation of limbic structures and its relation to epileptiform after-discharges. Exp Neurol. 1978;62:720–734. doi: 10.1016/0014-4886(78)90280-7. [PubMed] [Cross Ref]
[87] Delgado J.M. Cerebral structures involved in transmission and elaboration of noxious stimulation. J Neurophysiol. 1955;18:261–275. [PubMed]
[88] Halgren E., Walter R.D., Cherlow D.G., Crandall P.H. Mental phenomena evoked by electrical stimulation of the human hippocampal formation and amygdala. Brain. 1978;101:83–117. doi: 10.1093/brain/101.1.83. [PubMed] [Cross Ref]
[89] Jackson W.J., Regestein Q.R. Hippocampal lesions impair prolonged titrated avoidance by rhesus monkey. Exp Neurol. 1979;63:28–34. doi: 10.1016/0014-4886(79)90183-3. [PubMed] [Cross Ref]
[90] Gol A., Kellaway P., Shapiro M., Hurst C.M. Studies of hippocampectomy in the monkey, baboon and cat. Behavioral changes and a preliminary evaluation of cognitive functions. Neurology. 1963;13:1031–1041. [PubMed]
[91] Schreiner L., Kling A. Behavioral changes following rhinocephalic injury in the cat. J Neurophysiol. 1953;16:643–659. [PubMed]
[92] Teitelbaum H., Milner P. Activity changes following partial hippocampal lesions in rats. J Comp Physiol Psychol. 1963;56:284–289. doi: 10.1037/h0047052. [PubMed] [Cross Ref]
[93] Blanchard R.J., Fial R. Effects of limbic lesions on passive avoidance and reactivity to shock. J Comp Physiol Psychol. 1968;66:606–612. doi: 10.1037/h0026512. [PubMed] [Cross Ref]
[94] Eichelman B.S. Effect of subcortical lesions on shock-induced aggression in the rat. J Comp Physiol Psychol. 1971;74:331–339. doi: 10.1037/h0030559. [PubMed] [Cross Ref]
[95] Kimble D.P. The effects of bilateral hippocampal lesions in rats. J Comp Physiol Psychol. 1963;56:273–283. doi: 10.1037/h0048903. [PubMed] [Cross Ref]
[96] Roberts W.W., Dember W.N., Brodwick M. Alteration and exploration in rats with hippocampal lesions. J Comp Physiol Psychol. 1962;55:695–700. doi: 10.1037/h0045168. [PubMed] [Cross Ref]
[97] Blanchard R.J., Blanchard D.C. Limbic lesions and reflexive fighting. J Comp Physiol Psychol. 1968;66:603–605. doi: 10.1037/h0026511. [PubMed] [Cross Ref]
[98] McCleary R.A. Response specificity in the behavioral effects of limbic system lesions in the cat. J Comp Physiol Psychol. 1961;54:605–613. doi: 10.1037/h0044019. [Cross Ref]
[99] Olton D.S., Isaacson R.L. Importance of spatial location in active avoidance tasks. J Comp Physiol Psychol. 1968;65:535–539. doi: 10.1037/h0025830. [PubMed] [Cross Ref]
[100] Douglas R.J. The hippocampus and behavior. Psychol Bull. 1967;67:416–442. doi: 10.1037/h0024599. [PubMed] [Cross Ref]
[101] Olton D.S., Isaacson R.L. Hippocampal lesions and active avoidance. Physiol Behav. 1968;3:719–724. doi: 10.1016/0031-9384(68)90142-X. [Cross Ref]
[102] Nadel L. Dorsal and ventral hippocampal lesions and behavior. Physiol Behav. 1968;3:891–900. doi: 10.1016/0031-9384(68)90174-1. [Cross Ref]
[103] Segal M., Landis S. Afferents to the hippocampus of the rat studied with the method of retrograde transport of horseradish peroxidase. Brain Res. 1974;87:1–15. doi: 10.1016/0006-8993(74)90349-7. [PubMed] [Cross Ref]
[104] Elul R. Regional differences in the hippocampus of the cat. I. Specific discharge patterns of the dorsal and ventral hippocampus and their role in generalized seizures. Electroenceph Clin Neurophysiol. 1964;16:470–488. doi: 10.1016/0013-4694(64)90089-6. [PubMed] [Cross Ref]
[105] Andy O.J., Peeler D.F., Jr, Foshee D.P. Avoidance and discrimination learning following hippocampal ablation in the cat. J Comp Physiol Psychol. 1967;64:516–519. doi: 10.1037/h0025193. [PubMed] [Cross Ref]
[106] Wood G., Marcotte E.R., Quirion R., Srivastava L. Strain differences in the behavioural outcome of neonatal ventral hippocampal lesions are determined by postnatal environment and not genetic factors. Eur J Neurosci. 2001;14:1030–1034. doi: 10.1046/j.0953-816x.2001.01716.x. [PubMed] [Cross Ref]
[107] Gol A., Faibish G.M. Hippocampectomy for relief of intractable pain. Tex Med. 1966;62:76–79. [PubMed]
[108] Gol A., Faibish G.M. Effects of human hippocampal ablation. J Neurosurg. 1967;26:390–398. doi: 10.3171/jns.1967.26.4.0390. [PubMed] [Cross Ref]
[109] Hebben N., Corkin S., Eichenbaum H., Shedlack K. Diminished ability to interpret and report internal states after bilateral medial temporal resection: case H.M. Behav Neurosci. 1985;99:1031–1039. doi: 10.1037/0735-7044.99.6.1031. [PubMed] [Cross Ref]
[110] Corkin S. Lasting consequences of bilateral medial temporal lobectomy: clinical course and experimental findings in H.M. Sem Neurol. 1984;4:249–259. doi: 10.1055/s-2008-1041556. [Cross Ref]
[111] Aloisi A.M., Ceccarelli I., Cavallaro K., Scaramuzzino A. 192 IgGsaporin induced selective cholinergic denervation modifies formalin pain in male rats. Analgesia. 2002;6:19–25.
[112] Bartolini A., Ghelardini C., Fantetti L., Malcangio M., Malmberg-Aiello P., Giotti A. Role of muscarinic receptor subtypes in central antinociception. Br J Pharmacol. 1992;105:77–82. [PMC free article] [PubMed]
[113] Green P.G., Kitchen I. Antinociception opioids and the cholinergic system. Prog Neurobiol. 1986;26:119–146. doi: 10.1016/0301-0082(86)90002-X. [PubMed] [Cross Ref]
[114] Levey A.I., Edmunds S.M., Koliatsos V., Wiley R.G., Heilman C.J. Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J Neurosci. 1995;15:4077–4092. [PubMed]
[115] Woolf N.J., Eckenstein F., Butcher L.L. Cholinergic systems in the rat brain: I. Projections to the limbic telencephalon. Brain Res Bull. 1984;13:751–784. doi: 10.1016/0361-9230(84)90236-3. [PubMed] [Cross Ref]
[116] Acsady L., Halasy K., Freund T.F. Calretinin is present in nonpyramidal cells of the rat hippocampus. III. Their inputs from the median raphe and medial septal nuclei. Neuroscience. 1993;52:829–841. doi: 10.1016/0306-4522(93)90532-K. [PubMed] [Cross Ref]
[117] Moore R.Y., Halaris A.E. Hippocampal innervation by serotonin neurons of the midbrain raphe in the rat. J Comp Neurol. 1975;164:171–184. doi: 10.1002/cne.901640203. [PubMed] [Cross Ref]
[118] Obata H., Saito S., Ishizaki K., Goto F. Antinociception in rat by sarpogrelate, a selective 5-HT2A receptor antagonist, is peripheral. Eur J Pharmacol. 2000;404:95–102. doi: 10.1016/S0014-2999(00)00522-7. [PubMed] [Cross Ref]
[119] Wei H., Pertovaara A. 5-HT1A receptors in endogenous regulation of neuropathic hypersensitivity in the rat. Eur J Pharmacol. 2006;535:157–165. doi: 10.1016/j.ejphar.2006.02.019. [PubMed] [Cross Ref]
[120] Kal’en P., Rosegren E., Lindvall O., Björklund A. Hippocampal noradrenaline and serotonin release over 24 Hours as measured by the dialysis technique in freely moving rats: correlation to behavioural activity state, effect of handling and tail-pinch. Eur J Neurosci. 1989;1:181–188. doi: 10.1111/j.1460-9568.1989.tb00786.x. [PubMed] [Cross Ref]
[121] Glavin G.B. Stress and brain noradrenaline: a review. Neurosci Biobehav Rev. 1985;9:233–243. doi: 10.1016/0149-7634(85)90048-X. [PubMed] [Cross Ref]
[122] Abercrombie E.D., Keller R.W., Zigmond M.J. Characterization of hippocampal norepinephrine release as measured by microdialysis perfusion: pharmacological and behavioral studies. Neuroscience. 1988;3:897–904. doi: 10.1016/0306-4522(88)90192-3. [PubMed] [Cross Ref]
[123] Compton D.M., Dietrich K.L., Smith J.S., Davis B.K. Spatial and non-spatial learning in the rat following lesions to the nucleus locus coeruleus. NeuroReport. 1995;7:177–182. [PubMed]
[124] Rosario L.A., Abercrombie E.D. Individual differences in behavioral reactivity correlation with stress-induced norepinephrine efflux in the hippocampus of Sprague-Dawley rats. Brain Res Bull. 1999;48:595–602. doi: 10.1016/S0361-9230(99)00040-4. [PubMed] [Cross Ref]
[125] Samanin R., Garattini S. The serotonergic system in the brain and its possible functional connections with aminergic systems. Life Sci. 1975;17:1201–1210. doi: 10.1016/0024-3205(75)90128-9. [PubMed] [Cross Ref]
[126] Gage F.H., Springer J.E. Behavioral assessment of norepinephrine and serotonin function and interaction in the hippocampal formation. Pharmacol Biochem Behav. 1981;14:815–821. doi: 10.1016/0091-3057(81)90366-X. [PubMed] [Cross Ref]
[127] Spinella M., Bodnar R.J. Nitric oxide synthase inhibition selectively potentiates swim stress antinociception in rats. Pharmacol Biochem Behav. 1994;47:727–733. doi: 10.1016/0091-3057(94)90180-5. [PubMed] [Cross Ref]
[128] Haley J.E., Dickenson A.H., Schachter M. Electrophysiological evidence for a role of nitric oxide in prolonged chemical nociception in the rat. Neuropharmacology. 1992;31:251–258. doi: 10.1016/0028-3908(92)90175-O. [PubMed] [Cross Ref]
[129] Meller S.T., Cumming C.P., Traub R.J., Gebhart G.F. The role of nitric oxide in the development and maintenance of the hyperalgesia produced by intraplantar injection of carrageenan in the rat. Neuroscience. 1994;60:367–374. doi: 10.1016/0306-4522(94)90250-X. [PubMed] [Cross Ref]
[130] Echeverry M.B., Guimarães F.S., Oliveira M.A., do Prado W.A., Del Bel E.A. Delayed stress-induced antinociceptive effect of nitric oxide synthase inhibition in the dentate gyrus of rats. Pharmacol Biochem Behav. 2002;74:149–156. doi: 10.1016/S0091-3057(02)00964-4. [PubMed] [Cross Ref]
[131] Vane J.R., Bakhl Y.S., Botting R.M. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol. 1998;38:97–120. doi: 10.1146/annurev.pharmtox.38.1.97. [PubMed] [Cross Ref]
[132] Teather L.A., Magnusson J.E., Wurtman R.J. Platelet-activating factor antagonists decrease the inflammatory nociceptive response in rats. Psychopharmacology. 2002;163:430–433. doi: 10.1007/s00213-002-1039-9. [PubMed] [Cross Ref]
[133] Marcheselli V.L., Rossowska M.J., Domingo M.T., Braquet P., Bazan N.G. Distinct platelet-activating factor binding sites in synaptic endings and in intracellular membranes of rat cerebral cortex. J Biol Chem. 1990;265:9140–9145. [PubMed]
[134] Teather L.A., Afonso V.M., Wurtman R.J. Inhibition of platelet-activating factor receptors in hippocampal plasma membranes attenuates the inflammatory nociceptive response in rats. Brain Res. 2006;1097:230–233. doi: 10.1016/j.brainres.2006.03.036. [PubMed] [Cross Ref]
[135] Besson J., Sarrieau A., Vial M., Marie J.C., Rosselin G., Rostene W. Characterization and autoradiographic distribution of vasoactive intestinal peptide binding sites in the rat central nervous system. Brain Res. 1986;398:329–336. doi: 10.1016/0006-8993(86)91493-9. [PubMed] [Cross Ref]
[136] Aton S.J., Colwell C.S., Harmar A.J., Waschek J., Herzog E.D. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci. 2005;8:476–483. [PMC free article] [PubMed]
[137] Acs’ady L., Arabadzisz D., Freund T.F. Correlated morphological and neurochemical features identify different subsets of vasoactive intestinal polypeptide immunoreactive interneurons in the rat hippocampus. Neuroscience. 1996;73:299–315. doi: 10.1016/0306-4522(95)00610-9. [PubMed] [Cross Ref]
[138] Ishihara T., Shigemoto R., Mori K., Takahashi K., Nagata S. Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide. Neuron. 1992;8:811–819. doi: 10.1016/0896-6273(92)90101-I. [PubMed] [Cross Ref]
[139] Macsai M., Szabo G., Telegdy G. Vasoactive intestinal polypeptide induces analgesia and impairs the antinociceptive effect of morphine in mice. Neuropeptides. 1998;32:557–562. doi: 10.1016/S0143-4179(98)90085-3. [PubMed] [Cross Ref]
[140] Ternianov A., Kalfin R., Belcheva I. Antinociceptive effect of vasoactive intestinal peptide (VIP) microinjected into the rats CA1 hippocampal area. C R Acad Bulg Sci. 2001;54:95–96.
[141] Belcheva I, Ivanova M, Tashev R, Belcheva S. Differential involvement of hippocampal vasoactive intestinal peptide in nociception of rats with a model of depression. 2009, Peptides (in press). [PubMed]
[142] Soulairac A., Gottesmann C.L., Charpentier J. Effects of pain and of several analgesics on cortex, hippocampus and reticular formation of brain stem. Int J Neuropharmacol. 1967;6:71–81. doi: 10.1016/0028-3908(67)90055-X. [Cross Ref]
[143] Sinnamon H.M., Schwartzbaum J.S. Dorsal hippocampal unit and EEG responses to rewarding and aversive brain stimulation in rats. Brain Res. 1973;56:183–202. doi: 10.1016/0006-8993(73)90334-X. [PubMed] [Cross Ref]
[144] Archer D.P., Roth S.H. Pharmacodynamics of thiopentone: nocifensive reflex threshold changes correlate with hippocampal electroencephalography. Br J Anaesth. 1997;79:744–749. [PubMed]
[145] Heale V.R., Vanderwolf C.H. Dentate gyrus and olfactory bulb responses to olfactory and noxious stimulation in urethane anaesthetized rats. Brain Res. 1994;652:235–242. doi: 10.1016/0006-8993(94)90232-1. [PubMed] [Cross Ref]
[146] Sinclair J.G., Lo G.F. Morphine, but not atropine, blocks nociceptor-driven activity in rat dorsal hippocampal neurones. Neurosci Lett. 1986;68:47–50. doi: 10.1016/0304-3940(86)90227-2. [PubMed] [Cross Ref]
[147] Yang X.F., Xiao Y., Xu M.Y. Both endogenous and exogenous ACh plays antinociceptive role in the hippocampus CA1 of rats. J Neural Transm. 2008;115:1–6. doi: 10.1007/s00702-007-0808-3. [PubMed] [Cross Ref]
[148] Ben-Ari Y., Krnjević K., Reinhardt W., Ropert N. Intracellular observations on the disinhibitory action of acetylcholine in the hippocampus. Neuroscience. 1981;6:2475–2484. doi: 10.1016/0306-4522(81)90093-2. [PubMed] [Cross Ref]
[149] Krnjeviæ K., Ropert N. Electrophysiological and pharmacological characteristics and facilitation of hippocampal population spikes by stimulation of the medial septum. Neuroscience. 1982;7:2165–2183. doi: 10.1016/0306-4522(82)90128-2. [PubMed] [Cross Ref]
[150] Khanna S., Sinclair J.G. Noxious stimuli produce prolonged changes in the CA1 region of rat hippocampus. Pain. 1989;39:337–343. doi: 10.1016/0304-3959(89)90047-X. [PubMed] [Cross Ref]
[151] Leung L.S., Yim C.Y. Intracellular records of theta rhythm in hippocampal CA1 cells of the rat. Brain Res. 1986;367:323–327. doi: 10.1016/0006-8993(86)91611-2. [PubMed] [Cross Ref]
[152] Ylinen A., Soltesz I., Bragin A., Penttonen M., Sik A., Buzsaki G. Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells and basket cells. Hippocampus. 1995;5:78–90. doi: 10.1002/hipo.450050110. [PubMed] [Cross Ref]
[153] Zheng F., Khanna S. Hippocampal field CA1 interneuronal nociceptive respionses modulation by medial septal region and morphine. Neuroscience. 1999;93:45–55. doi: 10.1016/S0306-4522(99)00119-0. [PubMed] [Cross Ref]
[154] Khanna S., Zheng F. Morphine reversed formalin-induced CA1 pyramidal cell suppression via an effect on septohippocampal neural processing. Neuroscience. 1999;89:61–71. doi: 10.1016/S0306-4522(98)00324-8. [PubMed] [Cross Ref]
[155] Miller S.N., Groves P.M. Sensory evoked neuronal activity in the hippocampus before and after lesions of the medial septal nuclei. Physiol Behav. 1977;18:141–146. doi: 10.1016/0031-9384(77)90106-8. [PubMed] [Cross Ref]
[156] Bland B.H. The physiology and pharmacology of hippocampal formation theta rhythms. Prog Neurobiol. 1986;26:1–54. doi: 10.1016/0301-0082(86)90019-5. [PubMed] [Cross Ref]
[157] Behrends J.C., Ten Bruggencate G. Cholinergic modulation of synaptic inhibition in the guinea pig hippocampus in vitro: excitation of GABA-ergic interneurons and inhibition of GABArelease. J Neurophysiol. 1993;69:626–629. [PubMed]
[158] Khanna S. Nociceptive processing in the hippocampus and entorhinal cortex, neurophysiology and pharmacology. In: Schmidt R.F., Willis W.D., editors. Encyclopedia of Pain. Berlin: Springer-Verlag; 2007. pp. 1369–1374.
[159] Mody I., Pearce R.A. Diversity of inhibitory neurotransmission through GABAA receptors. Trends Neurosci. 2004;27:569–575. doi: 10.1016/j.tins.2004.07.002. [PubMed] [Cross Ref]
[160] Tai S.K., Huang F.D., Moochhala S., Khanna S. Hippocampal theta state in relation to formalin nociception. Pain. 2006;121:29–42. doi: 10.1016/j.pain.2005.11.016. [PubMed] [Cross Ref]
[161] Ko S., Zhuo M. Central plasticity and persistent pain. Drug Discov Today. 2004;1:101–106.
[162] Woolf C.J., Salter M.W. Neuronal plasticity: increasing the gain in pain. Science. 2000;288:1765–1768. doi: 10.1126/science.288.5472.1765. [PubMed] [Cross Ref]
[163] Zhuo M. Targeting central plasticity: a new direction of finding painkillers. Curr Pharm Des. 2005;11:2797–2807. doi: 10.2174/1381612054546798. [PubMed] [Cross Ref]
[164] Zhuo M. Cortical excitation and chronic pain. Trends Neurosci. 2008;31:199–207. doi: 10.1016/j.tins.2008.01.003. [PubMed] [Cross Ref]
[165] Wei F., Xu Z.C., Qu Z., Milbrandt J., Zhuo M. Role of EGR1 in hippocampal synaptic enhancement induced by tetanic stimulation and amputation. J Cell Biol. 2000;149:1325–1333. doi: 10.1083/jcb.149.7.1325. [PMC free article] [PubMed] [Cross Ref]
[166] Chen J. The bee venom test: a novel useful animal model for study of spinal coding and processing of pathological pain information. In: Chen J., Chen C.A.N., Han J.S., Willis W.D., editors. Experimental Pathological Pain: from Molecules to Brain Function. Beijing: Science Press; 2003. pp. 77–110.
[167] Chen J. Processing of different ‘phenotypes’ of pain by different spinal signaling pathways. In: Kumamoto K., editor. Cellular and molecular mechanisms for the modulation of nociceptive transmission in the peripheral and central nervous system. Kerala: Research SignPost; 2007. pp. 147–165.
[168] Chen J., Luo C., Li H.L., Chen H.S. Primary hyperalgesia to mechanical and heat stimuli following subcutaneous bee venom injection into the plantar surface of hindpaw in the conscious rat: a comparative study with the formalin test. Pain. 1999;83:67–76. doi: 10.1016/S0304-3959(99)00075-5. [PubMed] [Cross Ref]
[169] Chen Y.N., Li K.C., Li Z., Shang G.W., Liu D.N., Lu Z.M., et al. Effects of bee venom peptidergic components on rat pain-related behaviors and inflammation. Neuroscience. 2006;138:631–640. doi: 10.1016/j.neuroscience.2005.11.022. [PubMed] [Cross Ref]
[170] Chen H.S., Chen J. Secondary heat, but not mechanical, hyperalgesia induced by subcutaneous injection of bee venom in the conscious rat: effect of systemic MK-801, a non-competitive NMDA receptor antagonist. Eur J Pain. 2000;4:389–401. doi: 10.1053/eujp.2000.0197. [PubMed] [Cross Ref]
[171] Lariviere W.R., Melzack R. The bee venom test: a new tonic-pain test. Pain. 1996;66:271–277. doi: 10.1016/0304-3959(96)03075-8. [PubMed] [Cross Ref]
[172] Pennypacker K.R., Hong J.S., McMillian M.K. Implications of prolonged expression of Fos-related antigens. Trends Pharmacol Sci. 1995;16:317–321. doi: 10.1016/S0165-6147(00)89061-6. [PubMed] [Cross Ref]
[173] Zimmermann M., Herdegen T. Control of gene transcription by Jun and Fos proteins in the nervous system. Beneficial or harmful molecular mechanisms of neuronal responses to noxious stimulation? Am Pain Soc J. 1994;3:33–48.
[174] Chang Y., Yan L.H., Zhang F.K., Gong K.R., Liu M.G., Xiao Y., et al. Spatiotemporal characteristics of pain-associated neuronal activities in primary somatosensory cortex induced by peripheral persistent nociception. Neurosci Lett. 2008;448:134–138. doi: 10.1016/j.neulet.2008.08.090. [PubMed] [Cross Ref]
[175] Harris J.A. Using c-fos as a neural marker of pain. Brain Res Bull. 1998;45:1–8. doi: 10.1016/S0361-9230(97)00277-3. [PubMed] [Cross Ref]
[176] Herrera D.G., Robertson H.A. Activation of c-fos in the brain. Prog Neurobiol. 1996;50:83–107. doi: 10.1016/S0301-0082(96)00021-4. [PubMed] [Cross Ref]
[177] Aloisi A.M., Zimmermann M., Herdegen T. Sex-dependent effects of formalin and restraint on c-Fos expression in the septum and hippocampus of the rat. Neuroscience. 1997;81:951–958. doi: 10.1016/S0306-4522(97)00270-4. [PubMed] [Cross Ref]
[178] Aloisi A.M., Ceccarelli I., Herdegen T. Gonadectomy and persistent pain differently affect hippocampal c-Fos expression in male and female rats. Neurosci Lett. 2000;281:29–32. doi: 10.1016/S0304-3940(00)00819-3. [PubMed] [Cross Ref]
[179] Ceccarelli I., Scaramuzzino A., Aloisi A.M. Effects of formalin pain on hippocampal c-Fos expression in male and female rats. Pharmacol Biochem Behav. 1999;64:797–802. doi: 10.1016/S0091-3057(99)00145-8. [PubMed] [Cross Ref]
[180] Pearse D., Mirza A., Leah J. Jun, Fos and Krox in the hippocampus after noxious stimulation: simultaneous-input-dependent expression and nuclear speckling. Brain Res. 2001;894:193–208. doi: 10.1016/S0006-8993(01)01993-X. [PubMed] [Cross Ref]
[181] Funahashi M., He Y.F., Sugimoto T., Matsuo R. Noxious tooth pulp stimulation suppresses c-fos expression in the rat hippocampal formation. Brain Res. 1999;827:215–220. doi: 10.1016/S0006-8993(99)01250-0. [PubMed] [Cross Ref]
[182] Milbrandt J. A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science. 1987;238:797–799. doi: 10.1126/science.3672127. [PubMed] [Cross Ref]
[183] Malcangio M., Lessmann V. A common thread for pain and memory synapses? Brain-derived neurotrophic factor and trkB receptors. Trends Pharmacol Sci. 2003;24:116–121. doi: 10.1016/S0165-6147(03)00025-7. [PubMed] [Cross Ref]
[184] Vaught J.L. Substance P antagonists and analgesia: A review of the hypothesis. Life Sci. 1988;43:1419–1431. doi: 10.1016/0024-3205(88)90253-6. [PubMed] [Cross Ref]
[185] Hunt S.P., Mantyh P.W. The molecular dynamics of pain control. Nat Rev Neurosci. 2001;2:83–91. doi: 10.1038/35053509. [PubMed] [Cross Ref]
[186] McCarson K.E., Krause J.E. NK-1 and NK-3 type tachykinin receptor mRNA expression in the rat spinal cord dorsal horn is increased during adjuvant or formalin-induced nociception. J Neurosci. 1994;14:712–720. [PubMed]
[187] Zhou X.F., Rush R.A. Endogenous brain-derived neurotrophic factor ical excitation and chronic pain. Neuroscience. 1996;74:945–953. [PubMed]
[188] Kramer M.S., Cutler N., Feighner J., Shrivastava R., Carman J., Sramek J.J., et al. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science. 1998;281:1640–1645. doi: 10.1126/science.281.5383.1640. [PubMed] [Cross Ref]
[189] McLean S. Do substance P and the NK1 receptor have a role in depression and anxiety? Curr Pharm Des. 2005;11:1529–1547. doi: 10.2174/1381612053764779. [PubMed] [Cross Ref]
[190] Nibuya M., Morinobu S., Duman R.S. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci. 1995;15:7539–7547. [PubMed]
[191] Watanabe Y., Gould E., McEwen B.S. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res. 1992;588:341–345. doi: 10.1016/0006-8993(92)91597-8. [PubMed] [Cross Ref]
[192] Gould E., Tanapat P., McEwen B.S., Flugge G., Fuchs E. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci U S A. 1998;95:3168–3171. doi: 10.1073/pnas.95.6.3168. [PubMed] [Cross Ref]
[193] Kim J.J., Diamond D.M. The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci. 2002;3:453–462. doi: 10.1038/nrm832. [PubMed] [Cross Ref]
[194] McEwen B.S. Stress and hippocampal plasticity. Annu Rev Neurosci. 1999;22:105–122. doi: 10.1146/annurev.neuro.22.1.105. [PubMed] [Cross Ref]
[195] Duric V., McCarson K.E. Effects of analgesic or antidepressant drugs on pain- or stress-evoked hippocampal and spinal neurokinin-1 receptor and brain-derived neurotrophic factor gene expression in the rat. J Pharmacol Exp Ther. 2006;319:1235–1243. doi: 10.1124/jpet.106.109470. [PubMed] [Cross Ref]
[196] Duric V., McCarson K.E. Persistent pain produces stress-like alterations in hippocampal neurogenesis and gene expression. J Pain. 2006;7:544–555. doi: 10.1016/j.jpain.2006.01.458. [PubMed] [Cross Ref]
[197] Gould E., Tanapat P. Stress and hippocampal neurogenesis. Biol Psychiatry. 1999;46:1472–1479. doi: 10.1016/S0006-3223(99)00247-4. [PubMed] [Cross Ref]
[198] Jalalvand E., Javan M., Haeri-Rohani A., Ahmadiani A. Stress- and non-stress-mediated mechanisms are involved in pain-induced apoptosis in hippocampus and dorsal lumbar spinal cord in rats. Neuroscience. 2008;157:446–452. doi: 10.1016/j.neuroscience.2008.08.052. [PubMed] [Cross Ref]
[199] Widmann C., Gibson S., Jarpe M.B., Johnson G.L. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev. 1999;79:143–180. [PubMed]
[200] Hodge C., Liao J., Slofega M., Guan K., Carter-Su C., Schwartz J. Growth hormone stimulates phosphorylation and activation of elk-1 and expression of c-fos, egr-1, and junB through activation of extracellular signal-regulated kinases 1 and 2. J Biol Chem. 1998;273:31327–31336. doi: 10.1074/jbc.273.47.31327. [PubMed] [Cross Ref]
[201] Atkins C.M., Selcher J.C., Petraitis J.J., Trzaskos J.M., Sweatt J.D. The MAPK cascade is required for mammalian associative learning. Nat Neurosci. 1998;1:602–609. doi: 10.1038/2836. [PubMed] [Cross Ref]
[202] Wang X., Martindale J.L., Liu Y., Holbrook N.J. The cellular response to oxidative stress: influences of mitogen-activated protein kinase signaling pathways on cell survival. Biochem J. 1998;333:230–291. [PubMed]
[203] Winder D.G., Martin K.C., Muzzio R.A., Rohrer D., Chruscinski A., Kobilka B., et al. ERK plays a regulatory role in induction of LTP by theta frequency stimulation and its modulation by β-adrenergic receptors. Neuron. 1999;24:715–726. doi: 10.1016/S0896-6273(00)81124-1. [PubMed] [Cross Ref]
[204] Dai Y., Iwata K., Fukuoka T., Kondo E., Tokunaga A., Yamanaka H., et al. Phosphorylation of extracellular signal-regulated kinase in primary afferent neurons by noxious stimuli and its involvement in peripheral sensitization. J Neurosci. 2002;22:7737–7745. [PubMed]
[205] Ji R.R. Mitogen-activated protein kinases as potential targets for pain killers. Curr Opin Investig Drugs. 2004;5:71–75. [PubMed]
[206] Ji R.R., Baba H., Brenner G.J., Woolf C.J. Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nat Neurosci. 1999;2:1114–1119. doi: 10.1038/16040. [PubMed] [Cross Ref]
[207] Ji R.R., Woolf C.J. Neuronal plasticity and signal transduction in nociceptive neurons: implications for the initiation and maintenance of pathological pain. Neurobiol Dis. 2001;8:1–10. doi: 10.1006/nbdi.2000.0360. [PubMed] [Cross Ref]
[208] Obata K., Yamanaka H., Tachibana T., Fukuoka T., Tokunaga A., Yoshikawa H., et al. Differential activation of extracellular signal-regulated protein kinase in primary afferent neurons regulates brain-derived neurotrophic factor expression after peripheral inflammation and nerve injury. J Neurosci. 2003;23:4117–4126. [PubMed]
[209] Cao F.L., Liu M.G., Hao J., Li Z., Lu Z.M., Chen J. Different roles of spinal p38 and c-Jun N-terminal kinase pathways in bee venominduced multiple pain-related behaviors. Neurosci Lett. 2007;427:50–54. doi: 10.1016/j.neulet.2007.09.005. [PubMed] [Cross Ref]
[210] Cui X.Y., Dai Y., Wang S.L., Yamanaka H., Kobayashi K., Obata K., et al. Differential activation of p38 and extracellular signal-regulated kinase in spinal cord in a model of bee venom-induced inflammation and hyperalgesia. Mol Pain. 2008;4:17. doi: 10.1186/1744-8069-4-17. [PMC free article] [PubMed] [Cross Ref]
[211] Guo S.W., Liu M.G., Long Y.L., Ren L.Y., Lu Z.M., Yu H.Y., et al. Region- or state-related differences in expression and activation of extracellular signal-regulated kinases (ERKs) in naïve and pain-experiencing rats. BMC Neuroscience. 2007;8:53. doi: 10.1186/1471-2202-8-53. [PMC free article] [PubMed] [Cross Ref]
[212] Hao J., Liu M.G., Yu Y.Q., Cao F.L., Li Z., Lu Z.M., et al. Roles of peripheral mitogen-activated protein kinases in melittin-induced nociception and hyperalgesia. Neuroscience. 2008;152:1067–1075. doi: 10.1016/j.neuroscience.2007.12.038. [PubMed] [Cross Ref]
[213] Li M.M., Yu Y.Q., Fu H., Xie F., Xu L.X., Chen J. Extracellular signaling-regulated kinases mediate the melittin-induced hypersensitivity of spinal neurons to chemical and thermal but not mechanical stimuli. Brain Res Bull. 2008;77:227–232. doi: 10.1016/j.brainresbull.2008.07.009. [PubMed] [Cross Ref]
[214] Liu M.G., Zhang F.K., Guo S.W., Zhao L.F., An Y.Y., Cui X.Y., et al. Phosphorylation of c-Jun N-terminal kinase isoforms and their different roles in spinal cord dorsal horn and primary somatosensory cortex. Neurosci Lett. 2007;427:39–43. doi: 10.1016/j.neulet.2007.09.001. [PubMed] [Cross Ref]
[215] Yu Y.Q., Chen J. Activation of spinal extracellular signaling-regulated kinases by intraplantar melittin injection. Neurosci Lett. 2005;381:194–198. doi: 10.1016/j.neulet.2005.02.033. [PubMed] [Cross Ref]
[216] Yu Y.Q., Zhao F., Chen J. Activation of ERK1/2 in the primary injury site is required to maintain melittin-enhanced wind-up of rat spinal wide-dynamic-range neurons. Neurosci Lett. 2009;459:137–141. doi: 10.1016/j.neulet.2009.05.004. [PubMed] [Cross Ref]
[217] Klamt J.G., Prado W.A. Antinociception and behavioral changes induced by carbachol microinjected into identified sites of the rat brain. Brain Res. 1991;549:9–18. doi: 10.1016/0006-8993(91)90593-K. [PubMed] [Cross Ref]
[218] Aloisi A.M., Alnonetti M.E., Lodi L., Lupo C., Carli G. Decrease of hippocampal choline acetyltransferase activity induced by formalin pain. Brain Res. 1993;629:167–170. doi: 10.1016/0006-8993(93)90498-C. [PubMed] [Cross Ref]
[219] Aloisi A.M., Alnonetti M.E., Carli G. Formalin-induced changes in adrenocorticotropic hormone and corticosterone plasma levels and hippocampal choline acetyltransferase activity in male and female rats. Neuroscience. 1996;74:1019–1024. [PubMed]
[220] Ceccarelli I., Casamenti F., Massafra C., Pepeu G., Scali C., Aloisi A.M. Effects of novelty and pain on behavior and hippocampal extracellular ACh levels in male and female rats. Brain Res. 1999;815:169–176. doi: 10.1016/S0006-8993(98)01171-8. [PubMed] [Cross Ref]
[221] McMahon S.B., Koltzenburg M. Wall and Melzack’s textbook of pain. Oxford, UK: Elsevier Ltd., Churchill Livingstone; 2005.
[222] Shih Y.Y., Chen Y.Y., Chen C.C., Chen J.C., Chang C., Jaw F.S. Wholebrain functional magnetic resonance imaging mapping of acute nociceptive responses induced by formalin in rats using atlas registration-based event-related analysis. J Neurosci Res. 2008;86:1801–1811. doi: 10.1002/jnr.21638. [PubMed] [Cross Ref]
[223] Shih Y.Y., Chiang Y.C., Chen J.C., Huang C.H., Chen Y.Y., Liu R.S., et al. Brain noc icept ive imaging in rats using (18)ffluorodeoxyglucose small-animal positron emission tomography. Neuroscience. 2008;155:1221–1226. doi: 10.1016/j.neuroscience.2008.07.013. [PubMed] [Cross Ref]
[224] Sakiyama Y., Sato A., Senda M., Ishiwata K., Toyama H., Schmidt R.F. Positron emission tomography reveals changes in global and regional cerebral blood flow during noxious stimulation of normal and inflamed elbow joints in anesthetized cats. Exp Brain Res. 1998;118:439–446. doi: 10.1007/s002210050300. [PubMed] [Cross Ref]
[225] Apkarian A.V., Bushnell M.C., Treede R.D., Zubieta J.K. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005;9:463–484. doi: 10.1016/j.ejpain.2004.11.001. [PubMed] [Cross Ref]
[226] Peyron R., Laurent B., García-Larrea L. Functional imaging of brain responses to pain. A review and meta-analysis (2000) Neurophysiol Clin. 2000;30:263–288. doi: 10.1016/S0987-7053(00)00227-6. [PubMed] [Cross Ref]
[227] Schneider F., Habel U., Holthusen H., Kessler C., Posse S., Müller-Gärtner H.W., et al. Subjective ratings of pain correlate with subcortical-limbic blood flow: an fMRI study. Neuropsychobiology. 2001;43:175–185. doi: 10.1159/000054887. [PubMed] [Cross Ref]
[228] Bingel U., Quante M., Knab R., Bromm B., Weiller C., Büchel C. Subcortical structures involved in pain processing: evidence from single-trial fMRI. Pain. 2002;99:313–321. doi: 10.1016/S0304-3959(02)00157-4. [PubMed] [Cross Ref]
[229] Ploghaus A., Narain C., Beckmann C.F., Clare S., Bantick S., Wise R., et al. Exacerbation of pain by anxiety is associated with activity in a hippocampus network. J Neurosci. 2001;21:9896–9903. [PubMed]
[230] Derbyshire S.W.G., Jones A.K.P., Gyulai F., Clark S., Townsend D., Firestone L.L. Pain processing during three levels of noxious stimulation produces differential patterns of central activity. Pain. 1997;73:431–445. doi: 10.1016/S0304-3959(97)00138-3. [PubMed] [Cross Ref]
[231] Hsieh J.C., Ståhle-Bäckdahl M., Hägermark, Stone-Elander S., Rosenquist G., Ingvar M. Traumatic nociceptive pain activates the hypothalamus and the periaqueductal gray: a positron emission tomography study. Pain. 1995;64:303–314. doi: 10.1016/0304-3959(95)00129-8. [PubMed] [Cross Ref]
[232] Peyron R., Garcý’a-Larrea L., Gre’goire M.C., Costes N., Convers P., Lavenne F., et al. Haemodynamic brain responses to acute pain in humans: sensory and attentional networks. Brain. 1999;122:1765–1779. doi: 10.1093/brain/122.9.1765. [PubMed] [Cross Ref]
[233] LaMotte R.H., Lundberg L.E., Torebjörk H.E. Pain, hyperalgesia and activity in nociceptive C units in humans after intradermal injection of capsaicin. J Physiol. 1992;448:749–764. [PubMed]
[234] Simone D.A., Baumann T.K., LaMotte R.H. Dose-dependent pain and mechanical hyperalgesia after intradermal injection of capsaicin. Pain. 1989;38:99–107. doi: 10.1016/0304-3959(89)90079-1. [PubMed] [Cross Ref]
[235] Iadarola M.J., Berman K.F., Zeffiro T.A., Byas-Smith M.G., Gracely R.H., Max M.B., et al. Neural activation during acute capsaicinevoked pain and allodynia assessed with PET. Brain. 1998;121:931–947. doi: 10.1093/brain/121.5.931. [PubMed] [Cross Ref]
[236] Miron D., Duncan G.H., Bushnell M.C. Effects of attention on the intensity and unpleasantness of thermal pain. Pain. 1989;39:345–352. doi: 10.1016/0304-3959(89)90048-1. [PubMed] [Cross Ref]
[237] Siedenberg R., Treede R.D. Laser-evoked potentials: exogenous and endogenous components. Electroencephalogr Clin Neurophysiol. 1996;100:240–249. doi: 10.1016/0168-5597(95)00255-3. [PubMed] [Cross Ref]
[238] Ploghaus A., Tracey I., Clare S., Gati J.S., Rawlins J.N.P., Matthews P.M. Learning about pain: the neural substrate of the prediction error for aversive events. Proc Natl Acad Sci. 2000;97:9281–9286. doi: 10.1073/pnas.160266497. [PubMed] [Cross Ref]
[239] Mackintosh N.J. A theory of attention: variations in the associability of stimuli with reinforcement. Psychol Rev. 1975;82:276–298. doi: 10.1037/h0076778. [Cross Ref]
[240] Recorla R.A., Wagner A.R. A theory of Pavlovian conditioning: variations in the efectiveness of reinforcement and nonreinforcement. In: Black A.H., Proskasy W.F., editors. Classical conditioning II: current research and theory. New York: Appleton-Century-Crofts; 1972. pp. 64–99.
[241] Bantick S.J., Wise R.G., Ploghaus A., Clare S., Smith S.M., Tracey I. Imaging how attention modulates pain in humans using functional MRI. Brain. 2002;125:310–319. doi: 10.1093/brain/awf022. [PubMed] [Cross Ref]
[242] Grachev I.D., Fredickson B.E., Apkarian A.V. Dissociating anxiety from pain: mapping the neuronal marker N-acetyl aspartate to perception distinguishes closely interrelated characteristics of chronic pain. Mol Psychiatry. 2001;6:256–260. doi: 10.1038/ [PubMed] [Cross Ref]
[243] Al Absi M., Rokke P.D. Can anxiety help us tolerate pain? Pain. 1991;46:43–51. doi: 10.1016/0304-3959(91)90032-S. [PubMed] [Cross Ref]
[244] Weisenberg M., Aviram O., Wolf Y., Raphaeli N. Relevant and irrelevant anxiety in the reaction to pain. Pain. 1984;20:371–383. doi: 10.1016/0304-3959(84)90114-3. [PubMed] [Cross Ref]
[245] Rhudy J.L., Meagher M.W. Fear and anxiety: divergent effects on human pain thresholds. Pain. 2000;84:65–75. doi: 10.1016/S0304-3959(99)00183-9. [PubMed] [Cross Ref]
[246] Derbyshire S.W.G., Jones A.K.P., Collins M., Feinmann C., Harris M. Cerebral responses to pain in patients suffering acute post-dental extraction pain measured by positron emission tomography (PET) Eur J Pain. 1999;3:103–113. doi: 10.1053/eujp.1998.0102. [PubMed] [Cross Ref]
[247] Woolf C.J., Mannion R.J. Neuropathic pain: aetiology, symptoms, mechanisms, and managements. Lancet. 1999;353:1959–1964. doi: 10.1016/S0140-6736(99)01307-0. [PubMed] [Cross Ref]
[248] Petrovic P., Ingvar M., Stone-Elander S., Petersson K.M., Hansson P. A PET activation study of dynamic mechanical allodynia in patients with mononeuropathy. Pain. 1999;83:459–470. doi: 10.1016/S0304-3959(99)00150-5. [PubMed] [Cross Ref]
[249] Rosen S.D., Paulesu E., Nihoyannopoulos P., Tousoulis D., Frackowiak R.S.J., Frith C.D., et al. Silent ischemia as a central problem: regional brain activation compared in silent and painful myocardial ischemia. Ann Intern Med. 1996;124:939–949. [PubMed]
[250] Brown M.W., Aggleton J.P. Recognition memory: what are the roles of the perirhinal cortex and hippocampus? Nat Rev Neurosci. 2001;2:51–61. doi: 10.1038/35049064. [PubMed] [Cross Ref]
[251] Moser M.B., Moser E.I. Functional differentiation in the hippocampus. Hippocampus. 1998;8:608–619. doi: 10.1002/(SICI)1098-1063(1998)8:6<608::AID-HIPO3>3.0.CO;2-7. [PubMed] [Cross Ref]
[252] Bliss T.V.P., Collingridge G.L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361:31–39. doi: 10.1038/361031a0. [PubMed] [Cross Ref]
[253] Bennett M.R. The concept of long term potentiation of transmission at synapses. Prog Neurobiol. 2000;60:109–137. doi: 10.1016/S0301-0082(99)00006-4. [PubMed] [Cross Ref]
[254] Malenka R.C., Nicoll R.A. LTP-A decade of progress? Science. 1999;85:1870–1874. doi: 10.1126/science.285.5435.1870. [PubMed] [Cross Ref]
[255] Ji R.R., Kohno T., Moore K.A., Woolf C.J. Central sensitization and LTP do pain and memory share similar mechanisms. Trends Neurosci. 2003;26:696–705. doi: 10.1016/j.tins.2003.09.017. [PubMed] [Cross Ref]
[256] Ikeda H., Heinke B., Ruscheweyh R., Sandkühler J. Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science. 2003;299:1237–1240. doi: 10.1126/science.1080659. [PubMed] [Cross Ref]
[257] Sandkühler J. Understanding LTP in pain pathways. Mol Pain. 2007;3:9. doi: 10.1186/1744-8069-3-9. [PMC free article] [PubMed] [Cross Ref]
[258] Heusler P., Boehmer G. Platelet-activating factor contributes to the induction of long-term potentiation in the rat somatosensory cortex in vitro. Brain Res. 2007;1135:85–91. doi: 10.1016/j.brainres.2006.12.016. [PubMed] [Cross Ref]
[259] Wei F., Qiu C.S., Liauw J., Robinson D.A., Ho N., Chatila T., et al. Calcium-calmodulin-dependent protein kinase IV is required for fear memory. Nat Neurosci. 2002;5:573–579. doi: 10.1038/nn0602-855. [PubMed] [Cross Ref]
[260] Ko S., Zhao M.G., Toyoda H., Qiu C.S., Zhuo M. Altered behavioral responses to noxious stimuli and fear in glutamate receptor 5 (GluR5)- or GluR6-deficient mice. J Neurosci. 2005;25:977–984. doi: 10.1523/JNEUROSCI.4059-04.2005. [PubMed] [Cross Ref]
[261] Zhao M.G., Toyoda H., Lee Y.S., Wu L.J., Ko S.W., Zhang X.H., et al. Roles of NMDA NR2B subtype receptor in prefrontal long-term potentiation and contextual fear memory. Neuron. 2005;47:859–872. doi: 10.1016/j.neuron.2005.08.014. [PubMed] [Cross Ref]
[262] Apkarian A.V., Baliki M.N., Geha P.Y. Towards a theory of chronic pain. Prog Neurobiol. 2009;87:81–97. doi: 10.1016/j.pneurobio.2008.09.018. [PMC free article] [PubMed] [Cross Ref]
[263] May A. Chronic pain may change the structure of the brain. Pain. 2008;137:7–15. doi: 10.1016/j.pain.2008.02.034. [PubMed] [Cross Ref]
[264] Edwards L., Pearce S., Collett B.J., Pugh R. Selective memory for sensory and affective information in chronic pain and depression. Br J Clin Psychol. 1992;31:239–248. [PubMed]
[265] Pauli P., Alpers G.W. Memory bias in patients with hypochondriasis and somatoform pain disorder. J Psychosom Res. 2002;52:45–53. doi: 10.1016/S0022-3999(01)00295-1. [PubMed] [Cross Ref]
[266] Pearce S.A., Isherwood S., Hrouda D., Richardson P.H., Erskine A., Skinner J. Memory and pain: tests of mood congruity and state dependent learning in experimentally induced and clinical pain. Pain. 1990;43:187–193. doi: 10.1016/0304-3959(90)91072-Q. [PubMed] [Cross Ref]

Articles from Neuroscience Bulletin are provided here courtesy of Springer