PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of neuroscibullNeuroscience Bulletin
 
Neurosci Bull. 2009 April; 25(2): 94–99.
Published online 2009 March 24. doi:  10.1007/s12264-009-1113-y
PMCID: PMC5552578

Language: English | Chinese

A review on research progress of transketolase

转酮醇酶的研究进展

Abstract

Transketolase (TK), a thiamine diphosphate (ThDP)-dependent enzyme, catalyzes several key reactions of nonoxidative branch of pentose phosphate pathway. TK is a homodimer with two active sites that locate at the interface between the contacting monomers. Both ThDP and bivalent cations are strictly needed for TK activation, just like that for all ThDP-dependent enzymes. TK exists in all organisms that have been investigated. Up to now, one TK gene (TKT) and two transketolase-like genes (TKTL1 and TKTL2) have been identified in human genome. TKTL1 is reported to play a pivotal role in carcinogenesis and may have important implications in the nutrition and future treatment of patients with cancer. Researchers have found TK variants and reduced activities of TK enzyme in patients with neurodegenerative diseases, diabetes, and cancer. Recent studies indicated TK as a novel role in the prevention and therapy of these diseases.

Keywords: Transketolase, Pentose phosphate pathway, neurodegenerative disease, TKTL-1 gene

摘要

转酮醇酶 (Transketolase, TK) 是一种焦磷酸硫胺素 (thiamine diphosphate, ThDP) 依赖性酶, 负责催化磷酸戊糖通路中碳水化合物转化的一个关键反应。 此酶属于同源二聚体, 在单体间的接触界面上存在两个活性部位。 与所有的焦磷酸硫胺素依赖性酶一样, TK 活性不仅依赖于焦磷酸硫胺素的存在, 还需要二价阳离子。 TK 存在于所有研究过的生物体中。 迄今为止, 在人类基因组中, 已经确定了一个 TK 基因和两个 TK 相似基因, 即转酮醇酶基因 (TKT)、 转酮醇酶样基因-1 (transketolase like-1, TKTL-1) 和转酮醇酶样基因-2 (transketolase like-2, TKTL-2)。 据报道, TKTL-1 在肿瘤发生中起着重要的作用, 同时对肿瘤患者的营养搭配及未来的治疗等方面有着重要的提示。 在神经变性疾病、 糖尿病和癌症中均发现转酮醇酶样基因变异体的存在, 转酮醇酶的活性也有所降低。 这些资料为更好地研究这些疾病的发病机理提供了新的线索, 并有助于建立新的预防和治疗手段。

关键词: 转酮醇酶(TK), 磷酸戊糖途径, 神经变性性疾病, TKTL-1 基因

References

[1] Horecker B.L. The pentose phosphate pathway. J Biol Chem. 2002;277:47965–47971. doi: 10.1074/jbc.X200007200. [PubMed] [Cross Ref]
[2] Blass J.P., Gibson G.E. Abnormality of a thiamine-requiring enzyme in patients with Wernicke-Korsakoff syndrome. New Engl J Med. 1977;297:1367–1370. [PubMed]
[3] Gibson G.E., Sheu K.F.R., Baker A.C., Carlson K.C., Harding B., Perrino P., Blass J.P. Reduced activities of thiamine-dependent enzymes in brains and peripheral tissues of Alzheimer’s patients. Arch Neurol. 1988;45:836–840. [PubMed]
[4] Hammes H.P., Du X., Edelstein D., Taguchi T., Matsumura T., Ju Q., et al. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med. 2003;9:294–99. doi: 10.1038/nm834. [PubMed] [Cross Ref]
[5] Boros L.G., Puigjaner J., Cascante M., Lee W.-N., Brandes J.L., Bassilian S., et al. Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation. Cancer Res. 1997;57:4242–4248. [PubMed]
[6] Lindqvist Y., Schneider G., Ermler U., Sundstrfim M. Threedimensional structure of transketolase, a thiamine diphosphate dependent enzyme, at 2.5A° resolution. EMBO J. 1992;11:2373–2379. [PubMed]
[7] Takeuchi T., Nishino K., Itokawa Y. Purification and characterisation of and preparation of an antibody to transketolase from human red blood cells. Biochem Biophys Acta. 1986;872:24–32. [PubMed]
[8] Nikkola M., Lindqvist Y., Schneider G. Refined structure of transketolase from Saccharomyces cerevisiae at 2.0 A° resolution. J Mol Biol. 1994;238:387–404. doi: 10.1006/jmbi.1994.1299. [PubMed] [Cross Ref]
[9] Usmanov R.A., Kochetov G.A. Study of different conformational states of transketolase by the method of perturbation UV-spectrophotometry. Biokhimiia. 1978;43:1796–1804. [PubMed]
[10] Sundström M., Lindqvist Y., Schneider G. Three-dimensional structure of apotransketolase. FEBS Lett. 1992;313:229–231. doi: 10.1016/0014-5793(92)81197-T. [PubMed] [Cross Ref]
[11] Schenk G., Duggleby R.G., Nixon P.F. Properties and functions of the thiamin diphosphate dependent enzyme transketolase. Inter J Biochem Cell Biol. 1998;30:1297–1318. doi: 10.1016/S1357-2725(98)00095-8. [PubMed] [Cross Ref]
[12] Esakova O.A., Meshalkina L.E., Golbik R., Hübner G., Kochetov G.A. Donor substrate regulation of transketolase. Eur J Biochem. 2004;271(21):4189–4194. doi: 10.1111/j.1432-1033.2004.04357.x. [PubMed] [Cross Ref]
[13] Booth C.K., Nixon P.F. Reconstitution of holotransketolase is by a thiamin-diphosphate-magnesium complex. Eur J Biochem. 1993;218(1):261–265. doi: 10.1111/j.1432-1033.1993.tb18373.x. [PubMed] [Cross Ref]
[14] Masri S.W., Ali M., Gubler C.J. Isolation of transketolase from rabbit liver and comparison of some of its kinetic properties with transketolase from other sources. Comp Biochem Physiol. 1988;90B:167–172. [PubMed]
[15] Williams J.F., Arora K.K., Longenecker J.P. The pentose pathway: a random harvest. Impediments which oppose acceptance of the classical (F-type) pentose cycle for liver, some neoplasms and photosynthetic tissue. The case for the L-type pentose pathway. Int J Biochem. 1987;19:749–817. doi: 10.1016/0020-711X(87)90239-4. [PubMed] [Cross Ref]
[16] Katz J., Rognstad R. The labeling of pentose phosphate from glucose-14C and estimation of the rates of transaldolase, transketolase, the contribution of the pentose cycle, and ribose phosphate synthesis. Biochemistry. 1967;6:2227–2247. doi: 10.1021/bi00859a046. [PubMed] [Cross Ref]
[17] Kiely M.E., Tan E.L., Wood T. The purification of transketolase from Candida utilis. Can J Biochem. 1969;47:455–460. doi: 10.1139/o69-071. [PubMed] [Cross Ref]
[18] Takeuchi T., Nishino K., Itokawa Y. Purification and characterisation of, and preparation of an antibody to, transketolase from human red blood cells. Biochem Biophys Acta. 1986;872:24–32. [PubMed]
[19] Coy J.F., Dübel S., Kioschis P., Thomas K., Micklem G., Delius H., et al. Molecular cloning of tissue-specific transcripts of a transketolaserelated gene: implications for the evolution of new vertebrate genes. Genomics. 1996;32:309–316. doi: 10.1006/geno.1996.0124. [PubMed] [Cross Ref]
[20] Glinsky G.V., Krones-Herzig A., Glinskii A.B. Malignancy-associated regions of transcriptional activation: gene expression profiling identifies common chromosomal regions of a recurrent transcriptional activation in human prostate, breast, ovarian, and colon cancers. Neoplasia. 2003;5:218–228. [PMC free article] [PubMed]
[21] Butterworth R.F., Gaudreau C., Vincelette J., Bourgault A.M., Lamothe F., Nutini A.M. Thiamine deficiency and Wernicke’s encephalopathy in AIDS. Metab Brain Dis. 1991;6:207–212. doi: 10.1007/BF00996920. [PubMed] [Cross Ref]
[22] Kovina M.V., Selivanov V.A., Kochevova N.V., Kochetov G.A. Kinetic mechanism of active site non-equivalence in transketolase. FEBS Lett. 1991;418:11–14. doi: 10.1016/S0014-5793(97)01331-8. [PubMed] [Cross Ref]
[23] Victor M., Adams R.D., Collins G.H. The Wernicke-Korsakoff syndrome: A clinical and pathological study of 245 patients, 82 with post-mortem examinations. Contemp Neurol Ser. 1971;7:1–206. [PubMed]
[24] Thomson A.D., Cook C.C., Touquet R., Henry J.A. Royal College of Physicians, London. The Royal College of Physicians Report on Alcohol: Guidelines for managing Wernicke’s encephalopathy in the Accident and Emergency Department. Alcohol Alcohol. 2002;37(6):513–521. [PubMed]
[25] Harata N., Iwasaki Y. Evidence for early blood-brain barrier breakdown in experimental deficiency in the mouse. Metabolic Brain Disorder. 1995;10:159–174. doi: 10.1007/BF01991863. [PubMed] [Cross Ref]
[26] Hazell A.S., Rao K.V., Danbolt N.C., Pow D.V., Butterworth R.F. Selective down-regulation of the astrocyte glutamate transporters GLT1 and GLAST within the medial thalamus in experimental Wernicke’s encephalopathy. J Neurochem. 2001;78:560–568. doi: 10.1046/j.1471-4159.2001.00436.x. [PubMed] [Cross Ref]
[27] Langlais P.J., Mair R.G. Protective effects of the glutamate antagonist MK-801 on pyrithiamine-induced lesions and amino acid changes in rat brain. J Neurosci. 1990;10:1664–1674. [PubMed]
[28] Calingasan N.Y., Gandy S.E., Baker H., Sheu K.F., Kim K.S., Wisniewski H.M., et al. Accumulation of amyloid precusor protein-like immunoreactivity in rat brain in response to thiamine deficiency. Brain Res. 1995;677:50–60. doi: 10.1016/0006-8993(95)00136-E. [PubMed] [Cross Ref]
[29] Langlais P.J., Anderson G., Guo S.X., Bondy S.C. Increased cerebral free radical production during thiamine deficiency. Metab Brain Dis. 1997;12:137–143. [PubMed]
[30] Todd K.G., Butterworth R.F. Early microglial response in experimental thiamine deficiency: an immunohistochemical analysis. Glia. 1999;25:190–198. doi: 10.1002/(SICI)1098-1136(19990115)25:2<190::AID-GLIA9>3.0.CO;2-B. [PubMed] [Cross Ref]
[31] Calingasan N.Y., Park L.C., Calo L.L., Trifiletti R.R., Gandy S.E., Gibson G.E. Induction of nitric oxide synthase and microglial responses precede selective cell death induced by chronic impairment of oxidative metabolism. Am J Pathol. 1998;153:599–610. [PubMed]
[32] Desjardins P., Butterworth R.F. Pathogenesis of selective neuronal loss in Wernicke-Korsakoff Syndrome: role of oxidative stress. New York: Marcel Dekker; 2003. pp. 339–347.
[33] Paoletti F., Mocali A., Marchi M., Sorbi S., Piacentini S. Occurrence of transketolase abnormalities in extracts offoreskin fibroblasts from patients with Alzheimer’s disease. Biochem Biophys Res Commun. 1990;172:396–401. doi: 10.1016/0006-291X(90)90686-H. [PubMed] [Cross Ref]
[34] Paoletti F., Mocali A. Enhanced proteolytic activities in cultured fibroblasts of Alzheimer patients are revealed by peculiar transketolase alterations. J Neurol Sci. 1991;105:211–216. doi: 10.1016/0022-510X(91)90147-Y. [PubMed] [Cross Ref]
[35] Paoletti F., Mocali A., Tombaccini D. Cysteine proteinases are responsible for characteristic transketolase alterations in Alzheimer fibroblasts. J Cell Physiol. 1997;172:63–68. doi: 10.1002/(SICI)1097-4652(199707)172:1<63::AID-JCP7>3.0.CO;2-B. [PubMed] [Cross Ref]
[36] Brownlee M., Vlassara H., Cerami A. Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann Intern Med. 1984;101:527–537. [PubMed]
[37] Cascante M, Comin B, Raïs B, Boren J, Centelles JJ. Application of metabolic control analysis to the design of a new strategy for cancer therapy. The Netherlands: Kluwer Academic 2000, pp 173–180.
[38] Zhang S., Yang J.H., Guo C.K., Cai P.C. Gene silencing of TKTL1 by RNAi inhibits cell proliferation in human hepatoma cells. Cancer Lett. 2007;253(1):108–114. doi: 10.1016/j.canlet.2007.01.010. [PubMed] [Cross Ref]
[39] Langbein S., Zerilli M., Hausen A., Staiger W., Rensch-Boschert K., Lukan N. Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted. British Journal of Cancer. 2006;94:578–585. doi: 10.1038/sj.bjc.6602962. [PMC free article] [PubMed] [Cross Ref]
[40] Gatenby R.A., Gillies R.J. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4:891–899. doi: 10.1038/nrc1478. [PubMed] [Cross Ref]
[41] Rais B., Comin B., Puigjaner J., Brandes J.L., Creppy E., Saboureau D., et al. Oxythiamine and dehydroepiandrosterone induce a G1 phase cycle arrest in Ehrlich’s tumor cells through inhibition of the pentose cycle. FEBS Lett. 1999;456:113–18. doi: 10.1016/S0014-5793(99)00924-2. [PubMed] [Cross Ref]
[42] Boros L.G., Brandes J.L., Lee W.N., Cascante M., Puigjaner J., Revesz E., et al. Thiamine supplementation to cancer patients: a doubleedged sword. Anticancer Res. 1998;18:595–602. [PubMed]

Articles from Neuroscience Bulletin are provided here courtesy of Springer