Search tips
Search criteria 


Logo of neuroscibullNeuroscience Bulletin
Neurosci Bull. 2009 June; 25(3): 131–137.
Published online 2009 July 7. doi:  10.1007/s12264-009-0114-1
PMCID: PMC5552561

Language: English | Chinese

Oxidative damage increased in presenilin1/presenilin2 conditional double knockout mice




This report aims to describe the oxidative damage profile in brain of presenilin1 and presenilin2 conditional double knockout mice (dKO) at both early and late age stages, and to discuss the correlation between oxidative stress and the Alzheimer-like phenotypes of dKO mice.


The protein level of Aβ42 in dKO cortex and free 8-OHdG level in urine were measured by ELISA. Thiobarbituric acid method and spectrophotometric DNPH assay were used to determine the lipid peroxidation and protein oxidation in cortex, respectively. SOD and GSH-PX activities were assessed by SOD Assay Kit-WST and GSH-PX assay kit, separately.


Significant decrease of Aβ42 was verified in dKO cortex at 6 months as compared to control mice. Although lipid peroxidation (assessed by MDA) was increased only in dKO cortex at 3 months and protein oxidation (assessed by carbonyl groups) was basically unchanged in dKO cortex, ELISA analysis revealed that free 8-OHdG, which was an indicator of DNA lesion, was significantly decreased in urine of dKO mice from 3 months to 12 months. Activities of SOD and GSH-PX in dKO and control cortices showed no statistical difference except a significant increase of GSH-PX activity in dKO mice at 9 months.


Oxidative damage, especially DNA lesion, was correlated with the neurodegenerative symptoms that appeared in dKO mice without the deposition of Aβ42. Triggers of oxidative damage could be the inflammatory mediators released by activated microglia and astrocytes.

Keywords: presenilins, Alzheimer’s disease, oxidative damage, 8-OHdG



观察3, 6, 9, 12月龄presenilin1presenilin2双敲除小鼠(dKO)脑组织氧化损伤情况,探讨氧化损伤与presenilins功能丧失所引起的阿尔茨海默病样症状之间的关系。


酶联免疫反应(ELISA)检测dKO小鼠大脑皮层中Aβ42水平和尿液中8-羟基脱氧鸟苷(8-hydroxy-2-deoxyguanosine, 8-OHdG)水平; 硫代巴比妥酸法检测脂质过氧化水平, 分光光度计测定DNPH法检测蛋白质损伤水平; 试剂盒法检测超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-PX)活性。


与对照组相比, dKO小鼠大脑皮层中Aβ42水平显著降低。 同时, 除了在3月龄dKO小鼠大脑皮层中发现脂质过氧化水平有显著增加外, 蛋白质损伤在各年龄段dKO小鼠中均没有明显变化。 ELISA检测结果显示尿液中游离的8-OHdG水平在各年龄段的dKO小鼠中均显著降低。 SOD和GSH-PX活性均无明显变化, 只有9月龄dKO小鼠中的GSH-PX活性有显著增高。


氧化损伤特别是DNA损伤参与dKO小鼠神经退行性症状的发生过程; 由于dKO小鼠大脑皮层中没有Aβ42的沉积, 推测造成氧化损伤的原因可能是由活化的小胶质细胞和星形胶质细胞所释放的免疫因子介导的。

关键词: 早老素基因, 阿尔茨海默病, 氧化损伤, 8-OHdG


[1] Goedert M., Spillantini M.G. A century of Alzheimer’s disease. Science. 2006;314(5800):777–781. doi: 10.1126/science.1132814. [PubMed] [Cross Ref]
[2] Feng R., Wang H., Wang J., Shrom D., Zeng X., Tsien J.Z. Forebrain degeneration and ventricle enlargement caused by double knockout of Alzheimer’s presenilin-1 and presenilin-2. Proc Nat1 Acad Sci USA. 2004;101(21):8162–8167. doi: 10.1073/pnas.0402733101. [PubMed] [Cross Ref]
[3] Saura C.A., Choi S.Y., Beglopoulos V., Malkani S., Zhang D., Shankaranarayana Rao B.S., et al. Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron. 2004;42(1):23–36. doi: 10.1016/S0896-6273(04)00182-5. [PubMed] [Cross Ref]
[4] Tanzi R.E., Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell. 2005;120(4):545–555. doi: 10.1016/j.cell.2005.02.008. [PubMed] [Cross Ref]
[5] Czech C., Tremp G., Pradier L. Presenilins and Alzheimer’s disease: biological functions and pathogenic mechanisms. Prog Neurobiol. 2000;60(4):363–384. doi: 10.1016/S0301-0082(99)00033-7. [PubMed] [Cross Ref]
[6] Selkoe D.J., Wolfe M.S. Presenilin: running with scissors in the membrane. Cell. 2007;131(2):215–221. doi: 10.1016/j.cell.2007.10.012. [PubMed] [Cross Ref]
[7] Haass C. Presenilins: Genes for life and death. Neuron. 1997;18(5):687–690. doi: 10.1016/S0896-6273(00)80309-8. [PubMed] [Cross Ref]
[8] Shen J., Bronson R.T., Chen D.F., Xia W., Selkoe D.J., Tonegawa S. Skeletal and CNS defects in presenilin-1-deficient mice. Cell. 1997;89(4):629–639. doi: 10.1016/S0092-8674(00)80244-5. [PubMed] [Cross Ref]
[9] Feng R., Rampon C., Tang Y.P., Shrom D., Jin J., Kyin M., et al. Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron. 2001;32(5):911–926. doi: 10.1016/S0896-6273(01)00523-2. [PubMed] [Cross Ref]
[10] Donoviel D.B., Hadjantonakis A.K., Ikeda M., Zheng H., Hyslop P.S., Bernstein A. Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes Dev. 1999;13(21):2801–2810. doi: 10.1101/gad.13.21.2801. [PubMed] [Cross Ref]
[11] Steiner H., Duff K., Capell A., Romig H., Grim M.G., Lincoln S., et al. A loss of function mutation of presenilin-2 interferes with Amyloid β-peptide production and Notch signaling. J Biol Chem. 1999;274(40):28669–28673. doi: 10.1074/jbc.274.40.28669. [PubMed] [Cross Ref]
[12] Beglopoulos V., Sun X., Saura C.A., Lemere C.A., Kim R.D., Shen J. Reduced β-Amyloid production and increased inflammatory responses in presenilin conditional knock-out mice. J Biol Chem. 2004;279(45):46907–46914. doi: 10.1074/jbc.M409544200. [PubMed] [Cross Ref]
[13] Chauhan V., Chauhan A. Oxidative stress in Alzheimer’s disease. Pathophysiology. 2006;13(3):195–208. doi: 10.1016/j.pathophys.2006.05.004. [PubMed] [Cross Ref]
[14] Butterfield D.A., Perluigi M., Sultana R. Oxidative stress in Alzheimer’s disease brain: New insights from redox proteomics. Eur J Pharmacol. 2006;545(1):39–50. doi: 10.1016/j.ejphar.2006.06.026. [PubMed] [Cross Ref]
[15] Yuan H., Zheng J.C., Liu P., Zhang S.F., Xu J.Y., Bai L.M. Pathogenesis of Parkinson’s disease: oxidative stress, environmental impact factors and inflammatory processes. Neurosci Bull. 2007;23(2):125–130. doi: 10.1007/s12264-007-0018-x. [PMC free article] [PubMed] [Cross Ref]
[16] Tuppo E.E., Forman L.J. Free radical oxidative damage and Alzheimer’s disease. J Am Osteopath Assoc. 2001;101(12SupplPt1):11–15. [PubMed]
[17] Guidi I., Galimberti D., Lonati S., Novembrinoc C., Bamonti F., Tiriticco M., et al. Oxidative imbalance in patients with mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging. 2006;27(2):262–269. doi: 10.1016/j.neurobiolaging.2005.01.001. [PubMed] [Cross Ref]
[18] Markesbery W.R. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med. 1997;23(1):134–147. doi: 10.1016/S0891-5849(96)00629-6. [PubMed] [Cross Ref]
[19] Praticò D. Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharmacol Sci. 2008;29(12):609–615. doi: 10.1016/ [PubMed] [Cross Ref]
[20] Butterfield D.A., Drake J., Pocernich C., Castegna A. Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid β-peptide. Trends Mol Med. 2001;7(12):548–554. doi: 10.1016/S1471-4914(01)02173-6. [PubMed] [Cross Ref]
[21] Smith M.A., Rottkamp C.A., Nunomura A., Raina A.K., Perry G. Oxidative stress in Alzheimer’s disease. Biochim Biophys Acta. 2000;1502(1):139–144. [PubMed]
[22] Gu F., Zhu M.J., Shi J.T., Hu Y.H., Zhao Z. Enhanced oxidative stress is an early event during development of Alzheimer-like pathologies in presenilin conditional knock-out mice. Neurosci Lett. 2008;440(1):44–48. doi: 10.1016/j.neulet.2008.05.050. [PubMed] [Cross Ref]
[23] Zhu M.J., Gu F., Shi J.T., Hu J.F., Hu Y.H., Zhao Z. Increased oxidative stress and astrogliosis responses in conditional double-knockout mice of Alzheimer-like presenilin-1 and presenilin-2. Free Radic Biol Med. 2008;45(10):1493–1499. doi: 10.1016/j.freeradbiomed.2008.08.027. [PubMed] [Cross Ref]
[24] Labieniec M., Gabryelak T. Measurement of DNA damage and protein oxidation after the incubation of B14 Chinese hamster cells with chosen polyphenols. Toxicol Lett. 2005;155(1):15–25. doi: 10.1016/j.toxlet.2004.06.008. [PubMed] [Cross Ref]
[25] Markesbery W.R., Lovell M.A. DNA oxidation in Alzheimer’s disease. Antioxid Redox Signal. 2006;8(11–12):2039–2045. [PubMed]
[26] Yu H.K., Saura C.A., Choi S.Y., Sun L.D., Yang X.D., Handler M., et al. APP processing and synaptic plasticity in presenilin-1 conditional knockout mice. Neuron. 2001;31(5):713–726. doi: 10.1016/S0896-6273(01)00417-2. [PubMed] [Cross Ref]
[27] Janero D.R. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med. 1990;9(6):515–540. doi: 10.1016/0891-5849(90)90131-2. [PubMed] [Cross Ref]
[28] Dalle-Donne I., Rossi R., Giustarini D., Milzani A., Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta. 2003;329(1–2):23–38. doi: 10.1016/S0009-8981(03)00003-2. [PubMed] [Cross Ref]
[29] Dalle-Donne I., Giustarini D., Colombo R., Rossi R., Milzani A. Protein carbonylation in human diseases. Trends Mol Med. 2003;9(4):169–176. doi: 10.1016/S1471-4914(03)00031-5. [PubMed] [Cross Ref]
[30] Markesbery W.R., Carney J.M. Oxidative alterations in Alzheimer’s disease. Brain Pathol. 1999;9(1):133–146. doi: 10.1111/j.1750-3639.1999.tb00215.x. [PubMed] [Cross Ref]
[31] Casado, Encarnación Lopez-Fernández M., Concepción Casado M., de la Torre R. Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem Res. 2007;33(3):450–458. doi: 10.1007/s11064-007-9453-3. [PubMed] [Cross Ref]
[32] Zhu X., Su B., Wang X., Smith M.A., Perry G. Causes of oxidative stress in Alzheimer disease. Cell Mol Life Sci. 2007;64(17):2202–2210. doi: 10.1007/s00018-007-7218-4. [PubMed] [Cross Ref]

Articles from Neuroscience Bulletin are provided here courtesy of Springer