PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of neuroscibullNeuroscience Bulletin
 
Neurosci Bull. 2008 June; 24(3): 150.
Published online 2008 July 19. doi:  10.1007/s12264-008-1702-1
PMCID: PMC5552545

Language: English | Chinese

Effect of resuscitation after selective cerebral ultraprofound hypothermia on expressions of nerve growth factor and glial cell line-derived neurotrophic factor in the brain of monkey

选择性超深低温断血流复苏促进猴脑中神经生长因子和胶质细胞源性神经营养因子的表达

Abstract

Objective

To investigate the expression of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) in monkeys of resuscitation after selective cerebral ultraprofound hypothermia and blood flow occlusion.

Methods

The monkeys were immediately removed brain after death in operation of group A (identical temperature perfusion group) and group B (ultraprofound hypothermia perfusion group). Immunohistochemical technique was used to determine frontal cellular expression of NGF and GDNF. Statistics were analyzed by ANOVA analyses with significance level at P < 0.05.

Results

The expressions of NGF and GDNF in the group B were significantly higher than those in the group A (P < 0.05).

Conclusion

NGF and GDNF increased significantly in the monkeys of resuscitation after selective cerebral ultraprofound hypothermia and blood flow occlusion. It may be a protective mechanism for neuron survival and neural function recovery.

Keywords: nerve growth factor, glial cell line-derived neurotrophicfactor, ultraprofound hypothermic circulatory arrest, resuscitation, monkey brain

摘要

目的

观察常温缺血10 min后选择性超深低温断血流复苏后猴脑中神经生长因子(nerve growth factor, NGF)和胶质细胞源性神经营养因子(glial cell line-derived neurotrophicfactor, GDNF)表达的变化。

方法

等温组及超深低温组实验猴于灌注或复苏死亡后立即开颅取脑, 用NGF和GDNF抗体进行免疫组化染色;对额叶恒定视野内NGF和GDNF 的阳性细胞记数求阳性率, 并统计学分析。

结果

等温组2 只实验猴额叶NGF 和GDNF 有微量表达, 超深低温组4 只实验猴额叶NGF 和GDNF 表达明显上调, 与等温组比较差异均极显著(P < 0.01)。

结论

猴脑选择性超深低温断血流复苏实验可引起NGF和GDNF表达上调, 这可能是防止脑缺血的重要保护机制之一。

关键词: 神经生长因子, 胶质细胞源性神经营养因子, 超深低温断血流, 复苏, 猴脑

References

[1] Ohta T., Sakaguchi I., Dong L.W., Nagasawa S., Yasuda A. Selective cooling of brain using profound hemodilution in dogs. Neurosurgery. 1992;31:1049–1055. doi: 10.1097/00006123-199212000-00010. [PubMed] [Cross Ref]
[2] Price T.J., Louria M.D., Candelario-Soto D., Dussor G.O., Jeske N.A., Patwardhan A.M., et al. Treatment of trigeminal ganglion neurons in vitro with NGF, GDNF or BDNF: effects on neuronal survival, neurochemical properties and TRPV1-mediated neuropeptide secretion. BMC Neurosci. 2005;6:4–18. doi: 10.1186/1471-2202-6-4. [PMC free article] [PubMed] [Cross Ref]
[3] Petruska J.C., Mendell L.M. The many functions of nerve growth factor: multiple actions on nociceptors. Neurosci Lett. 2004;361:168–171. doi: 10.1016/j.neulet.2003.12.012. [PubMed] [Cross Ref]
[4] Jiang J.Y., Xu W., Yang P.F., Gao G.Y., Gao Y.G., Liang Y.M., et al. Marked protection by selective cerebral profound hypothermia after complete cerebral ischemia in primates. J Neurotrauma. 2006;23:1847–1856. doi: 10.1089/neu.2006.23.1847. [PubMed] [Cross Ref]
[5] Caba M., Bao J., Pau K.Y., Spies H.G. Molecular activation of noradrenergic neurons in the rabbit brainstem after coitus. Brain Res Mol Brain Res. 2000;77:222–231. doi: 10.1016/S0169-328X(00)00055-3. [PubMed] [Cross Ref]
[6] Whitlon D.S., Szakaly R., Greiner M.A. Cryoembedding and sectioning of cochleas for immunocytochemistry and in situ hybridization. Brain Res Brain Res Protoc. 2001;6:159–166. doi: 10.1016/S1385-299X(00)00048-9. [PubMed] [Cross Ref]
[7] Yang X.D., Liu Z., Liu H.X., Wang L.H., Ma C.H., Li Z.Z. Regulatory effect of nerve growth factor on release of substance P in cultured dorsal root ganglion neurons of rat. Neurosci Bull. 2007;23:215–220. doi: 10.1007/s12264-007-0032-z. [PMC free article] [PubMed] [Cross Ref]
[8] Su Y.R., Wang J., Wu J.J., Chen Y., Jiang Y.P. Overexpression of lentivirus-mediated glial cell line-derived neurotrophic factor in bone marrow stromal cells and its neuroprotection for the PC12 cells damaged by lactacystin. Neurosci Bull. 2007;23:67–74. doi: 10.1007/s12264-007-0010-5. [PMC free article] [PubMed] [Cross Ref]
[9] Chen K.S., Nishimura M.C., Armanini M.P., Crowley C., Spencer S.D., Phillips H.S. Disruption of a single allele of the nerve growth factor gene results in atrophy of basal forebrain cholinergic neurons and memory deficits. J Neurosci. 1997;17:7288–7296. [PubMed]
[10] Nicholson D.W., Ali A., Thornberry N.A., Vaillancourt J.P., Ding C.K., Gallant M., et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 1995;376:37–43. doi: 10.1038/376037a0. [PubMed] [Cross Ref]
[11] Eldadah B.A., Faden A.I. Caspase pathways, neuronal apoptosis, and CNS injury. J Neurotrauma. 2000;17:811–829. doi: 10.1089/neu.2000.17.811. [PubMed] [Cross Ref]
[12] Gurney M.E., Tomasselli A.G., Heinrikson R.L. Neurobiology. Stay the executioner’s hand. Science. 2000;288:283–284. doi: 10.1126/science.288.5464.283. [PubMed] [Cross Ref]
[13] Armstrong R.C., Aja T.J., Hoang K.D., Gaur S., Bai X., Alnemri E.S., et al. Activation of the CED3/ICE-related protease CPP32 in cerebellar granule neurons undergoing apoptosis but not necrosis. J Neurosci. 1997;17:553–562. [PubMed]
[14] Yanamoto H., Mizuta I., Nagata I., Xue J., Zhang Z., Kikuchi H. Infarct tolerance accompanied enhanced BDNF-like immunoreactivity in neuronal nuclei. Brain Res. 2000;877:331–344. doi: 10.1016/S0006-8993(00)02718-9. [PubMed] [Cross Ref]
[15] Ramer M.S., Priestley J.V., McMahon S.B. Functional regeneration of seneory axons into the adult spinal cord. Nature. 2000;403:312–316. doi: 10.1038/35002084. [PubMed] [Cross Ref]
[16] Lehmann M., Fournier A., Selles-Navarro I., Dergham P., Sebok A., Leclerc N., et al. Inactivation of Rho signaling pathway promotes CNS axon regeneration. J Neurosci. 1999;19:7537–7547. [PubMed]
[17] Igari T., Hoshino S., Iwaya F., Ando S. Cerebral blood flow and oxygen metabolism during cardiopulmonary bypass with moderate hypothermic selective cerebral perfusion. Cardiovasc Surg. 1999;7:106–111. doi: 10.1016/S0967-2109(98)00092-1. [PubMed] [Cross Ref]
[18] Ding Y., Li J., Luan X., Ding Y.H., Lai Q., Rafols J.A., et al. Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neuroscience. 2004;124:583–591. doi: 10.1016/j.neuroscience.2003.12.029. [PubMed] [Cross Ref]
[19] Truettner J., Busto R., Zhao W., Ginsberg M.D., Pérez-Pinzón M.A. Effect of ischemic precond-itioning on the expression of putative neuroprotective genes in the rat brain. Brain Res Mol Brain Res. 2002;103:106–115. doi: 10.1016/S0169-328X(02)00191-2. [PubMed] [Cross Ref]
[20] Li Q.Y., Cheng G.Y., Pu P.Y., Zhang R.Z., Lian H., Jiang D.H. Changes of GDNF mRNA expression in rat brain following cerebral ischemia reperfusion. Chin J Neurosci. 1999;15:243–246.

Articles from Neuroscience Bulletin are provided here courtesy of Springer