PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of neuroscibullNeuroscience Bulletin
 
Neurosci Bull. 2008 February; 24(1): 49–55.
Published online 2008 February 27. doi:  10.1007/s12264-008-0808-9
PMCID: PMC5552524

Language: English | Chinese

Molecular control of memory in nematode Caenorhabditis elegans

秀丽线虫记忆的分子调控机制

Abstract

Model invertebrate organism Caenorhabditis elegans has become an ideal model to unravel the complex processes of memory. C. elegans has three simple forms of memory: memory for thermosensation, memory for chemosensation, and memory for mechanosensation. In the form of memory for mechanosensation, short-term memory, intermediate-term memory, and long-term memory have been extensively studied. The short-term memory and intermediate-term memory may occur in the presynaptic sensory neurons, whereas the long-term memory may occur in the postsynaptic interneurons. This review will discuss the recent progress on genetic and molecular regulation of memory in C. elegans.

Keywords: memory, molecular mechanism, Caenorhabditis elegans, model invertebrate organism

摘要

模式无脊椎动物秀丽线虫已经成为揭示记忆复杂行为的理想研究模型之一。 线虫具有三种简单的记忆形式: 对温度感知的记忆、 对化学物质感知的记忆以及对于机械刺激感知的记忆。 在对机械刺激感知的记忆研究中, 短时程、 中时程与长时程记忆均得到了系统的分析。 其中短时程与中时程记忆可能定位于感觉神经元的前突触, 而长时程记忆可能定位于中间神经元的后突触。 本文针对线虫中记忆的遗传与分子调控机制近些年的研究进展进行了总结与讨论。

关键词: 记忆, 分子机制, 秀丽线虫, 无脊椎模式动物

References

[1] Burrell B.D., Sahley C.L. Learning in simple systems. Curr Opin Neurobiol. 2001;11:757–764. doi: 10.1016/S0959-4388(01)00281-1. [PubMed] [Cross Ref]
[2] Sforza D.M., Smith D.J. Genetic and genomic strategies in learning and memory. Curr Genomics. 2003;4:475–485. doi: 10.2174/1389202033490259. [Cross Ref]
[3] McGuire S.E., Deshazer M., Davis R.L. Thirty years of olfactory learning and memory research in Drosophila melanogaster. Prog Neurobiol. 2005;76:328–347. doi: 10.1016/j.pneurobio.2005.09.003. [PubMed] [Cross Ref]
[4] Gomez M., de Castro E., Guarin E., Sasakura H., Kuhara A., Mori I., et al. Ca2+ Signaling via the neuronal calcium sensor-1 regulates associative learning and memory in C. elegans. Neuron. 2001;30:241–248. doi: 10.1016/S0896-6273(01)00276-8. [PubMed] [Cross Ref]
[5] de Bono M., Maricq A.V. Neuronal substrates of complex behaviors in C. elegans. Annu Rev Neurosci. 2005;28:451–501. doi: 10.1146/annurev.neuro.27.070203.144259. [PubMed] [Cross Ref]
[6] Mohri A., Kodama E., Kimura K.D., Koike M., Mizuno T., Mori I. Genetic control of temperature preference in the nematode Caenorhabditis elegans. Genetics. 2005;169:1437–1450. doi: 10.1534/genetics.104.036111. [PubMed] [Cross Ref]
[7] Inada H., Ito H., Satterlee J., Sengupta P., Matsumoto K., Mori I. Identification of guanylyl cyclases that function in thermosensory neurons of Caenorhabditis elegans. Genetics. 2006;172:2239–2252. doi: 10.1534/genetics.105.050013. [PubMed] [Cross Ref]
[8] Biron D., Shibuya M., Gabel C., Wasserman S.M., Clark D.A., Brown A., et al. A diacylglycerol kinase modulates long-term thermotactic behavioral plasticity in C. elegans. Nat Neurosci. 2006;9:1499–1505. doi: 10.1038/nn1796. [PubMed] [Cross Ref]
[9] Satterlee J.S., Ryu W.S., Sengupta P. The CMK-1 CaMKI and the TAX-4 cyclic nucleotide-gated channel regulate thermosensory neuron gene expression and function in C. elegans. Curr Biol. 2004;14:62–68. doi: 10.1016/j.cub.2003.12.030. [PubMed] [Cross Ref]
[10] Clark D.A., Gabel C.V., Gabel H., Samuel A.D. Temporal activity patterns in thermosensory neurons of freely moving Caenorhabditis elegans encode spatial thermal gradients. J Neurosci. 2007;27:6083–6090. doi: 10.1523/JNEUROSCI.1032-07.2007. [PubMed] [Cross Ref]
[11] Kimura K.D., Miyawaki A., Matsumoto K., Mori I. The C. elegans thermosensory neuron AFD responds to warming. Curr Biol. 2004;14:1291–1295. doi: 10.1016/j.cub.2004.06.060. [PubMed] [Cross Ref]
[12] Samuel A.D., Silva R.A., Murthy V.N. Synaptic activity of the AFD neuron in Caenorhabditis elegans correlates with thermotactic memory. J Neurosci. 2003;23:373–376. [PubMed]
[13] Colbert H.A., Bargmann C.I. Environmental signals modulate olfactory acuity, discrimination, and memory in Caenorhabditis elegans. Learn Mem. 1997;4:179–191. doi: 10.1101/lm.4.2.179. [PubMed] [Cross Ref]
[14] Colbert H.A., Bargmann C.I. Odorant-specific adaptation pathways generate olfactory plasticity in C. elegans. Neuron. 1995;14:803–812. doi: 10.1016/0896-6273(95)90224-4. [PubMed] [Cross Ref]
[15] Remy J., Hobert O. An interneuronal chemoreceptor required for olfactory imprinting in C. elegans. Science. 2005;309:787–790. doi: 10.1126/science.1114209. [PubMed] [Cross Ref]
[16] Rankin C.H., Wicks S.R. Mutations of the Caenorhabditis elegans brain-specific inorganic phosphate transporter eat-4 affect habituation of the tap-withdrawal response without affecting the response itself. J Neurosci. 2000;20:4337–4344. [PubMed]
[17] Steidl S, Dube N, Rose JK, Rankin CH. Mutations of a glutamate-gated chloride channel in C. elegans affect short-term memory in an ISI dependent manner, long-term memory, and for aging behavior. Society for Neuroscience Abstracts 28, CD-ROM Program No. 377.3.
[18] Rose J.K., Kaun K.R., Rankin C.H. A new group-training procedure for habituation demonstrates that presynaptic glutamate release contributes to long-term memory in Caenorhabditis elegans. Learn Mem. 2002;9:130–137. doi: 10.1101/lm.46802. [PubMed] [Cross Ref]
[19] Rose J.K., Rankin C.H. Analyses of habituation in Caenorhabditis elegans. Learn Mem. 2001;8:63–69. doi: 10.1101/lm.37801. [PubMed] [Cross Ref]
[20] Steidl S., Rose J.K., Rankin C.H. Stages of memory in the nematode Caenorhabditis elegans. Behav Cogn Neurosci Rev. 2003;2:3–14. doi: 10.1177/1534582303002001001. [PubMed] [Cross Ref]
[21] Beck C.D., Rankin C.H. Heat shock disrupts long-term memory consolidation in Caenorhabditis elegans. Learn Mem. 1995;2:161–177. doi: 10.1101/lm.2.3-4.161. [PubMed] [Cross Ref]
[22] Morrison G.E., van der Kooy D. Cold shock before associative conditioning blocks memory retrieval, but cold shock after conditioning blocks memory retention in Caenorhabditis elegans. Behav Neurosci. 1997;111:564–578. doi: 10.1037/0735-7044.111.3.564. [PubMed] [Cross Ref]
[23] Rose J.K., Kaun K.R., Chen S.H., Rankin C.H. GLR-1, a non-NMDA glutamate receptor homolog, is critical for long-term memory in Caenorhabditis elegans. J Neurosci. 2003;23:9595–9599. [PubMed]
[24] Rose J.K., Rankin C.H. Blocking memory reconsolidation reverse memory-associated changes in glutamate receptor expression. J Neurosci. 2006;26:11582–11587. doi: 10.1523/JNEUROSCI.2049-06.2006. [PubMed] [Cross Ref]
[25] Ebrahimi C.M., Rankin Ch. Early patterned stimulation leads to changes in adult behavior and gene expression in C. elegans. Genes Brain Behav. 2007;6:517–528. doi: 10.1111/j.1601-183X.2006.00278.x. [PubMed] [Cross Ref]

Articles from Neuroscience Bulletin are provided here courtesy of Springer