PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of neuroscibullNeuroscience Bulletin
 
Neurosci Bull. 2007 November; 23(6): 329–335.
Published online 2008 February 3. doi:  10.1007/s12264-007-0049-3
PMCID: PMC5550646

Language: English | Chinese

ATP depletion is the major cause of MPP+ induced dopamine neuronal death and worm lethality in α-synuclein transgenic C. elegans

ATP 损耗是 MPP+ 引起 α-synuclein 转基因线虫多巴胺能神经元死亡和虫体死亡的主要原因

Abstract

Objective

To investigate the toxic effect of environmental neurotoxin MPP+ to C. elegans and identify the mechanisms that cause the toxicity.

Methods

Human α-synuclein transgenic C. elegans was used as the animal model, the toxic effect of MPP+ to dopamine (DA) neurons and the lifespan of worms was tested. The worms were feed with OP50 to determine whether ATP increase can rescue the worm from toxicity. ATP level and aberrant protein accumulation were analyzed in the MPP+ treated worms with or without OP50 addition.

Results

We found that MPP+ induced DA cell death and worm lethality, which could be prevented by OP50 treatment. OP50 exerted the protective effect by up-regulating ATP level, even though it also induced accumulation of α-synuclein. Despite the undefined role of protein aggregation to the cell death, our results showed that the toxicity of MPP+ was mainly caused by the ATP depletion in the α-synuclein transgenic C. elegans.

Conclusion

MPP+ could induce DA neuronal death and worm lethality in α-synuclein transgenic C. elegans; Compared with the aggregation of α-synuclein, the major cause of MPP+ toxicity appeared due to ATP depletion.

Keywords: Parkinson’s disease, MPP+, ATP, α-synuclein, C. elegans

摘要

目的

揭示环境神经毒素 MPP+ 对线虫的毒性影响并探讨其毒性机理。

方法

以人源 α-synuclein 转基因线虫作为动物模型, 用 MPP+ 处理该线虫, 观察 MPP+ 对线虫多巴胺能神经元和其生存能力的影响。 通过供给 OP50 以提高线虫体内 ATP 的水平, 对比分析 ATP 水平、 蛋白质异常沉积等重要指标, 探讨二者在 MPP+ 引起的转基因线虫的病变中所起的作用。

结果

MPP+ 能够引起线虫多巴胺能神经元和线虫虫体的死亡; 尽맜进食 OP50 也会引起 α-synuclein 的沉积, 但进食 OP50 能够提高体内 ATP 的水平并缓解 MPP+ 的毒性。 虽无直接证据证明 α-synuclein 沉积对神经细胞的影响, 但结果提示, 在该转基因线虫中, 与蛋白质的异常沉积相比, MPP+ 导致的 ATP 损耗是其毒性作用的最主要诱因。

结论

MPP+ 可以引起 α-synuclein 转基因线虫多巴胺能神经元的死亡和虫体的死亡, 其毒性的主要原因是 ATP 损耗而不是 α-synuclein 的异常聚集 (沉积)。

关键词: 帕金森病, MPP+, ATP, α-synuclein, 线虫

References

[1] Muchowski P.J., Wacker J.L. Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci. 2005;6:11–22. doi: 10.1038/nrn1587. [PubMed] [Cross Ref]
[2] Polymeropoulos M.H., Lavedan C., Leroy E., Ide S.E., Dehejia A., Dutra A., et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276:2045–2047. doi: 10.1126/science.276.5321.2045. [PubMed] [Cross Ref]
[3] Singleton A.B., Farrer M., Johnson J., Singleton A., Hague S., Kachergus J., et al. alpha-Synuclein locus triplications cause Parkinson’s disease. Science. 2003;302:841. doi: 10.1126/science.1090278. [PubMed] [Cross Ref]
[4] Parker W.D., Jr, Boyson S.J., Parks J.K. Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol. 1989;26:719–723. doi: 10.1002/ana.410260606. [PubMed] [Cross Ref]
[5] Schmidt N., Ferger B.J. Neurochemical findings in the MPTP model of Parkinson’s disease. J Neural Transm. 2001;108:1263–1282. doi: 10.1007/s007020100004. [PubMed] [Cross Ref]
[6] Sherer T.B., Betarbet R., Stout A.K., Lund S., Baptista M., Panov A.V., et al. An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci. 2002;22:7006–7015. [PubMed]
[7] Ciehanover A., Hod Y., Hershko A. A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochem Biophy Res Commun. 1978;81:1100–1105. doi: 10.1016/0006-291X(78)91249-4. [PubMed] [Cross Ref]
[8] Jiang J., Ballinger C.A., Wu Y., Dai Q., Cyr D.M., Hohfeld J., et al. CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubquitylation. J Biol Chem. 2001;276:42938–42944. doi: 10.1074/jbc.M101968200. [PubMed] [Cross Ref]
[9] Hoglinger G.U., Carrard G., Michel P.P., Medja F., Hirsch E.C. Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson’s disease. J Neurochem. 2003;86:1297–1307. doi: 10.1046/j.1471-4159.2003.01952.x. [PubMed] [Cross Ref]
[10] Neuwald A.F., Aravind L., Spouge J.L., Koonin E.V. AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 1999;9:27–43. [PubMed]
[11] Troulinaki K., Tavernarakis N. Neurodegenerative conditions associated with ageing: a molecular interplay. Mech Ageing Dev. 2005;126:23–33. doi: 10.1016/j.mad.2004.09.033. [PubMed] [Cross Ref]
[12] Mclean P.J., Kawamata H., Shariff S., Hewett J., Sharma N., Ueda K., et al. TorsinA and heat shock proteins act as molecular chaperones: suppression of alpha-synuclein aggregation. J Neuronchem. 2002;83:846–854. doi: 10.1046/j.1471-4159.2002.01190.x. [PubMed] [Cross Ref]
[13] Caldwell G.A., Cao S., Sexton E.G., Gelwix C.C., Bevel J.P., Caldwell K.A. Suppression of polyglutamine-induced protein aggregation in Caenorhabditis elegans by torsin proteins. Hum Mol Genet. 2003;12:307–319. doi: 10.1093/hmg/ddg027. [PubMed] [Cross Ref]
[14] Bates T.E., Heales S.J., Davies S.E., Boakye P., Clark J.B. Effects of 1-methyl-4-phenylpyridinium on isolated rat brain mitochondria: evidence for a primary involvement of energy depletion. J Neurochem. 1994;63:640–648. doi: 10.1046/j.1471-4159.1994.63020640.x. [PubMed] [Cross Ref]
[15] Lee H.J., Shin S.Y., Choi C., Lee Y.H., Lee S.J. Formation and removal of alpha-synuclein aggregates in cells exposed to mitochondrial inhibitors. J Biol Chem. 2001;277:5411–5417. doi: 10.1074/jbc.M105326200. [PubMed] [Cross Ref]
[16] Vila M., Vukosavic S., Jackson-Lewis V., Neystat M., Jakowec M., Przedborski S. Alpha-synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the parkinsonian toxin MPTP. J Neurochem. 2000;74:721–729. doi: 10.1046/j.1471-4159.2000.740721.x. [PubMed] [Cross Ref]
[17] Kalivendi S.V., Cunningham S., Kotamraju S., Joseph J., Hillard C.J., Kalyanaraman B. Alpha-synuclein up-regulation and aggregation during MPP+ induced apoptosis in neuroblastoma cells: Intermediacy of transferrin receptor iron and hydrogen peroxide. J Biol Chem. 2004;279:15240–15247. doi: 10.1074/jbc.M312497200. [PubMed] [Cross Ref]
[18] Xu J., Kao S.Y., Lee F.J., Song W., Jin L.W., Yankner B.A. Dopamine-dependent neurotoxicity of alpha-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat Med. 2002;8:600–606. doi: 10.1038/nm0602-600. [PubMed] [Cross Ref]
[19] Tabrizi S.J., Orth M., Wilkinson J.M., Taanman J.W., Warner T.T., Cooper J.M., et al. Expression of mutant alpha-synuclein causes increased susceptibility to dopamine toxicity. Hum Mol Genet. 2000;9:2683–2689. doi: 10.1093/hmg/9.18.2683. [PubMed] [Cross Ref]
[20] Ostrerova-Golts N., Petrucelli L., Hardy J., Lee J.M., Farer M., Wolozin B. The A53T alpha-synuclein mutation increases iron-dependent aggregation and toxicity. J Neurosci. 2000;20:6048–6054. [PubMed]
[21] Lakso M., Vartiainen S., Moilanen A.M., Sirviö J., Thomas J.H., Nass R., et al. Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alphasynuclein. J Neurochem. 2003;86:165–172. doi: 10.1046/j.1471-4159.2003.01809.x. [PubMed] [Cross Ref]
[22] Cohen E., Bieschke J., Perciavalle R.M., Kelly J.W., Dillin A. Opposing activities protect against age-onset proteotoxicity. Science. 2006;313:1604–1610. doi: 10.1126/science.1124646. [PubMed] [Cross Ref]
[23] Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77:71–94. [PubMed]
[24] Nass R., Hall D.H., Miller D.M., Blakely R.D. Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc Natl Acad Sci USA. 2002;99:3264–3269. doi: 10.1073/pnas.042497999. [PubMed] [Cross Ref]
[25] Schmidt E., Seifert M., Baumeister R. Caenorhabditis elegans as a model system for Parkinson’s disease. Neurodegener Dis. 2007;4:199–217. doi: 10.1159/000101845. [PubMed] [Cross Ref]
[26] Boehm M., Slack F. A developmental timing microRNA and its Target regulate life span in C. elegans. Science. 2005;310:1954–1957. doi: 10.1126/science.1115596. [PubMed] [Cross Ref]
[27] Arrasate M., Mitra S.M., Schweitzer E.S., Segal M.R., Finkbeiner S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature. 2004;431:805–810. doi: 10.1038/nature02998. [PubMed] [Cross Ref]
[28] Clarke C., Moore A.P. Parkinson’s disease. Clin Evid. 2004;11:1736–1754. [PubMed]

Articles from Neuroscience Bulletin are provided here courtesy of Springer