Search tips
Search criteria 


Logo of neuroscibullNeuroscience Bulletin
Neurosci Bull. 2007 July; 23(4): 198–202.
Published online 2008 February 1. doi:  10.1007/s12264-007-0029-7
PMCID: PMC5550581

Language: English | Chinese

Intergeneration CAG expansion in a Wuhan juvenile-onset Huntington disease family

武汉地区 CAG 扩增突变致青少年发病的亨廷顿舞蹈病的家系分析



To make early diagnosis of IT15 gene mutation in a Wuhan juvenile-onset Huntington disease (HD) family, for providing them with genetic counseling, and making preparation for the further research on pathogenesis and experimental therapy of HD.


According to the principle of informed consent, we extracted genomic DNA from peripheral blood samples and carried genetic diagnosis of pathogenic exon 1 of IT15 gene by modified touchdown PCR and DNA sequencing methods.


Eight of twenty-five family members carried abnormal allele: III10, III12, III14, IV3, and V2 carried (CAG)48, IV11 and IV12 carried (CAG)67, and IV14 carried (CAG)63, in contrast with the 8–25 CAG trinucleotides in the members of control group. IV14 carried 15 more CAG trinucleotides than her father III10.


The results definitely confirm the diagnosis of HD and indicate the CAG trinucleotide repeat expansion of IT15 gene in this HD family. In addition, CAG expansion results in juvenile-onset and anticipation (characterized by earlier age of onset and increasing severity) of the patient IV12.

Keywords: Huntington disease, early diagnosis, trinucleotide repeat expansion, genetic anticipation



对青少年发病的亨廷顿舞蹈病(Huntington disease)家系进行致病 IT15 基因早期诊断分析, 为家系成员提供遗传咨询, 并为后续的HD发病机制及实验治疗研究提供依据。


按照知情同意原则抽取家系成员外周血, 提取基因组DNA, 采用改良的降落 PCR 方法扩增 IT15 基因致病区域, DNA 测序检测异常等位基因 (CAG)n 三核苷酸重复次数。


在该家系三代 25 名成员中, 共发现 8 名致病 IT15 基因携带者, 其中, III10、 III12、 III14、 IV3 和 V2 CAG 三核苷酸的拷贝数均为 48, IV11 和 IV12 均为 (CAG)67, IV14 为 (CAG)63, 而对照组 35 名正常人的CAG三核苷酸的拷贝数为 8–25, 两者之间没有重叠。


家系中第四代致病基因携带者 IV14 与第三代患者 III10 比较, CAG 三核苷酸重复次数增加 15 次, 即本家系 IT15 基因在传递过程中发生了扩增突变。同时扩增突变导致该家系出现青少年发病及遗传早现现象。

关键词: 亨廷顿舞蹈病, 早期诊断, 扩增突变, 遗传早现


[1] Nance M.A., Myers R.H. Juvenile onset Huntington’s disease—clinical and research perspectives. Ment Retard Dev Disabil Res Rev. 2001;7:153–157. doi: 10.1002/mrdd.1022. [PubMed] [Cross Ref]
[2] The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72:971–983. doi: 10.1016/0092-8674(93)90585-E. [PubMed] [Cross Ref]
[3] MacDonald M.E., Barnes G., Srinidhi J., Duyao M.P., Ambrose C.M., Myers R.H., et al. Gametic but not somatic instability of CAG repeat length in Huntington’s disease. J Med Genet. 1993;30:982–986. doi: 10.1136/jmg.30.12.982. [PMC free article] [PubMed] [Cross Ref]
[4] Tang Y.P., Wang Y., Yang P., Liu Y., Wang B., Podolsky R., et al. Intergeneration CAG expansion and contraction in a Chinese HD family. Am J Med Genet B Neuropsychiatr Genet. 2006;141:242–244. [PubMed]
[5] Wang Y., Gu Z.L., Qin Z.H. Huntingtin and Huntington’s Disease. Chin J Clin Neurosci. 2006;14:106–109.
[6] Snell R.G., MacMillan J.C., Cheadle J.P., Fenton I., Lazarou L.P., Davies P., et al. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease. Nat Genet. 1993;4:393–397. doi: 10.1038/ng0893-393. [PubMed] [Cross Ref]
[7] Hunter J.M., Crouse A.B., Lesort M., Johnson G.V., Detloff P.J. Verification of somatic CAG repeat expansion by pre-PCR fractionation. J Neurosci Methods. 2005;144:11–17. doi: 10.1016/j.jneumeth.2004.10.006. [PubMed] [Cross Ref]
[8] Zuhlke C., Riess O., Bockel B., Lange H., Thies U. Mitotic stability and meiotic variability of the (CAG)n repeat in the Huntington disease gene. Hum Mol Genet. 1993;2:2063–2067. doi: 10.1093/hmg/2.12.2063. [PubMed] [Cross Ref]
[9] Trottier Y., Biancalana V., Mandel J.L. Instability of CAG repeats in Huntington’s disease: relation to parental transmission and age of onset. J Med Genet. 1994;31:377–382. [PMC free article] [PubMed]
[10] Myers R.H., Goldman D., Bird E.D., Sax D.S., Merril C.R., Schoenfeld M., et al. Maternal transmission in Huntington’s disease. Lancet. 1983;1:208–210. doi: 10.1016/S0140-6736(83)92587-4. [PubMed] [Cross Ref]
[11] Ridley R.M., Frith C.D., Farrer L.A., Conneally P.M. Patterns of inheritance of the symptoms of Huntington’s disease suggestive of an effect of genomic imprinting. J Med Genet. 1991;28:224–231. [PMC free article] [PubMed]
[12] Ridley R.M., Frith C.D., Crow T.J., Conneally P.M. Anticipation in Huntington’s disease is inherited through the male line but may originate in the female. J Med Genet. 1988;25:589–595. [PMC free article] [PubMed]
[13] Ranen N.G., Stine O.C., Abbott M.H., Sherr M., Codori A.M., et al. Anticipation and instability of IT-15 (CAG) n repeats in parent-offspring pairs with Huntington disease. Am J Hum Genet. 1995;57:593–602. [PubMed]
[14] Folstein S.E., Chase G.A., Wahl W.E., McDonnell A.M., Folstein M.F. Huntington disease in Maryland: clinical aspects of racial variation. Am J Hum Genet. 1987;41:168–179. [PubMed]
[15] Adams P., Falek A., Arnold J. Huntington disease in Georgia: age at onset. Am J Hum Genet. 1988;43:695–704. [PubMed]
[16] Georgiou N., Bradshaw J.L., Chiu E., Tudor A., O’Gorman L., Phillips J.G. Differential clinical and motor control function in a pair of monozygotic twins with Huntington’s disease. Mov Disord. 1999;14:320–325. doi: 10.1002/1531-8257(199903)14:2<320::AID-MDS1018>3.0.CO;2-Z. [PubMed] [Cross Ref]
[17] Rosenblatt A., Brinkman R.R., Liang K.Y., Almqvist E.W., Margolis R.L., Huang C.Y., et al. Familial influence on age of onset among siblings with Huntington disease. Am J Med Genet. 2001;105:399–403. doi: 10.1002/ajmg.1400. [PubMed] [Cross Ref]
[18] Panov A.V., Gutekunst C.A., Leavitt B.R., Hayden M.R., Burke J.R., Strittmatter W.J., et al. Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat Neurosci. 2002;5:731–736. [PubMed]
[19] Wang L.H., Lin F. Treatment of Huntington’s disease. Neurosci Bull. 2005;21:230–235.

Articles from Neuroscience Bulletin are provided here courtesy of Springer