Search tips
Search criteria 


Logo of neuroscibullNeuroscience Bulletin
Neurosci Bull. 2007 January; 23(1): 46–52.
Published online 2007 December 15. doi:  10.1007/s12264-007-0007-0
PMCID: PMC5550568

Language: English | Chinese

Changes of cell proliferation and differentiation in the developing brain of mouse




To investigate the cell proliferation and differentiation in the developing brain of mouse.


C57/BL6 mice were divided into 3 groups at random. Bromodeoxyuridine (BrdU) was injected into the brains in different development periods once a day for 7 d. The brains were retrieved 4 weeks after the last BrdU injection. Immunohistochemical and immunofluorescent studies were carried out for detecting cell proliferation (BrdU) and cell differentiation (NeuN, APC, Iba1, and S100β), respectively.


The number of BrdU labeled cells decreased significantly with the development of the brain. Cell proliferation was prominent in the cortex and striatum. A small portion of BrdU and NeuN double labeled cells could be detected in the cortex at the early stage of development, and in the striatum and CA of the hippocampus in all groups. The majority of BrdU labeled cells were neuroglia, and the number of neuroglia cells decreased dramatically with brain maturation. Neurogenesis is the major cytogenesis in the dentate gyrus.


These results demonstrated that cell proliferation, differentiation and survival were age and brain region related.

Keywords: brain development, neurogenesis, gliogenesis





C57/BL6 小鼠分别于出生后10 天 (P10)、 17 天 (P17) 、 24 天 (P24) 不同脑发育期, 每天注射新生细胞标记物5-溴脱氧尿嘧啶核苷(BrdU), 连续注射7 天, 并分别于末次注射后四周将小鼠处死、 取脑。 采用免疫组化染色及免疫荧光染色分别检测细胞增生 (BrdU) 与细胞分化 (NeuN、 APC、 Iba1 和S100 β)。


细胞增生随着脑组织发育快速下降, 并以皮层和纹状体区细胞增生最显著。 皮层在发育早期以及纹状体和海马 CA区在发育各期检测到极少数为新生神经元细胞, 多数分化为胶质细胞; 海马齿状回以神经元细胞再生为主; 胶质细胞的再生随脑组织发育的成熟而逐渐减少。


研究证实小鼠脑组织细胞的增生、 分化以及存活与发育时期、 脑组织区域相关。

关键词: 大脑发育, 神经元细胞再生, 胶质细胞再生


[1] Barnea A., Nottebohm F. Seasonal recruitment of hippocampal neurons in adult free-ranging black-capped chickadees. Proc Natl Acad Sci USA. 1994;91:11217–11221. doi: 10.1073/pnas.91.23.11217. [PubMed] [Cross Ref]
[2] Gould E., Beylin A., Tanapat P., Reeves A., Shors T.J. Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci. 1999;2:260–265. doi: 10.1038/6365. [PubMed] [Cross Ref]
[3] Kempermann G., Kuhn H.G., Gage F.H. More hippocampal neurons in adult mice living in an enriched environment. Nature. 1997;386:493–495. doi: 10.1038/386493a0. [PubMed] [Cross Ref]
[4] van Praag H., van Praag H., Christie B.R., Sejnowski T.J., Gage F.H. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci USA. 1999;96:13427–13431. doi: 10.1073/pnas.96.23.13427. [PubMed] [Cross Ref]
[5] van Praag H., Kempermann G., Gage F.H. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci. 1999;2:266–270. doi: 10.1038/6368. [PubMed] [Cross Ref]
[6] Gould E., Tanapat P., McEwen B.S., Flugge G., Fuchs E. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci USA. 1998;95:3168–3171. doi: 10.1073/pnas.95.6.3168. [PubMed] [Cross Ref]
[7] Eriksson P.S., Perfilieva E., Bjork-Eriksson T., Alborn A.M., Nordborg C., Peterson D.A., et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4:1313–1317. doi: 10.1038/3305. [PubMed] [Cross Ref]
[8] Kuhn H.G., Dickinson-Anson H., Gage F.H. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci. 1996;16:2027–2033. [PubMed]
[9] Sun D., Colello R.J., Daugherty W.P., Kwon T.H., McGinn M.J., Harvey H.B., et al. Cell proliferation and neuronal differentiation in the dentate gyrus in juvenile and adult rats following traumatic brain injury. J Neurotrauma. 2005;22:95–105. doi: 10.1089/neu.2005.22.95. [PubMed] [Cross Ref]
[10] Enwere E., Shingo T., Gregg C., Fujikawa H., Ohta S., Weiss S. Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J Neurosci. 2004;24:8354–8365. doi: 10.1523/JNEUROSCI.2751-04.2004. [PubMed] [Cross Ref]
[11] Komitova M., Perfilieva E., Mattsson B., Eriksson P.S., Johansson B.B. Enriched environment after focal cortical ischemia enhances the generation of astroglia and NG2 positive polydendrocytes in adult rat neocortex. Exp Neurol. 2006;199:113–121. doi: 10.1016/j.expneurol.2005.12.007. [PubMed] [Cross Ref]
[12] Larsson E., Lindvall O., Kokaia Z. Stereological assessment of vulnerability of immunocytochemically identified striatal and hippocampal neurons after global cerebral ischemia in rats. Brain Res. 2001;913:117–132. doi: 10.1016/S0006-8993(01)02762-7. [PubMed] [Cross Ref]
[13] Yoshimura S., Takagi Y., Harada J., Teramoto T., Thomas S.S., Waeber C., et al. FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc Natl Acad Sci USA. 2001;98:5874–5879. doi: 10.1073/pnas.101034998. [PubMed] [Cross Ref]
[14] Matsuoka N., Nozaki K., Takagi Y., Nishimura M., Hayashi J., Miyatake S., et al. Adenovirus-mediated gene transfer of fibroblast growth factor-2 increases BrdU-positive cells after forebrain ischemia in gerbils. Stroke. 2003;34:1519–1525. doi: 10.1161/01.STR.0000070840.56414.3B. [PubMed] [Cross Ref]
[15] Jin K., Mao X.O., Sun Y., Xie L., Jin L., Nishi E., et al. Heparinbinding epidermal growth factor-like growth factor: hypoxiainducible expression in vitro and stimulation of neurogenesis in vitro and in vivo. J Neurosci. 2002;22:5365–5373. [PubMed]
[16] Craig C.G., Tropepe V., Morshead C.M., Reynolds B.A., Weiss S., van der Kooy D. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J Neurosci. 1996;16:2649–2658. [PubMed]
[17] Pencea V., Bingaman K.D., Wiegand S.J., Luskin M.B. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci. 2001;21:6706–6717. [PubMed]
[18] Tsai P.T., Ohab J.J., Kertesz N., Groszer M., Matter C., Gao J., et al. A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J Neurosci. 2006;26:1269–1274. doi: 10.1523/JNEUROSCI.4480-05.2006. [PubMed] [Cross Ref]
[19] Caday C.G., Klagsbrun M., Fanning P.J., Mirzabegian A., Finklestein S.P. Fibroblast growth factor (FGF) levels in the developing rat brain. Brain Res Dev Brain Res. 1990;52:241–246. doi: 10.1016/0165-3806(90)90240-Y. [PubMed] [Cross Ref]
[20] Plata-Salaman C.R. Epidermal growth factor and the nervous system. Peptides. 1991;12:653–663. doi: 10.1016/0196-9781(91)90115-6. [PubMed] [Cross Ref]
[21] Gould E., Reeves A.J., Graziano M.S., Gross C.G. Neurogenesis in the neocortex of adult primates. Science. 1999;286:548–552. doi: 10.1126/science.286.5439.548. [PubMed] [Cross Ref]
[22] Koketsu D., Mikami A., Miyamoto Y., Hisatsune T. Nonrenewal of neurons in the cerebral neocortex of adult macaque monkeys. J Neurosci. 2003;23:937–942. [PubMed]
[23] Hayashi T., Iwai M., Ikeda T., Jin G., Deguchi K., Nagotani S., et al. Neural precursor cells division and migration in neonatal rat brain after ischemic/hypoxic injury. Brain Res. 2005;1038:41–49. doi: 10.1016/j.brainres.2004.12.048. [PubMed] [Cross Ref]
[24] Jin K., Sun Y., Xie L., Batteur S., Mao X.O., Smelick C., et al. Neurogenesis and aging: FGF-2 and HB-EGF restore neurogenesis in hippocampus and subventricular zone of aged mice. Aging Cell. 2003;2:175–183. doi: 10.1046/j.1474-9728.2003.00046.x. [PubMed] [Cross Ref]
[25] Aarum J., Sandberg K., Haeberlein S.L., Persson M.A. Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci USA. 2003;100:15983–15988. doi: 10.1073/pnas.2237050100. [PubMed] [Cross Ref]
[26] Zaidi A.U., Bessert D.A., Ong J.E., Xu H., Barks J.D., Silverstein F.S., et al. New oligodendrocytes are generated after neonatal hypoxic-ischemic brain injury in rodents. Glia. 2004;46:380–390. doi: 10.1002/glia.20013. [PubMed] [Cross Ref]
[27] Fields R.D., Stevens-Graham B. New insights into neuron-glia communication. Science. 2002;298:556–562. doi: 10.1126/science.298.5593.556. [PMC free article] [PubMed] [Cross Ref]

Articles from Neuroscience Bulletin are provided here courtesy of Springer