PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of bmcmudisBioMed Centralsearchsubmit a manuscriptregisterthis articleBMC Musculoskeletal Disorders
 
BMC Musculoskelet Disord. 2017; 18: 336.
Published online 2017 August 2. doi:  10.1186/s12891-017-1695-x
PMCID: PMC5541645

Comparison of low density and high density pedicle screw instrumentation in Lenke 1 adolescent idiopathic scoliosis

Abstract

Background

The correlation between implant density and deformity correction has not yet led to a precise conclusion in adolescent idiopathic scoliosis (AIS). The aim of this study was to evaluate the effects of low density (LD) and high density (HD) pedicle screw instrumentation in terms of the clinical, radiological and Scoliosis Research Society (SRS)-22 outcomes in Lenke 1 AIS.

Methods

We retrospectively reviewed 62 consecutive Lenke 1 AIS patients who underwent posterior spinal arthrodesis using all-pedicle screw instrumentation with a minimum follow-up of 24 months. The implant density was defined as the number of screws per spinal level fused. Patients were then divided into two groups according to the average implant density for the entire study. The LD group (n = 28) had fewer than 1.61 screws per level, while the HD group (n = 34) had more than 1.61 screws per level. The radiographs were analysed preoperatively, postoperatively and at final follow-up. The perioperative and SRS-22 outcomes were also assessed. Independent sample t tests were used between the two groups.

Results

Comparisons between the two groups showed no significant differences in the correction of the main thoracic curve and thoracic kyphosis, blood transfusion, hospital stay, and SRS-22 scores. Compared with the HD group, there was a decreased operating time (278.4 vs. 331.0 min, p = 0.004) and decreased blood loss (823.6 vs. 1010.9 ml, p = 0.048), pedicle screws needed (15.1 vs. 19.6, p < 0.001), and implant costs ($10,191.0 vs. $13,577.3, p = 0.003) in the LD group.

Conclusions

Both low density and high density pedicle screw instrumentation achieved satisfactory deformity correction in Lenke 1 AIS patients. However, the operating time and blood loss were reduced, and the implant costs were decreased with the use of low screw density constructs.

Keywords: Adolescent idiopathic scoliosis, Implant density, Low density, High density

Background

Adolescent idiopathic scoliosis (AIS) is the most common type of spinal deformity, afflicting the physical and mental health of adolescents; its incidence is 1–3% among 10–16-year-olds [1, 2]. The morbidity of Lenke 1 AIS, which is regarded as the most prevalent type and is defined as a structural main thoracic curve with non-structural proximal thoracic and thoracolumbar/lumbar curves, is 40% [3].

Pedicle screw construct systems have been increasingly popular for treating patients with spinal deformities, [47] and a significant correlation between the implant density and major curve correction has been reported [810]. However, substantial research has shown that low density (LD) screw constructs can provide similar radiographic and clinical outcomes [1115]. Therefore, whether LD or high density (HD) screw constructs are better for AIS patients remains a subject of debate.

Previous studies have demonstrated that thoracic pedicle screw constructs could further improve the correction of spinal deformities compared with traditional hook and hybrid constructs [10, 1619]. However, the use of fewer pedicle screws indicated a reduction of hospital expenses and risk of neurologic complications. If neurological complications or spinal cord injuries occur, the consequences could be disastrous.

The purpose of this study is to compare LD and HD pedicle screw patterns by radiographic, perioperative and Scoliosis Research Society (SRS)-22 outcomes in Lenke 1 AIS patients. We hypothesize that there would be no significant differences in deformity correction between LD and HD instrumentation, the treatment cost of LD could be reduced, and there would be decreased risk as fewer pedicles are implanted in the LD instrumentation.

Methods

This retrospective study was approved by the Institutional Review Board of the participating hospital system. The medical records and radiographic outcomes of AIS patients were retrieved from a single institution from February 2009 to June 2013. All data were collected under a unified standard, and a standardized radiographic measurement was performed by a trained spine surgeon.

The inclusion criteria were as follows: (1) Lenke 1 AIS diagnosis; (2) main thoracic (MT) curve of more than 40° and less than 80°; (3) posterior spinal fusion with all pedicle screw constructs; (4) absence of a thoracoplasty; and (5) at least 2 years’ follow-up in radiographic and SRS −22 outcomes. The exclusion criteria were as follows: (1) previous spine surgery; (2) hooks or wires were used; and (3) pedicle subtraction osteotomy, vertebral column resection, or vertebral column decancellation techniques. Ultimately, sixty-two patients (39 females and 23 males) were included in this study.

During the intraoperative period, all pedicle screws were placed by a free-hand technique and confirmed with a C-arm before a senior surgeon placed a rod; all procedures were performed at a single institution. The implant density was defined as the number of fixation screws divided by the number of available anchor sites within the main curve [20]. Patients were divided into two groups according to the average screw density: the HD group was defined by an implant density above the mean number of screws per level for the entire cohort (>1.61 screws/level) (Fig. (Fig.1),1), while the LD group was defined by <1.61 screws/level (Fig. (Fig.2).2). The preoperative, postoperative and latest follow-up (average, 3.2 years; range, 2–5 years) radiographic outcomes were analysed with coronal and sagittal parameters. The perioperative outcomes and SRS-22 scores were also compared between the two groups.

Fig. 1
A high-density pedicle screw construct was used. Preoperative standing anteroposterior (a) and lateral radiographs (b). Final follow-up standing anteroposterior (c) and lateral radiographs (d)
Fig. 2
A low-density pedicle screw construct was used. Preoperative standing anteroposterior (a) and lateral radiographs (b). Final follow-up standing anteroposterior (c) and lateral radiographs (d)

Surgical technique

After successful anaesthesia, patients were placed in the prone position. Using a midline incision, anatomical exposure of the spine was performed using a subperiosteal dissection of the paraspinal muscles. After confirmation of the location of the bilateral vertebral pedicles, screws were placed in an anatomic position. The two groups differed in the number of pedicle screws. The correction manoeuvres were the same for both groups. On the concave side, distraction was performed after single rod rotation. On the convex side, compression was performed after inserting the implant rod. The two-step locking caps were tightened. Allograft bone material and the disposed laminae and transverse processes were used for fusion.

Radiographic, Perioperative and SRS-22 outcome measurements

Radiographic outcomes included assessments of the patients’ Risser grade [21], vertebral rotation index, convex-Bending Cobb angle, curve flexibility, lumbar spine modifier (A/B/C), thoracic sagittal profile, MT Cobb angle, thoracic kyphosis (T5-T12), lumbar lordosis (T1-L5), proximal junctional kyphosis, apical vertebral translation, and thoracic trunk shift in the preoperative, 2-week postoperative, and final follow-up periods. In addition, the change in the MT Cobb angle, correction rate of the MT curve, and loss of the MT Cobb angle were collected during the 2-week postoperative course and at final follow-up.

Perioperative records were reviewed to determine the operating time, blood loss, blood transfusion, hospital stay, implant costs, number of fused levels, number of screws, cross-link number, and screw density. We also assessed the SRS-22 scores preoperatively and at final follow-up.

Statistical analysis

Data are presented as the mean ± standard deviation, and statistical analysis was performed using IBM SPSS Statistics v.21.0 (IBM Corp., Armonk, N.Y., USA). If collected data were distributed as the normality and equality of variances, independent sample t tests were used to compare the two groups’ baseline characteristics, radiographic and perioperative outcomes, and SRSS-22 scores. If not, the Kruskal-Wallis rank sum test and the Spearman rank correlation test were used. Statistical testing was two-sided, and a p-value <0.05 was considered statistically significant.

Results

Sixty-two consecutive Lenke 1 AIS patients were ultimately included in this study (LD: n = 28; HD: n = 34). In the LD group, there were 17 females and 11 males, and the age at surgery was 14.2 ± 2.4 years. In the HD group, there were 22 females and 12 males, and the age at surgery was 14.8 ± 1.9 years. Based on a comparison of these two groups, there were no significant differences in age, Risser sign, MT Cobb angle, convex-Bending Cobb angle, flexible index, vertebral rotation index, apical vertebra translation, thoracic kyphosis, lumbar lordosis, and proximal junctional kyphosis. The baseline characteristics of the two groups are displayed in Table Table11 .

Table 1
The baseline characteristics of the two groups

Table Table22 shows the perioperative measures of the two groups. Compared with the HD group, decreased operation time (278.4 vs. 331.0 min, p = 0.004), blood loss (823.6 vs. 1010.9 ml, p = 0.048), pedicle screws (15.1 vs. 19.6, p<0.001), and implant costs ($10,191.0 vs. $13,577.3, p = 0.003) were found in the LD group. However, no significant differences were detected in the hospital stays (18.7 vs. 19.9, p = 0.16) and cross-link numbers (0.6 vs. 0.3, p = 0.06).

Table 2
The perioperative outcomes of the two groups

Table Table33 presents the two-week postoperative and final follow-up radiographic outcomes in terms of the coronal and sagittal correction between the two groups. Compared with the HD group, an increased MT Cobb angle was found in the LD group at the two-week postoperative assessment (18.4 vs. 14.3 degrees, p = 0.046). No significant differences were found in the MT Cobb angle, change of the MT Cobb angle, apical vertebra translation, thoracic trunk shift, thoracic kyphosis, lumbar lordosis, and proximal junctional kyphosis. There was a similar correction rate in the MT curve based on comparison of the two groups at two weeks postoperatively (67.9% vs. 74.3%, p = 0.053) and final follow-up (65.0% vs. 69.1%, p = 0.275).

Table 3
The radiographic outcomes of the two groups

The Spearman’s correlation coefficient was calculated to assess the relationship between the implant density and correction rate of the MT curve. The bivariate analysis showed no significant correlation between the implant density and correction rate of the MT curve at two weeks postoperatively (R2 = 0.039, p = 0.087) (Fig. Fig.33 ) and at final follow-up (R2 = 0.051, p = 0.136) (Fig. Fig.44 ).

Fig. 3
Correlation analysis between the implant density and correction rate of the MT curve for 2 weeks following the operation
Fig. 4
Correlation analysis between the implant density and correction rate of the MT curve for the final follow-up

Table Table44 describes the assessment of the quality of life of the two groups using the SRS-22 questionnaire preoperatively and at final follow-up. There were no significant differences between the two groups in terms of function/activity, pain, self-image, mental health and satisfaction.

Table 4
The SRS-22 questionnaire of the two groups

Discussion

Pedicle screw instrumentation has become a common treatment for AIS patients [22]. Previous studies have demonstrated that pedicle screws could achieve safe and effective correction of the deformity compared with hybrid or hook constructs.

In this study, we compared the radiographic, perioperative and SRS-22 outcomes in Lenke 1 AIS patients using LD versus HD pedicle screw instrumentation. We found that there were no significant differences between the LD and HD groups in terms of the curve correction and SRS-22 outcomes. However, pedicle screw constructs using a low screw density not only achieved satisfied deformity correction in Lenke 1 AIS patients but also decreased the operative time, blood loss, and implant costs. Previous studies have investigated the relationship between the implant density and correction of AIS patients. Mac-Thiong et al. reported that adding fixation screws (an implant density of ≥70% in the main curve) was unlikely to result in significantly greater coronal correction of the main curve in posterior AIS surgery [20]. Li et al. found that a limited pedicle screw construct was equal to a consecutive screw construct in a randomized study, and there were no significant differences in the correction of the coronal and sagittal planes in Lenke 1 curves [23]. Kemppainen et al. reviewed 52 AIS patients with more than 2 years of follow-up and found that fewer screws not only achieved excellent curve correction, stability, and balance but also reduced the operative time and decreased the cost and risk [24]. Hosseini et al. published a study that used a series of 21 female patients who were treated with a novel technique and a lower implant density construct, achieving and maintaining a similar AIS correction as with current posterior fusion techniques [25]. In addition, Wang et al. used a three screw density pattern (low, preferred, and high screw density) in scoliosis patients and reported that there were no statistically significant results in terms of the curve correction or bone-screw force levels via biomechanical analysis [26]. In this study, our outcomes were supported by previous studies, and we found that LD and HD instrumentation were equally effective for major curve correction (p = 0.275) at the final follow-up.

In our study, decreased MT Cobb angle was found in the HD group at the two-week postoperative assessment (p = 0.046), which indicated that more pedicle screws achieved better deformity correction in the short-term postoperative period. It was possible that more pedicle screws could provide a stronger pull-out force during the single rod rotation procedure. However, a similar major Cobb angle was achieved with the LD and HD constructs by the final follow-up (p = 0.55). This could be caused by spontaneous correction of the major curve to allow for a well-balanced postoperative spinal column. In addition, sagittal plane alignment was obtained and maintained within normal parameters in the two groups, and no significant differences were found in thoracic kyphosis (p = 0.658), lumbar lordosis (p = 0.865), or proximal junctional kyphosis (p = 0.086) by the final follow-up. Liu et al. evaluated 77 Lenke type 1 AIS patients who underwent single-stage posterior correction and instrumented spinal fusion with pedicle screw fixation; they found that a high screw density on the concave side could provide better outcomes with respect to sagittal TK restoration [27]. Sudo et al. analysed 64 Lenke 1 AIS patients who were treated with posterior correction and fusion surgery, demonstrating that changes in thoracic kyphosis were significantly correlated with the screw density at the concave side (r = 0.351, p = 0.036), which was not the case on the convex side (r = 0.144, p = 0.40) [28]. Our findings contrasted with reports that increased sagittal correction was correlated with an increased screw density; we found that there were no significant differences in the coronal and sagittal Cobb correction.

As with the precognitive advantages found in LD instrumentation compared with HD instrumentation, a lower number of screws could significantly decrease the operating time (278.4 vs. 331.0 min, p = 0.004), blood loss (832.6 vs. 1010.9 ml, p = 0.048), and implant costs ($10,191.0 vs. $13,577.3, p = 0.003). Our study demonstrated that the LD instrumentation decreased the surgery time and cost without sacrificing the correction rate of the spinal deformity in the treatment of Lenke 1 AIS. Most importantly, a low implant density could somewhat diminish complications. Behrbalk et al. observed 21 Scheuermann kyphosis patients and concluded that the low screw density technique reduced the implant-related cost by 32%; meanwhile, it achieved safe and effective outcomes on a par with the high screw density technique [29]. In addition, Larson et al. explored the national inpatient database in the United States and found that by changing the HD screw pattern to an LD pattern, the total cost of AIS surgery would effectively be reduced by $11 million to $20 million [30]. In our study, no significant differences were found in the SRS-22 scores between the two groups at the time of the final follow-up. This conclusion could be helpful for both spinal surgeons and Lenke 1 AIS patients.

Neural complications in the surgical treatment of AIS could not be ignored. One patient in the HD group developed neurologic symptoms in the postoperative period, with a CT scan displaying problems with the T9 vertebral pedicle screw placement; thus, we removed the left internal fixation of T9. Diab et al. reviewed 1301 consecutive surgical cases of AIS and reported that the overall neurological complication rate was 0.69% [31]. A systematic review analysed 13,536 pedicle screws placed in 1353 paediatric patients, and the overall placement accuracy rate was 94.9% [32]. When adding more screws to the construct, the occurrence of neurological complications increased.

Some limitations must be addressed. First, because of the retrospective nature of this study, patients were not randomized to different implant densities according to the surgical procedure. The range of implant densities in the study can be attributed to the evolution of the surgical technique during the study. Second, the relatively small sample size was underpowered for identifying significant differences; a longer follow-up study will be performed to assess the maintenance of deformity correction.

Conclusions

This study compared low density with high density pedicle screw instrumentation in terms of the clinical, radiological and SRS-22 outcomes in Lenke 1 AIS. The two groups achieved satisfactory deformity correction. However, the operating time and blood loss were reduced and implant costs were decreased with the use of low screw density constructs.

Acknowledgements

All authors were directly involved in the entire process; therefore, all authors contributed equally to the research.

Availability of data and materials

This article is a clinical retrospective study, and the available data were collected from 62 Lenke 1 AIS patients and have been listed in the table. However, because we plan a further study of different screw densities for correction of Lenke 1 AIS in the future, we do not wish to share the raw data at present.

Consent to publication

Not applicable.

Funding

The authors declare that they have no funding sources.

Abbreviations

AIS
Adolescent idiopathic scoliosis
HD
High density
LD
Low density
MT
Major thoracic
SRS
Scoliosis Research Society

Authors’ contributions

Authors’ contributions

MKS and LX contributed to conception and design. ML, WGW, NL and LLW contributed to acquisition and analysis of data. MKS and LX drafted the manuscript. MKS and HHJ revised this study critically for important intellectual content. All authors gave their final approval of the version to be published. The corresponding author is LX.

Notes

Ethics approval and consent to participate

This retrospective study was approved by the Ethics Committee of the First Affiliated Hospital of Zhengzhou University. The consent has been received from the parents of the adolescence featured in this study.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Mingkui Shen, moc.361@2240kms.

Honghui Jiang, moc.liamg@99hhgnaij.

Ming Luo, moc.361@uzzgnimoul.

Wengang Wang, moc.361@2351gww.

Ning Li, moc.621@628711gninil.

Lulu Wang, moc.361@3230anul.

Lei Xia, moc.621@1ugielaix.

References

1. Riseborough EJ, Wynne-Davies R. A genetic survey of idiopathic scoliosis in Boston, Massachusetts. J Bone Joint Surg Am. 1973;55(5):974–982. doi: 10.2106/00004623-197355050-00006. [PubMed] [Cross Ref]
2. Weinstein SL, Dolan LA, Cheng JC, Danielsson A, Morcuende JA. Adolescent idiopathic scoliosis. Lancet (London, England) 2008;371(9623):1527–1537. doi: 10.1016/S0140-6736(08)60658-3. [PubMed] [Cross Ref]
3. Lenke LG, Betz RR, Harms J, Bridwell KH, Clements DH, Lowe TG, Blanke K. Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am. 2001;83-a(8):–1169, 1181. [PubMed]
4. Cheng I, Kim Y, Gupta MC, Bridwell KH, Hurford RK, Lee SS, Theerajunyaporn T, Lenke LG. Apical sublaminar wires versus pedicle screws--which provides better results for surgical correction of adolescent idiopathic scoliosis? Spine. 2005;30(18):2104–2112. doi: 10.1097/01.brs.0000179261.70845.b7. [PubMed] [Cross Ref]
5. Kuklo TR, Potter BK, Jr PD, Lenke LG. Monaxial versus multiaxial thoracic pedicle screws in the correction of adolescent idiopathic scoliosis. Spine. 2005;30(18):2113–2120. doi: 10.1097/01.brs.0000179260.73267.f4. [PubMed] [Cross Ref]
6. Lowenstein JE, Matsumoto H, Vitale MG, Weidenbaum M, Gomez JA, Lee FY, Hyman JE, Roye DP., Jr Coronal and sagittal plane correction in adolescent idiopathic scoliosis: a comparison between all pedicle screw versus hybrid thoracic hook lumbar screw constructs. Spine. 2007;32(4):448–452. doi: 10.1097/01.brs.0000255030.78293.fd. [PubMed] [Cross Ref]
7. Vora V, Crawford A, Babekhir N, Boachie-Adjei O, Lenke L, Peskin M, Charles G, Kim Y. A pedicle screw construct gives an enhanced posterior correction of adolescent idiopathic scoliosis when compared with other constructs: myth or reality. Spine. 2007;32(17):1869–1874. doi: 10.1097/BRS.0b013e318108b912. [PubMed] [Cross Ref]
8. Ketenci IE, Yanik HS, Demiroz S, Ulusoy A, Erdem S. Three-dimensional correction in patients with Lenke 1 adolescent idiopathic scoliosis: comparison of consecutive versus interval pedicle screw instrumentation. Spine (Phila Pa 1976) 2016;41(2):134–138. doi: 10.1097/BRS.0000000000001182. [PubMed] [Cross Ref]
9. Wang F, Xu XM, Lu Y, Wei XZ, Zhu XD, Li M. Comparative analysis of interval, skipped, and key-vertebral pedicle screw strategies for correction in patients with Lenke type 1 adolescent idiopathic scoliosis. Medicine (Baltimore) 2016;95(10):e3021. doi: 10.1097/MD.0000000000003021. [PMC free article] [PubMed] [Cross Ref]
10. Clements DH, Betz RR, Newton PO, Rohmiller M, Marks MC, Bastrom T. Correlation of scoliosis curve correction with the number and type of fixation anchors. Spine. 2009;34(20):2147–2150. doi: 10.1097/BRS.0b013e3181adb35d. [PubMed] [Cross Ref]
11. Gebhart S, Alton TB, Bompadre V, Krengel WF. Do anchor density or pedicle screw density correlate with short-term outcome measures in adolescent idiopathic scoliosis surgery? Spine. 2014;39(2):E104–E110. doi: 10.1097/BRS.0000000000000075. [PubMed] [Cross Ref]
12. Min K, Sdzuy C, Farshad M. Posterior correction of thoracic adolescent idiopathic scoliosis with pedicle screw instrumentation: results of 48 patients with minimal 10-year follow-up. European Spine J. 2013;22(2):345–354. doi: 10.1007/s00586-012-2533-3. [PMC free article] [PubMed] [Cross Ref]
13. Morr S, Carrer A. Alvarez-Garcia de Quesada LI, Rodriguez-Olaverri JC: skipped versus consecutive pedicle screw constructs for correction of Lenke 1 curves. European Spine J. 2015;24(7):1473–1480. doi: 10.1007/s00586-015-3769-5. [PubMed] [Cross Ref]
14. Quan GM, Gibson MJ. Correction of main thoracic adolescent idiopathic scoliosis using pedicle screw instrumentation: does higher implant density improve correction? Spine. 2010;35(5):562–567. doi: 10.1097/BRS.0b013e3181b4af34. [PubMed] [Cross Ref]
15. Tsirikos AI, Subramanian AS. Posterior spinal arthrodesis for adolescent idiopathic scoliosis using pedicle screw instrumentation: does a bilateral or unilateral screw technique affect surgical outcome? J Bone Joint Surg Br. 2012;94(12):1670–1677. doi: 10.1302/0301-620X.94B12.29403. [PubMed] [Cross Ref]
16. Di Silvestre M, Bakaloudis G, Lolli F, Vommaro F, Martikos K, Parisini P. Posterior fusion only for thoracic adolescent idiopathic scoliosis of more than 80 degrees: pedicle screws versus hybrid instrumentation. Eur Spine J. 2008;17(10):1336–1349. doi: 10.1007/s00586-008-0731-9. [PMC free article] [PubMed] [Cross Ref]
17. Fu G, Kawakami N, Goto M, Tsuji T, Ohara T, Imagama S. Comparison of vertebral rotation corrected by different techniques and anchors in surgical treatment of adolescent thoracic idiopathic scoliosis. J Spinal Disord Tech. 2009;22(3):182–189. doi: 10.1097/BSD.0b013e318177028b. [PubMed] [Cross Ref]
18. Kim YJ, Lenke LG, Cho SK, Bridwell KH, Sides B, Blanke K. Comparative analysis of pedicle screw versus hook instrumentation in posterior spinal fusion of adolescent idiopathic scoliosis. Spine. 2004;29(18):2040–2048. doi: 10.1097/01.brs.0000138268.12324.1a. [PubMed] [Cross Ref]
19. Suk SI, Kim WJ, Kim JH, Lee SM. Restoration of thoracic kyphosis in the hypokyphotic spine: a comparison between multiple-hook and segmental pedicle screw fixation in adolescent idiopathic scoliosis. J Spinal Disord. 1999;12(6):489–495. doi: 10.1097/00002517-199912000-00008. [PubMed] [Cross Ref]
20. Mac-Thiong JM, Ibrahim S, Parent S, Labelle H. Defining the number and type of fixation anchors for optimal main curve correction in posterior surgery for adolescent idiopathic scoliosis. The spine journal : official journal of the North American Spine Society; 2016. [Epub ahead of print] [PubMed]
21. Charles YP, Dimeglio A, Canavese F, Daures JP. Skeletal age assessment from the olecranon for idiopathic scoliosis at Risser grade 0. J Bone Joint Surg Am. 2007;89(12):2737–2744. doi: 10.2106/JBJS.G.00124. [PubMed] [Cross Ref]
22. Lee SM, Suk SI, Chung ER. Direct vertebral rotation: a new technique of three-dimensional deformity correction with segmental pedicle screw fixation in adolescent idiopathic scoliosis. Spine. 2004;29(3):343–349. doi: 10.1097/01.BRS.0000109991.88149.19. [PubMed] [Cross Ref]
23. Li M, Shen Y, Fang X, Ni J, Gu S, Zhu X, Zhang Z. Coronal and sagittal plane correction in patients with Lenke 1 adolescent idiopathic scoliosis: a comparison of consecutive versus interval pedicle screw placement. J Spinal Disord Tech. 2009;22(4):251–256. doi: 10.1097/BSD.0b013e3181884940. [PubMed] [Cross Ref]
24. Kemppainen JW, Morscher MA, Gothard MD, Adamczyk MJ, Ritzman TF. Evaluation of limited screw density pedicle screw constructs in posterior fusions for adolescent idiopathic scoliosis. Spine Deform. 2016;4(1):33–39. doi: 10.1016/j.jspd.2015.07.010. [PubMed] [Cross Ref]
25. Hosseini P, Nnadi C, Rehak L, Repko M, Grevitt M, Aydinli U, Carl A, Pawelek J, Crandall D, Akbarnia BA. Analysis of segmental mobility following a novel posterior apical short-segment correction for adolescent idiopathic scoliosis. Spine. 2016;41(20):E1223–e1229. doi: 10.1097/BRS.0000000000001607. [PubMed] [Cross Ref]
26. Wang X, Aubin CE, Robitaille I, Labelle H. Biomechanical comparison of alternative densities of pedicle screws for the treatment of adolescent idiopathic scoliosis. Eur Spine J. 2012;21(6):1082–1090. doi: 10.1007/s00586-011-2089-7. [PMC free article] [PubMed] [Cross Ref]
27. Liu H, Li Z, Li S, Zhang K, Yang H, Wang J, Li X, Zheng Z. Main thoracic curve adolescent idiopathic scoliosis: association of higher rod stiffness and concave-side pedicle screw density with improvement in sagittal thoracic kyphosis restoration. Journal Neurosurg Spine. 2015;22(3):259–266. doi: 10.3171/2014.10.SPINE1496. [PubMed] [Cross Ref]
28. Sudo H, Abe Y, Kokabu T, Ito M, Abumi K, Ito YM, Iwasaki N. Correlation analysis between change in thoracic kyphosis and multilevel facetectomy and screw density in main thoracic adolescent idiopathic scoliosis surgery. Spine J. 2016;16(9):1049–1054. doi: 10.1016/j.spinee.2016.04.014. [PubMed] [Cross Ref]
29. Behrbalk E, Uri O, Parks RM, Grevitt MP, Rickert M, Boszczyk BM. Posterior-only correction of Scheuermann kyphosis using pedicle screws: economical optimization through screw density reduction. Eur Spine J. 2014;23(10):2203–2210. doi: 10.1007/s00586-014-3472-y. [PubMed] [Cross Ref]
30. Larson AN, Polly DW, Jr, Ackerman SJ, Ledonio CG, Lonner BS, Shah SA, Emans JB, Richards BS., 3rd What would be the annual cost savings if fewer screws were used in adolescent idiopathic scoliosis treatment in the US? J Neurosurg Spine. 2016;24(1):116–123. doi: 10.3171/2015.4.SPINE131119. [PubMed] [Cross Ref]
31. Diab M, Smith AR, Kuklo TR. Neural complications in the surgical treatment of adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2007;32(24):2759–2763. doi: 10.1097/BRS.0b013e31815a5970. [PubMed] [Cross Ref]
32. Ledonio CG, Polly DW, Jr, Vitale MG, Wang Q, Richards BS. Pediatric pedicle screws: comparative effectiveness and safety: a systematic literature review from the Scoliosis Research Society and the pediatric Orthopaedic Society of North America task force. J Bone Joint Surg Am. 2011;93(13):1227–1234. doi: 10.2106/JBJS.J.00678. [PubMed] [Cross Ref]

Articles from BMC Musculoskeletal Disorders are provided here courtesy of BioMed Central