Search tips
Search criteria 


Logo of materialsLink to Publisher's site
Materials (Basel). 2016 August; 9(8): 631.
Published online 2016 July 27. doi:  10.3390/ma9080631
PMCID: PMC5509077

Negative Thermal Expansion in Ba0.5Sr0.5Zn2SiGeO7

Tamas Varga, Academic Editor


Solid solutions with the composition Ba0.5Sr0.5Zn2Si2-xGexO7 and BaZn2Si2-xGexO7 were prepared with different values of x using a conventional mixed oxide route. Both compounds exhibit very different thermal expansion, which is due to the different crystal structures. Ba0.5Sr0.5Zn2Si2-xGexO7 solid solutions exhibit the structure of high-temperature BaZn2Si2O7 and show negative thermal expansion, which was proven via high-temperature X-ray diffraction. Up to around x = 1, the crystal structure remains the same. Above this value, the low-temperature phase becomes stable. The Sr-free solid solutions have the crystal structure of low-temperature BaZn2Si2O7 and show also a limited solubility of Ge. These Sr-free compositions show transitions of low- to high-temperature phases, which are shifted to higher temperatures with increasing Ge-concentration.

Keywords: X-ray diffraction, negative thermal expansion, phase transition

1. Introduction

The phase BaZn2Si2O7 exhibits a phase transition at around 280 °C [1]. This phase transition divides the thermal expansion behavior into two parts. Below the phase transition, the monoclinic low-temperature phase (LT-phase) is stable, which has a very high coefficient of thermal expansion (CTE) [2]. Above the phase transition, the orthorhombic high-temperature phase (HT-phase) is stabilized with its very low or even negative thermal expansion behavior [2]. The crystal structures of both phases are described in the literature. The LT-phase has the space group C2/c [1]. The space group of the HT-phase is Ccm21 and is also reported in reference [1], where in-situ measurements were performed at high temperatures. However, the crystal structure was also refined in reference [3] using single crystals from a solid solution and a slightly different but very similar result (space group Cmcm) was obtained. However, the lattice parameters are defined differently in [1,3], which can easily lead to confusions. Hence, this work is based on the crystal structure reported in reference [3].

The BaZn2Si2O7 phase forms solid solutions within wide concentration ranges leading to a shift of the phase transition temperature depending on the site, which is occupied by other ions with the same valence state and similar ionic radii. A replacement of the Zn2+-ions by Mg2+, Mn2+, Co2+, Ni2+, and Cu2+ leads to a shift of the phase transition to higher temperatures, this is, a stabilization of the LT-phase in a wider temperature range [4]. If the Ba2+-ions are replaced by Sr2+, the phase transition temperature decreases and if a certain concentration of Sr2+ is exceeded, the HT-phase with its low thermal expansion is stable even below room temperature [3,4].

Materials containing high concentrations of alkaline earth oxides normally exhibit very high CTEs and a low thermal expansion might be unexpected or even undesired as in the case of sealing glasses or glass-ceramics for HT-reactors [5,6,7]. Hence, a detailed knowledge on the phase transition temperature for both the HT- as well as the LT-phase is necessary in order to control the thermal expansion behavior of materials, especially of glass-ceramics being able to precipitate the described solid solutions [8].

Furthermore, the crystalline solid solutions mentioned above exhibit CTE values, which strongly depend on the crystallographic direction and the composition. Especially in the case of phases with the structure of HT-BaZn2Si2O7, the CTEs of the different lattice parameters vary strongly [4,9]. The reason for this behavior is described in reference [3] to be caused by the crystal structure, which is composed of ZnO4 chains, running through the crystal in the direction of the lattice parameter c. These chains are connected by Si2O7 units. An increase of the temperature leads to a rotational movement of the ZnO4 tetrahedra and hence, the chains are stretched, which causes very high thermal expansion in the direction of the crystallographic c-axis. In the direction of the b-parameter, the ZnO4 tetrahedra are compressed, which causes highly negative thermal expansion.

This study reports on the influence of Ge4+ on the phase stability in Ba0.5Sr0.5Zn2Si2-xGexO7 and BaZnSi2-xGexO7 solid solutions prepared via solid-state reaction. Furthermore, the thermal expansion of the compound Ba0.5Sr0.5Zn2SiGeO7 in the different crystallographic directions was checked with high-temperature X-ray diffraction (HT-XRD).

2. Results and Discussion

Figure 1 shows solid solutions of the form Ba0.5Sr0.5Zn2Si2-xGexO7 with different values of x. It can clearly be seen that samples with small Ge-concentrations exhibit the crystal structure of HT-BaZn2Si2O7 (see left part of Figure 1). The substitution of Si by Ge also leads to a shift of the peaks in the direction of smaller 2θ-values, i.e., larger lattice parameters, which is due to the larger ionic radius of Ge4+ in comparison to Si4+ [10]. The increasing lattice parameters are displayed at the right side of Figure 1 as a function of x together with the respective linear regression. The composition Ba0.5Sr0.5Zn2SiGeO7 still exhibits the crystal structure of HT-BaZn2Si2O7 without any impurity phases. At higher Ge-concentrations, the crystal structure of LT-BaZn2Si2O7 becomes stabilized together with some secondary phases, which cannot reliably be identified.

Figure 1
Results from X-ray diffraction (XRD) recorded at room temperature. (a) XRD patterns within the solid solution series Ba0.5Sr0.5Zn2Si2-xGexO7 with different values of x are shown. In the lower part, the theoretical peak positions of crystals with the structure ...

A similar behavior was found in the case of the solid solution without Sr. By contrast, these compositions exhibit the crystal structure of LT-BaZn2Si2O7 (diffractograms not illustrated here). The compound BaZn2SiGeO7 shows solely lines, which can be attributed to crystals with the structure of LT-BaZn2Si2O7. The compound BaZn2Si0.5Ge1.5O7 as well as the pure Ge-compound also show the crystal structure of LT-BaZn2Si2O7, but also some minor phases appear, which is in agreement with the findings reported in reference [12].

The compound Ba0.5Sr0.5Zn2SiGeO7 was chosen in order to measure the thermal expansion behavior with HT-XRD. The lattice parameters of this composition can be fitted by second order polynomials. The corresponding regression parameters are summarized in Table 1. The relative change of the length of the lattice parameters a, b, and c as well as the volume of the unit cell V can be seen in Figure 2. As recently reported for the compound Sr0.5Ba0.5Zn2Si2O7 with this crystal structure, the lattice parameter b contracts strongly upon warming, whereas the a and the c parameters show an increasing length. The overall volume of the unit cell decreases with increasing temperature up to around 400 °C–500 °C. At higher temperatures, the volume of the unit cell increases. Between 600 and 1000 °C, this increase is almost linear.

Figure 2
Relative change of the lattice parameters of Ba0.5Sr0.5Zn2SiGeO7 determined with HT-XRD. The values a0, b0, c0, and V0 were determined at room temperature. The line, which fits the change of the volume of the unit cell was calculated on the basis of the ...
Table 1
Regression parameters describing the temperature dependence of the lattice parameters a, b, and c of the compound Ba0.5Sr0.5Zn2SiGeO7 using a polynomial of the form: y(T) = A + BT + CT2.

The compound is highly anisotropic with CTEs of 13.4 × 10−6 K−1 (lattice parameter a), −45.7 × 10−6 K−1 (lattice parameter b), and 25.7 × 10−6 K−1 (lattice parameter c) measured between 30 and 300 °C. Between 30 and 800 °C, the anisotropy is a little bit smaller with CTEs of 10.1 × 10−6 K−1 (lattice parameter a), −30.4 × 10−6 K−1 (lattice parameter b), and 23.1 × 10−6 K−1 (lattice parameter c). The mean values of the respective CTEs are −2.2 × 10−6 K−1 (30 °C–300 °C) and 0.9 × 10−6 K−1 (30 °C–800 °C). These values are below those of the Ge-free compound Ba0.5Sr0.5Zn2Si2O7 and also below the values of most compositions where Zn2+ is replaced by other divalent transition metal ions or Mg2+ exhibiting the same crystal structure [9].

This should make such materials extremely resistant to thermal shock. However, obtaining a densely sintered material from such a highly anisotropic phase needs special techniques, such as sol-gel synthesis, in order to get crack-free materials [13]. If the Ge-concentration gets too high, the LT-modification becomes stabilized. In analogy, this can also be seen in the case of BaZn2Si2-xGexO7 solid solutions, exhibiting generally the crystal structure of LT-BaZn2Si2O7. These solid solutions show phase transitions to the HT-phase as illustrated in Figure 3. There it can be seen that an increasing Ge-concentration leads to an enlargement of the phase stability region of LT-BaZn2Si2O7, i.e., a shifting of the phase transition to higher temperatures, which is also observed for compounds in which the Zn2+-sites are substituted [2]. Further studies will be focused on the crystallization of phases with negative thermal expansion in order to achieve zero thermal expansion at room temperature and elevated temperatures.

Figure 3
Phase transition temperatures TPT of BaZn2Si2-xGexO7 solid solutions with different values of x. (a) the DSC curves are illustrated together with the respective onset temperatures of the phase transition; (b) the phase transition temperatures are plotted ...

3. Materials and Methods

Solid solutions within the series Ba0.5Sr0.5Zn2Si2-xGexO7 and BaZn2Si2-xGexO7 were prepared with different values of x from stoichiometric mixtures of SiO2 (>99%, Carl Roth GmbH & Co. KG, Karlsruhe, Germany), ZnO (≥99%, Carl Roth GmbH & Co. KG), BaCO3 (pure, VK Labor- und Feinchemikalien, Dresden, Germany), SrCO3 (purest, Ferak, Berlin, Germany), and GeO2 (>99.98%, ABCR GmbH & Co. KG, Karlsruhe, Germany). The respective powders were thoroughly mixed and afterwards heat treated at temperatures in the range from 1100 to 1200 °C kept for 20–30 h with several intermediate regrinding steps. Phase transition temperatures of the final powders were determined with differential scanning calorimetry DSC (LINSEIS DSC PT-1600, Selb, Germany). The phase analysis was performed with a SIEMENS D5000 Bragg-Brentano diffractometer (München, Germany) and Cu Kα radiation. The thermal expansion of Ba0.5Sr0.5Zn2SiGeO7 was determined up to 1000 °C with the same device equipped with an ANTON PAAR HTK 10 heating stage (Graz, Austria). For this purpose, the powdered samples were mixed with corundum in order to correct the height changes caused by the sample holder. Afterwards, the sample holder was heated with 5 K/s to the respective temperature. After a temperature equilibrium was reached, the scan was performed in the 2θ-range from 10° to 60° using an increment of Δ2θ = 0.02°. From the positions of the peaks, the lattice parameters were calculated with the software TOPAS 3 from BRUKER (Billerica, MA, USA).

4. Conclusions

The substitution of Si by Ge in HT- and LT-BaZn2Si2O7 polymorphs generally leads to the stabilization or the enlargement of the phase stability region of the LT-phase. In the case of Ba0.5Sr0.5Zn2SiGeO7, the HT-phase is still stable and the introduction of Ge decreases the CTE so that overall negative thermal expansion was measured with HT-XRD. That means, in the family of Ba1-xSrxZn2-yMySi2O7 also the Si position, and hence all cationic positions can be substituted and nevertheless, negative thermal expansion can be achieved.

Author Contributions

Author Contributions

C.T. and C.R. conceived and designed the experiments; C.T. performed the experiments; C.T. analyzed the data; C.T. and C.R. wrote the paper.

Conflicts of Interest

Conflicts of Interest

The authors declare no conflict of interest.


1. Lin J.H., Lu G.X., Du J., Su M.Z., Loong C.-K., Richardson J.W., Jr. Phase transition and crystal structures of BaZn2Si2O7. J. Phys. Chem. Solids. 1999;60:975–983. doi: 10.1016/S0022-3697(99)00004-9. [Cross Ref]
2. Kerstan M., Thieme C., Grosch M., Müller M., Rüssel C. BaZn2Si2O7 and the solid solution series BaZn2−xCoxSi2O7 (0 ≤ x ≤ 2) as high temperature seals for solid oxide fuel cells studied by high-temperature X-ray diffraction and dilatometry. J. Solid State Chem. 2013;207:55–60. doi: 10.1016/j.jssc.2013.09.003. [Cross Ref]
3. Thieme C., Görls H., Rüssel C. Ba1-xSrxZn2Si2O7—A new family of materials with negative and very high thermal expansion. Sci. Rep. 2015;5 doi: 10.1038/srep18040. [PMC free article] [PubMed] [Cross Ref]
4. Thieme C., Rüssel C. Very High or Close to Zero Thermal Expansion by the Variation of the Sr/Ba Ratio in Ba1-xSrxZn2Si2O7—Solid Solutions. Dalton Trans. 2016;45:4888–4895. doi: 10.1039/C5DT04970A. [PubMed] [Cross Ref]
5. Liu H., Luo W., Lin C., Du X., Yang H., Tang D., Zhang T. Reducing the reaction between boron-containing sealing glass-ceramics and lanthanum-containing cathode: Effect of La2O3. J. Eur. Ceram. Soc. 2016;36:1103–1107. doi: 10.1016/j.jeurceramsoc.2015.11.026. [Cross Ref]
6. Mahapatra M.K., Lu K. Glass-based seals for solid oxide fuel and electrolyzer cells—A review. Mater. Sci. Eng. R. 2010;67:65–85. doi: 10.1016/j.mser.2009.12.002. [Cross Ref]
7. Ojha P.K., Chongdar T.K., Gokhale N.M., Kulkarni A.R. Accelerated devitrification of a strontiumlanthanumaluminoborosilicate based intermediate temperature solid oxide fuel cell glass sealant and its effect on thermophysical behaviour of the glass ceramics. J. Power Sources. 2013;221:28–34. doi: 10.1016/j.jpowsour.2012.07.110. [Cross Ref]
8. Thieme C., de Souza G.B., Rüssel C. Glass-ceramics in the system BaO-SrO-ZnO-SiO2 with adjustable coefficients of thermal expansion. J. Am. Ceram. Soc. 2016 doi: 10.1111/jace.14328. [PubMed] [Cross Ref]
9. Thieme C., Waurischk T., Heitmann S., Rüssel C. New Family of Materials with Negative Coefficients of Thermal Expansion: The Effect of MgO, CoO, MnO, NiO, or CuO on the Phase Stability and Thermal Expansion of Solid Solution Phases Derived from BaZn2Si2O7. Inorg. Chem. 2016;55:4476–4484. doi: 10.1021/acs.inorgchem.6b00290. [PubMed] [Cross Ref]
10. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A. 1976;32:751–767. doi: 10.1107/S0567739476001551. [Cross Ref]
11. Segnit E.R., Holland A.E. The ternary system BaO-ZnO-SiO2. Aust. J. Chem. 1970;23:1077–1085. doi: 10.1071/CH9701077. [Cross Ref]
12. Koelmans H., Verhagen C.M.C. The Fluorescence of Binary and Ternary Germanates of Group II Elements. J. Electrochem. Soc. 1959;106:677–682. doi: 10.1149/1.2427470. [Cross Ref]
13. Kracker M., Thieme C., Häßler J., Rüssel C. Sol–gel powder synthesis and preparation of ceramics with high- and low-temperature polymorphs of BaxSr1-xZn2Si2O7 (x = 1 and 0.5): A novel approach to obtain zero thermal expansion. J. Eur. Ceram. Soc. 2016;36:2097–2107. doi: 10.1016/j.jeurceramsoc.2016.02.023. [Cross Ref]

Articles from Materials are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)