Search tips
Search criteria 


Logo of neuroscibullNeuroscience Bulletin
Neurosci Bull. 2007 January; 23(1): 1–8.
Published online 2007 December 15. doi:  10.1007/s12264-007-0001-6
PMCID: PMC5500770

Language: English | Chinese

Microinjection of M5 muscarinic receptor antisense oligonucleotide into VTA inhibits FosB expression in the NAc and the hippocampus of heroin sensitized rats

中脑腹侧被盖区注射M5 受体反义寡核苷酸抑制海洛因敏化大鼠伏隔核和海马中FosB 表达



To investigate the effect of M5 muscarinic receptor subtype on the locomotor sensitization induced by heroin priming, and it’s effect on the FosB expression in the nucleus accumbens (NAc) and the hippocampus in the heroin sensitized rats.


Locomotor activity was measured every 10 min for 1 h after subcutaneous injection of heroin. FosB expression was assayed by immunohistochemistry, and the antisense oligonucleotides (AS-ONs) targeting M5 muscarinic receptor was transferred with the lipofectin.


Microinjection of AS-ONs targeting M5 muscarinic receptor in the ventral tegmental area (VTA) blocked the expression of behavioral sensitization induced by heroin priming in rats. Meanwhile, the expression of FosB-positive neurons in either the NAc or the dentate gyrus (DG) of the hippocampus increased in heroin-induced locomotor sensitized rats. The enhancement of FosB-positive neurons in the NAc or DG could be inhibited by microinjection of M5 muscarinic receptor AS-ONs into the VTA before the heroin-induced locomotor sensitization was performed. In contrast, microinjection of M5 muscarinic receptor sense oligonucleotide (S-ONs) into the VTA did not block the expression of behavioral sensitization or the expression of FosB in the NAc or DG in the heroin sensitized rats.


Blocking M5 muscarinic receptor in the VTA inhibits the expression of heroin-induced locomotor sensitization, which is associated with the regulation of FosB expression in the NAc and hippocampus neurons. M5 muscarinic receptor may be a useful pharmacological target for the treatment of heroin addiction.

Keywords: Heroin, locomotor activity, muscarinic receptor, FosB, nucleus accumbens, hippocampus



探讨 M5 毒蕈碱受体亚型对海洛因诱导的大鼠行为敏化以及敏化后大脑伏隔核 (NAc) 和海马中FosB蛋白表达的影响。


建立海洛因诱导的大鼠行为敏化模型, 测定大鼠的自主活动量 (locomotor activity, LA), 观察 M5 毒蕈碱受体反义寡核苷酸 (M5AS-ONs) 对行为敏化表达的影响。 用免疫组化法测定大鼠NAc 及海马齿状回 (DG) FosB 蛋白表达。


海洛因处理组与盐水处理组相比, 大鼠在 1 小时内的 LA 显著增 加, 表明这些大鼠已稳定建立了海洛因诱导的敏化。 中脑腹侧被盖区 (VTA) 中注射 M5 AS-ONs 能抑制大鼠 海洛因行为敏化的表达。 海洛因诱导的行为敏化大鼠中NAc及 DG 中的 FosB 免疫反应阳性神经元的表达增加, 而在 VTA 内注射 M5 AS-ONs 能明显抑制 NAc 及 DG 中 FosB 阳性神经元表达的增加; 但 VTA 中注射有义寡核 苷酸 (M5S-ONs) 不能明显抑制大鼠行为敏化的表达, 也不能抑制海洛因敏化大鼠NAc 和DG 中 FosB 蛋白的 表达。


阻断 VTA 中 M5 毒蕈碱受体可抑制海洛因诱导的行为敏化的表达, 其机制可能和抑制大脑 NAc 和 DG 神经元中 FosB 蛋白的激活有关。 M5 毒蕈碱受体可作为改变海洛因行为学效应的有效药理学靶点之一。

关键词: 海洛因, 自主活动, 毒蕈碱受体, FosB, 伏隔核, 海马


[1] Robinson T.E., Berridge K.C. The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction. 2000;95(Suppl2):S91–S117. doi: 10.1080/09652140050111681. [PubMed] [Cross Ref]
[2] Vanderschuren L.J.M.J., Kalivas P.W. Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology (Berl) 2000;151:99–120. doi: 10.1007/s002130000493. [PubMed] [Cross Ref]
[3] Vilaro M.T., Palacios J.M., Mengod G. Localization of m5 muscarinic receptor mRNA in rat brain examined by in situ hybridization histochemistry. Neurosci Lett. 1990;114:154–159. doi: 10.1016/0304-3940(90)90064-G. [PubMed] [Cross Ref]
[4] Yamada M., Basile A.S., Fedorova I., Zhang W., Duttaroy A., Cui Y., et al. Novel insights into M5 muscarinic acetylcholine receptor function by the use of gene targeting technology. Life Sci. 2003;74:345–353. doi: 10.1016/j.lfs.2003.09.022. [PubMed] [Cross Ref]
[5] Liu H.F., Zhou W.H., Xie X.H., Cao J.L., Gu J., Yang G.D. Muscarinic receptors modulate the mRNA expression of NMDA receptors in brainstem and the release of glutamate in periaqueductal grey during morphine withdrawal in rats. Acta Physiol Sin. 2004;56:95–100. [PubMed]
[6] Paxinos G., Watson C. The Rat Brain in Stereotaxic Coordinates. 4th ed. San Diego: Academic Press; 1998.
[7] Bechara A., van der Kooy D. The tegmental pedunculopontine nucleus: a brain-stem output of the limbic system critical for the conditioned place preferences produced by morphine and amphetamine. J Neurosci. 1989;9:3400–3409. [PubMed]
[8] Weiner D.M., Levey A.I., Brann M.R. Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proc Natl Acad Sci USA. 1990;87:7050–7054. doi: 10.1073/pnas.87.18.7050. [PubMed] [Cross Ref]
[9] Forster G.L., Blaha C.D. Laterodorsal tegmental stimulation elicits dopamine efflux in the rat nucleus accumbens by activation of acetylcholine and glutamate receptors in the ventral tegmental area. Eur J Neurosci. 2000;12:3596–3604. doi: 10.1046/j.1460-9568.2000.00250.x. [PubMed] [Cross Ref]
[10] Forster G.L., Blaha C.D. Pedunculopontine tegmental stimulation evokes striatal dopamine efflux by activation of acetylcholine and glutamate receptors in the midbrain and pons of the rat. Eur J Neurosci. 2003;17:751–762. doi: 10.1046/j.1460-9568.2003.02511.x. [PubMed] [Cross Ref]
[11] Forster G.L., Yeomans J.S., Takeuchi J., Blaha C.D. M5 muscarinic receptors are required for prolonged accumbal dopamine release after electrical stimulation of the pons in mice. J Neurosci. 2002;22:RC190. [PubMed]
[12] Basile A.S., Fedorova I., Zapata A., Liu X., Shippenberg T., Duttaroy A., et al. Deletion of the M5 muscarinic acetylcholine receptor attenuates morphine reinforcement and withdrawal but not morphine analgesia. Proc Natl Acad Sci USA. 2002;99:11452–11457. doi: 10.1073/pnas.162371899. [PubMed] [Cross Ref]
[13] Fink-Jensen A., Fedorova I., Wortwein G., Woldbye D.P., Rasmussen T., Thomsen M., et al. Role for M5 muscarinic acetylcholine receptors in cocaine addiction. J Neurosci Res. 2003;74:91–96. doi: 10.1002/jnr.10728. [PubMed] [Cross Ref]
[14] Thomsen M., Woldbye D.P., Wortwein G., Fink-Jensen A., Wess J., Caine S.B. Reduced cocaine self-administration in muscarinic M5 acetylcholine receptor-deficient mice. J Neurosci. 2005;25:8141–8149. doi: 10.1523/JNEUROSCI.2077-05.2005. [PubMed] [Cross Ref]
[15] Morgan J.I., Curran T. Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci. 1991;14:421–451. doi: 10.1146/ [PubMed] [Cross Ref]
[16] Nestler E.J., Kelz M.B., Chen J. ΔFosB: a molecular mediator of long-term neural and behavioral plasticity. Brain Res. 1999;835:10–17. doi: 10.1016/S0006-8993(98)01191-3. [PubMed] [Cross Ref]
[17] Chaudhuri A. Neural activity mapping with inducible transcription factors. Neuroreport. 1997;8:iii–vii. doi: 10.1097/00001756-199709080-00002. [PubMed] [Cross Ref]
[18] Labiner D.M., Butler L.S., Cao Z., Hosford D.A., Shin C., McNamara J.O. Induction of c-fos mRNA by kindled seizures: complex relationship with neuronal burst firing. J Neurosci. 1993;13:744–751. [PubMed]
[19] Chen J., Kelz M.B., Hope B.T., Nakabeppu Y., Nestler E.J. Chronic Fos-related antigens: stable variants of ΔFosB induced in brain by chronic treatments. J Neurosci. 1997;17:4933–4941. [PubMed]
[20] Atkins J.B., Chlan-Fourney J., Nye H.E., Hiroi N., Carlezon W.A., Jr, Nestler E.J. Region-specific induction of deltaFosB by repeated administration of typical versus atypical antipsychotic drugs. Synapse. 1999;33:118–128. doi: 10.1002/(SICI)1098-2396(199908)33:2<118::AID-SYN2>3.0.CO;2-L. [PubMed] [Cross Ref]
[21] Nye H.E., Nestler E.J. Induction of chronic Fos-related antigens in rat brain by chronic morphine administration. Mol Pharmacol. 1996;49:636–645. [PubMed]
[22] Nestler E.J., Barrot M., Self D.W. ΔFosB: a sustained molecular switch for addiction. Proc Natl Acad Sci USA. 2001;98:11042–11046. doi: 10.1073/pnas.191352698. [PubMed] [Cross Ref]
[23] Cenci M.A., Tranberg A., Andersson M., Hilbertson A. Changes in the regional and compartmental distribution of FosB-and JunB-like immunoreactivity induced in the dopamine-denervated rat striatum by acute or chronic L-dopa treatment. Neuroscience. 1999;94:515–527. doi: 10.1016/S0306-4522(99)00294-8. [PubMed] [Cross Ref]
[24] Kelz M.B., Chen J., Carlezon W.A., Jr, Whisler K., Gilden L., Beckmann A.M., et al. Expression of the transcription factor deltaFosB in the brain controls sensitivity to cocaine. Nature. 1999;401:272–276. doi: 10.1038/45790. [PubMed] [Cross Ref]
[25] Kalivas P.W., Duffy P. Sensitization to repeated morphine injection in the rat: possible involvement of A10 dopamine neurons. J Pharmacol Exp Ther. 1987;241:204–212. [PubMed]
[26] Pierce R.C., Kalivas P.W. A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Rev. 1997;25:192–216. doi: 10.1016/S0165-0173(97)00021-0. [PubMed] [Cross Ref]
[27] Xu Y., Sun S.G., Cao X.B. Study on plasticity of striatal neurons of levodopa-induced dyskinesia in rat. Chin J Neurosci. 2004;20:252–256.

Articles from Neuroscience Bulletin are provided here courtesy of Springer