PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actae2this articlesearchopen accesssubmitActa Crystallographica Section E: Crystallographic CommunicationsActa Crystallographica Section E: Crystallographic Communications
 
Acta Crystallogr E Crystallogr Commun. 2017 July 1; 73(Pt 7): 993–995.
Published online 2017 June 13. doi:  10.1107/S2056989017008428
PMCID: PMC5499276

A compressed octa­hedral cobalt(II) complex in the crystal structure of di­aqua­[6,6′-sulfanediylbis(2,2′-bi­pyridine)]cobalt(II) dinitrate

Abstract

The asymmetric unit of the title salt, [Co(C20H14N4S)(H2O)2](NO3)2, comprises a [Co(C20H14N4S)(H2O)2]2+ cation and two NO3 anions. In the complex, [Co(C20H14N4S)(H2O)2]2+ cation, the tetra­dentate 6,6′-sulfanediylbis(2,2′-bi­pyridine) ligand coordinates to the CoII cation in the equatorial positions, while two water mol­ecules occupy the axial positions, forming a compressed octa­hedral CoN4O2 coordination sphere. The NO3 anions are linked to the [Co(C20H14N4S)(H2O)2]2+ cations via O—H(...)O hydrogen bonds, yielding a layered arrangement parallel to (001).

Keywords: crystal structure, cobalt complex, 2,2′-bi­pyridine derivative, compressed octa­hedral geometry, hydrogen bond

Chemical context  

The control of the mol­ecular structure of coordination compounds is an important task in crystal engineering. It is well known that organic ligands play a significant role in determining the crystal structure of coordination complexes. For example, bidentate 2,2′-bi­pyridine or its derivatives are common ligands that can be employed to assemble functional compounds (Zhang et al., 2014  ; Kamdar et al., 2016  ; Pal et al., 2014  ). Linking two 2,2′-bi­pyridine units through a suitable atom leads to a tetra­dentate ligand (Knight et al., 2010  ) and, more importantly, the distance of the two 2,2′-bi­pyridine moieties can then be controlled by the type and size of the bridging atom. As a consequence, the coordination geometry of the metal cation can be affected.

An external file that holds a picture, illustration, etc.
Object name is e-73-00993-scheme1.jpg

Recently, we obtained the title salt, [Co(C20H14N4S)(H2O)2](NO3)2, using a tetra­dentate ligand in which two 2,2′-bi­pyridine moieties are linked by a sulfur atom. Herein, we report the crystal structure of this cobalt complex.

Structural commentary  

The asymmetric unit of the title salt (Fig. 1  ) is composed of a [Co(C20H14N4S)(H2O)2]2+ cation and two NO3 anions. The cobalt(II) atom of the complex [Co(C20H14N4S)(H2O)2]2+ cation features a compressed octa­hedral CoN4O2 coordination sphere with the N atoms of the tetra­dentate ligand in equatorial positions and two water mol­ecules located at the trans axial sites. The corresponding Co—O bond lengths are 2.0444 (18) Å and 2.0821 (17) Å, which are obviously shorter than the equatorial Co—N bond lengths [2.1213 (18) −2.1574 (18) Å]. These coordination bond lengths indicate that the CoII cation is in a high-spin state at 123 K, comparable with other high-spin CoII complexes (Li et al., 2016  ; Knight et al., 2010  ; Suckert et al., 2017  ; Zhong et al., 2008  ; Hathwar et al., 2017  ). The O—Co—O angle is almost linear at 178.59 (7)°. The four equatorial N atoms and the CoII cation are approximately coplanar, with the largest deviation from the least-squares plane being 0.039 Å for N3.

Figure 1
The structures of the mol­ecular entities in the structure of the title salt. Displacement ellipsoids are drawn at the 50% probability level.

In a similar CoII complex with the 6,6′-sulfanediylbis(2,2′-bi­pyridine) ligand replaced by the tetra­dentate ligand bis­(2,2′-bipyrid-6′-yl)ketone (Knight et al., 2010  ), the CoII cation is slightly convex (0.098 Å) from the plane formed through four coordination N atoms. The Co—O bond lengths of the two axial sites are significantly different at 2.075 (4) Å for that in the convex site and 2.118 (4) Å for that in the concave site. The corresponding O—Co—O bond angle deviates more distinctly from linearity with a value of 172.46 (17)°. The structural differences between the title complex and the similar reported compound are ascribed to the bridging atom between the two 2,2′-bi­pyridine moieties, i.e. an S atom in the title complex versus a C atom of a keto group in the related compound. The bridging bonds [C—S: 1.761 (2) and 1.764 (2) Å] of the title complex are longer than those [C—C: 1.496 (10) and 1.500 (10) Å] in the related complex.

Supra­molecular features  

The coordinating water mol­ecules act as proton donors, forming O—H(...)O hydrogen bonds with the NO3 anions and leading to an extended layer structure parallel to (001) for the title complex (Fig. 2  ). For these hydrogen bonds, the O(...)O distances are in the range of 2.688 (2)–2.789 (2) Å, indicating they are of medium strength (Table 1  ), and are comparable with other hydrogen bonds formed between coordinating water mol­ecules and NO3 anions (Kurdziel et al., 2000  ; Kunz et al., 2007  ; Wang et al., 2012  ). There are no inter­molecular π–π inter­actions in the mol­ecular packing of the title complex.

Figure 2
The layer structure in the title salt formed through hydrogen bonds (green dotted lines) between complex cations and nitrate anions.
Table 1
Hydrogen-bond geometry (Å, °)

Synthesis and crystallization  

The ligand 6,6′-sulfanediylbis(2,2′-bi­pyridine) was synthesized by a method analogous to that for the preparation of 2,2′-sulfanediylbis(1,10-phenanthroline) (Krapcho et al., 2007  ). The title complex was obtained as follows: An ethano­lic solution (10 ml) of CoII(NO3)2·6H2O (29.1 mg, 0.1 mmol) was added to a ethano­lic solution (10 ml) of 6,6′-sulfane­diylbis(2,2′-bi­pyridine) (34.4 mg, 0.1 mmol), which afforded a light-yellow solution, which was stored at ambient conditions. Yellow crystals of the title compound were obtained by slow evaporation of the solvent, yield: ca. 50%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2  . All hydrogen atoms bound to carbon atoms were placed geometrically, with C—H = 0.93 Å and with U iso(H) = 1.2U eq(C). The hydrogen atoms of water mol­ecules were found from difference-Fourier maps and their O—H bond lengths were normalized to 0.82 Å and refined with a common U iso(H) parameter.

Table 2
Experimental details

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017008428/wm5395sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017008428/wm5395Isup2.hkl

CCDC reference: 1554624

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

GLL thanks the China Scholarship Council for support.

supplementary crystallographic information

Crystal data

[Co(C20H14N4S)(H2O)2](NO3)2F(000) = 1148
Mr = 561.39Dx = 1.683 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.412 (3) ÅCell parameters from 5682 reflections
b = 11.421 (2) Åθ = 3.1–27.5°
c = 15.441 (3) ŵ = 0.93 mm1
β = 110.50 (3)°T = 123 K
V = 2215.4 (9) Å3Block, yellow
Z = 40.15 × 0.14 × 0.11 mm

Data collection

Rigaku Saturn724 diffractometer5045 independent reflections
Radiation source: Rotating Anode3984 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.044
dtprofit.ref scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2008)h = −17→17
Tmin = 0.893, Tmax = 1.000k = −14→10
17851 measured reflectionsl = −20→19

Refinement

Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090w = 1/[σ2(Fo2) + (0.040P)2 + 0.524P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5045 reflectionsΔρmax = 0.46 e Å3
337 parametersΔρmin = −0.42 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S20.34784 (7)0.53580 (6)0.48067 (4)0.0421 (2)
Co10.24302 (2)0.43855 (2)0.24018 (2)0.01606 (9)
O10.39231 (13)0.40239 (14)0.23348 (10)0.0187 (3)
O20.09507 (14)0.47032 (15)0.24506 (13)0.0285 (4)
O30.50179 (13)0.23807 (13)0.35394 (10)0.0236 (4)
O40.54960 (14)0.06402 (14)0.40822 (11)0.0300 (4)
O60.05056 (14)0.33139 (14)0.36815 (11)0.0292 (4)
O50.47102 (14)0.08860 (15)0.26072 (10)0.0297 (4)
O70.02144 (15)0.14605 (15)0.36918 (13)0.0393 (5)
O8−0.06083 (17)0.2472 (2)0.24938 (13)0.0593 (7)
N50.50719 (15)0.12943 (16)0.34121 (13)0.0198 (4)
N60.00328 (15)0.24137 (17)0.32853 (13)0.0212 (4)
N20.19761 (15)0.26188 (16)0.19352 (12)0.0186 (4)
N40.20317 (14)0.55097 (15)0.12099 (12)0.0166 (4)
N30.29863 (14)0.60458 (15)0.29886 (12)0.0172 (4)
N10.28384 (14)0.34360 (15)0.36610 (12)0.0175 (4)
C70.18108 (19)0.0673 (2)0.24432 (16)0.0238 (5)
H7A0.19230.01490.29290.029*
C80.1315 (2)0.0304 (2)0.15461 (17)0.0276 (6)
H8A0.1085−0.04660.14190.033*
C60.21437 (17)0.18271 (19)0.26220 (14)0.0176 (5)
C40.30035 (18)0.1515 (2)0.43295 (15)0.0229 (5)
H4A0.29090.07110.42450.027*
C100.15035 (19)0.2232 (2)0.10636 (16)0.0250 (5)
H10A0.13980.27630.05830.030*
C90.1167 (2)0.1098 (2)0.08414 (16)0.0280 (6)
H9A0.08460.08710.02270.034*
C50.26838 (17)0.22627 (19)0.35760 (15)0.0179 (5)
C20.36036 (19)0.3163 (2)0.53060 (16)0.0242 (5)
H2A0.39050.34950.58900.029*
C10.32874 (18)0.3862 (2)0.45197 (15)0.0214 (5)
C30.34627 (19)0.1974 (2)0.52047 (16)0.0262 (5)
H3A0.36740.14860.57190.031*
C140.33856 (18)0.8009 (2)0.26565 (16)0.0220 (5)
H14A0.33700.85780.22210.026*
C160.23741 (17)0.66245 (19)0.13919 (14)0.0175 (5)
C190.11790 (19)0.6048 (2)−0.03804 (15)0.0236 (5)
H19A0.07590.5828−0.09770.028*
C170.21498 (19)0.7466 (2)0.07011 (15)0.0232 (5)
H17A0.24030.82260.08440.028*
C200.14367 (18)0.5253 (2)0.03312 (15)0.0224 (5)
H20A0.11840.44920.01970.027*
C110.34248 (18)0.63032 (19)0.38876 (15)0.0202 (5)
C150.29568 (17)0.69114 (18)0.23791 (14)0.0166 (5)
C180.15527 (19)0.7174 (2)−0.01954 (15)0.0242 (5)
H18A0.14050.7726−0.06660.029*
C130.38377 (18)0.8247 (2)0.35920 (16)0.0249 (5)
H13A0.41320.89790.37930.030*
C120.38477 (19)0.7396 (2)0.42191 (16)0.0240 (5)
H12B0.41300.75440.48510.029*
H1WA0.4237 (19)0.3504 (18)0.2663 (15)0.029*
H1WB0.4339 (18)0.4572 (18)0.2351 (17)0.029*
H2WA0.072 (2)0.430 (2)0.2791 (15)0.029*
H2WB0.0665 (19)0.5317 (17)0.2273 (17)0.029*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S20.0871 (6)0.0210 (3)0.0148 (3)0.0028 (4)0.0135 (3)−0.0002 (3)
Co10.02039 (16)0.01296 (16)0.01403 (17)0.00085 (12)0.00502 (12)0.00167 (12)
O10.0214 (9)0.0152 (8)0.0188 (8)0.0018 (7)0.0061 (7)0.0044 (6)
O20.0270 (10)0.0227 (10)0.0398 (11)0.0072 (8)0.0165 (8)0.0158 (8)
O30.0325 (10)0.0146 (8)0.0223 (9)0.0043 (7)0.0077 (7)0.0010 (7)
O40.0419 (11)0.0178 (9)0.0241 (9)0.0056 (8)0.0038 (8)0.0073 (7)
O60.0407 (11)0.0191 (9)0.0325 (9)−0.0100 (8)0.0186 (8)−0.0077 (7)
O50.0388 (11)0.0276 (10)0.0172 (9)0.0020 (8)0.0030 (8)−0.0066 (7)
O70.0359 (11)0.0206 (9)0.0598 (12)0.0024 (8)0.0148 (9)0.0163 (9)
O80.0515 (14)0.0879 (18)0.0237 (11)−0.0330 (13)−0.0057 (10)0.0093 (11)
N50.0200 (10)0.0177 (10)0.0228 (10)−0.0004 (8)0.0087 (8)−0.0011 (8)
N60.0193 (10)0.0231 (11)0.0231 (11)0.0000 (8)0.0097 (9)0.0003 (9)
N20.0214 (10)0.0158 (9)0.0173 (10)−0.0014 (8)0.0052 (8)0.0008 (8)
N40.0178 (9)0.0159 (9)0.0149 (9)−0.0006 (8)0.0041 (7)0.0011 (7)
N30.0192 (9)0.0161 (9)0.0150 (9)0.0023 (8)0.0045 (8)−0.0006 (8)
N10.0206 (10)0.0162 (10)0.0164 (9)0.0025 (8)0.0075 (8)0.0027 (8)
C70.0293 (13)0.0169 (12)0.0281 (13)−0.0005 (10)0.0139 (11)0.0028 (10)
C80.0337 (14)0.0179 (12)0.0329 (14)−0.0062 (11)0.0138 (11)−0.0031 (10)
C60.0184 (11)0.0155 (11)0.0213 (12)0.0029 (9)0.0102 (9)0.0037 (9)
C40.0254 (12)0.0184 (12)0.0254 (13)0.0023 (10)0.0095 (10)0.0076 (10)
C100.0328 (14)0.0204 (12)0.0197 (12)−0.0018 (11)0.0064 (10)0.0029 (10)
C90.0340 (14)0.0250 (13)0.0227 (13)−0.0054 (11)0.0071 (11)−0.0035 (10)
C50.0188 (11)0.0164 (11)0.0219 (12)0.0012 (9)0.0113 (9)0.0032 (9)
C20.0275 (13)0.0272 (13)0.0172 (12)0.0040 (11)0.0069 (10)0.0031 (10)
C10.0252 (12)0.0202 (12)0.0198 (12)0.0029 (10)0.0091 (10)0.0011 (10)
C30.0288 (13)0.0283 (14)0.0207 (12)0.0032 (11)0.0079 (10)0.0112 (10)
C140.0214 (12)0.0185 (12)0.0251 (13)−0.0028 (10)0.0070 (10)0.0014 (10)
C160.0165 (11)0.0173 (12)0.0182 (11)0.0013 (9)0.0055 (9)0.0021 (9)
C190.0265 (13)0.0253 (13)0.0149 (11)0.0013 (10)0.0019 (10)0.0008 (10)
C170.0315 (13)0.0155 (11)0.0222 (12)−0.0021 (10)0.0089 (10)0.0022 (9)
C200.0271 (13)0.0169 (12)0.0187 (12)−0.0019 (10)0.0023 (10)−0.0008 (9)
C110.0227 (12)0.0185 (12)0.0183 (12)0.0050 (10)0.0057 (9)0.0006 (9)
C150.0176 (11)0.0145 (11)0.0174 (11)0.0024 (9)0.0059 (9)0.0017 (9)
C180.0296 (13)0.0239 (13)0.0172 (12)0.0022 (10)0.0059 (10)0.0091 (10)
C130.0235 (12)0.0196 (12)0.0284 (13)−0.0027 (10)0.0051 (10)−0.0065 (10)
C120.0264 (13)0.0244 (13)0.0172 (12)0.0011 (10)0.0027 (10)−0.0068 (10)

Geometric parameters (Å, º)

S2—C11.761 (2)N1—C11.341 (3)
S2—C111.764 (2)N1—C51.355 (3)
Co1—O22.0444 (18)C7—C81.376 (3)
Co1—O12.0821 (17)C7—C61.388 (3)
Co1—N32.1213 (18)C8—C91.376 (3)
Co1—N12.1238 (17)C6—C51.481 (3)
Co1—N42.1523 (18)C4—C31.377 (3)
Co1—N22.1574 (18)C4—C51.384 (3)
O3—N51.262 (2)C10—C91.375 (3)
O4—N51.241 (2)C2—C31.373 (3)
O6—N61.250 (2)C2—C11.390 (3)
O5—N51.255 (2)C14—C151.383 (3)
O7—N61.238 (2)C14—C131.384 (3)
O8—N61.225 (2)C16—C171.388 (3)
N2—C101.346 (3)C16—C151.486 (3)
N2—C61.351 (3)C19—C201.373 (3)
N4—C201.344 (3)C19—C181.373 (3)
N4—C161.349 (3)C17—C181.376 (3)
N3—C111.337 (3)C11—C121.392 (3)
N3—C151.356 (3)C13—C121.369 (3)
C1—S2—C11115.45 (11)C5—N1—Co1115.76 (14)
O2—Co1—O1178.59 (7)C8—C7—C6120.0 (2)
O2—Co1—N391.50 (7)C7—C8—C9118.6 (2)
O1—Co1—N389.90 (7)N2—C6—C7121.7 (2)
O2—Co1—N189.95 (7)N2—C6—C5116.40 (19)
O1—Co1—N190.02 (7)C7—C6—C5121.9 (2)
N3—Co1—N197.24 (7)C3—C4—C5119.4 (2)
O2—Co1—N488.40 (7)N2—C10—C9123.9 (2)
O1—Co1—N491.77 (7)C10—C9—C8118.7 (2)
N3—Co1—N477.10 (7)N1—C5—C4122.4 (2)
N1—Co1—N4174.06 (7)N1—C5—C6115.68 (18)
O2—Co1—N290.81 (7)C4—C5—C6121.9 (2)
O1—Co1—N287.81 (7)C3—C2—C1118.8 (2)
N3—Co1—N2174.08 (7)N1—C1—C2123.3 (2)
N1—Co1—N277.31 (7)N1—C1—S2125.20 (17)
N4—Co1—N2108.41 (7)C2—C1—S2111.39 (17)
O4—N5—O5120.48 (18)C2—C3—C4119.0 (2)
O4—N5—O3119.77 (18)C15—C14—C13119.0 (2)
O5—N5—O3119.74 (18)N4—C16—C17121.8 (2)
O8—N6—O7119.9 (2)N4—C16—C15116.12 (18)
O8—N6—O6120.1 (2)C17—C16—C15122.0 (2)
O7—N6—O6119.96 (19)C20—C19—C18118.8 (2)
C10—N2—C6117.12 (19)C18—C17—C16119.9 (2)
C10—N2—Co1128.32 (15)N4—C20—C19123.9 (2)
C6—N2—Co1114.45 (14)N3—C11—C12123.6 (2)
C20—N4—C16117.03 (18)N3—C11—S2125.44 (17)
C20—N4—Co1127.97 (15)C12—C11—S2110.88 (16)
C16—N4—Co1114.86 (13)N3—C15—C14122.5 (2)
C11—N3—C15117.11 (19)N3—C15—C16115.36 (19)
C11—N3—Co1126.95 (15)C14—C15—C16122.0 (2)
C15—N3—Co1115.77 (14)C19—C18—C17118.6 (2)
C1—N1—C5117.09 (18)C12—C13—C14119.4 (2)
C1—N1—Co1127.03 (15)C13—C12—C11118.4 (2)

Hydrogen-bond geometry (Å, º)

D—H···AD—HH···AD···AD—H···A
O2—H2WB···O7i0.80 (2)2.02 (2)2.766 (3)155 (2)
O2—H2WA···O60.84 (2)1.88 (2)2.698 (2)168 (3)
O1—H1WB···O5ii0.83 (2)1.96 (2)2.789 (2)179 (3)
O1—H1WA···O30.80 (2)1.89 (2)2.688 (2)174 (3)

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2.

References

  • Hathwar, V. R., Stingaciu, M., Richter, B., Overgaard, J. & Iversen, B. B. (2017). Acta Cryst. B73, 304–312. [PubMed]
  • Kamdar, J. M., Marelius, D. C., Moore, C. E., Rheingold, A. L., Smith, D. K. & Grotjahn, D. B. (2016). ChemCatChem, 8, 3045–3049.
  • Knight, J. C., Amoroso, A. J., Edwards, P. G., Prabaharan, R. & Singh, N. (2010). Dalton Trans. 39, 8925–8936. [PubMed]
  • Krapcho, A. P., Sparapani, S. & Boxer, M. (2007). Tetrahedron Lett. 48, 5593–5595.
  • Kunz, P. C., Zribi, A., Frank, W. & Kläui, W. (2007). Z. Anorg. Allg. Chem. 633, 955–960.
  • Kurdziel, K., Głowiak, T. & Jezierska, J. (2000). J. Chem. Soc. Dalton Trans. pp. 1095–1100.
  • Li, G. L., Kanegawa, S., Yao, Z. S., Su, S. Q., Wu, S. Q., Huang, Y. G., Kang, S. & Sato, O. (2016). Chem. Eur. J. 22, 17130–17135. [PubMed]
  • Pal, A. K., Nag, S., Ferreira, J. G., Brochery, V., La Ganga, G., Santoro, A., Serroni, S., Campagna, S. & Hanan, G. S. (2014). Inorg. Chem. 53, 1679–1689. [PubMed]
  • Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. [PMC free article] [PubMed]
  • Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Acta Cryst. E73, 616–619.
  • Wang, L., Meng, X.-G., Deng, D.-S., Pei, Y.-M. & Wei, L.-M. (2012). Inorg. Chim. Acta, 387, 181–185.
  • Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  • Zhang, Y.-Z., Ferko, P., Siretanu, D., Ababei, R., Rath, N. P., Shaw, M. J., Clérac, R., Mathonière, C. & Holmes, S. M. (2014). J. Am. Chem. Soc. 136, 16854–16864. [PubMed]
  • Zhong, Y.-R., Cao, M.-L., Mo, H.-J. & Ye, B.-H. (2008). Cryst. Growth Des. 8, 2282–2290.

Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography