PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actae2this articlesearchopen accesssubmitActa Crystallographica Section E: Crystallographic CommunicationsActa Crystallographica Section E: Crystallographic Communications
 
Acta Crystallogr E Crystallogr Commun. 2017 April 1; 73(Pt 4): 511–514.
Published online 2017 March 14. doi:  10.1107/S2056989017003218
PMCID: PMC5382610

Crystal and mol­ecular structure of (2Z,5Z)-3-(2-meth­oxy­phen­yl)-2-[(2-meth­oxy­phen­yl)imino]-5-(4-nitro­benzyl­idene)thia­zolidin-4-one

Abstract

In the title compound, C24H19N3O5S, the thia­zole ring (r.m.s. deviation = 0.012 Å) displays a planar geometry and is surrounded by three fragments, two meth­oxy­phenyl and one nitro­phenyl. The thia­zole ring is almost in the same plane as the nitro­phenyl ring, making a dihedral angle of 20.92 (6)°. The two meth­oxy­phenyl groups are perpendicular to the thia­zole ring [dihedral angles of 79.29 (6) and 71.31 (7)° and make a dihedral angle of 68.59 (7)°. The mol­ecule exists in an Z,Z conformation with respect to the C=N imine bond. In the crystal, a series of C—H(...)N, C—H(...)O and C—H(...)S hydrogen bonds, augmented by several π–π(ring) inter­actions, produce a three-dimensional architecture of mol­ecules stacked along the b-axis direction. The experimentally derived structure is compered with that calculated theoretically using DFT(B3YLP) methods.

Keywords: crystal structure, thia­zolidin-4-one, DFT calculations, hydrogen bonding, π–π inter­actions

Chemical context  

There are numerous studies of simple thia­zoles reporting their biological activity (Saeed et al., 2010  ; Shokol et al., 2013  ; Akhtar et al., 2007  ). As a result of their properties, thia­zole derivatives are inter­esting candidates for obtaining new materials. Thia­zole compounds have been also studied for their non-linear optical properties (Smokal et al., 2009  ). Recently, numerous studies have reported the theoretical and experimental structures of this kind of compound (Boulakoud et al., 2015  ; Khelloul et al., 2016  ). Prompted by these investigations and in a continuation of our research on the development of organic heterocyclic compounds (Toubal et al., 2012  ; Rahmani et al., 2016  ; Bahoussi et al., 2017  ), we report in this paper the synthesis and crystal structure of the compound (2Z,5Z)-5-(4-nitro­benzyl­idene)-3-(2-meth­oxy­phen­yl)-2-[(2-meth­oxy­phenyl)imino]­thia­zolidin-4-one. The experimental geometric parameters are compared with those optimized by density functional theory (DFT).

Structural commentary  

The mol­ecular structure of the title compound with the atomic numbering scheme is shown in Fig. 1  . All of the bond lengths are within normal ranges. Bond lengths and angles for the 5-(4-nitro­benzyl­idene)-3-(2-meth­oxy­phen­yl) moiety are consistent with those in related structures (Benhalima et al., 2011  ). As always, the thiazole ring is close to planar (r.m.s. deviation = 0.012 Å) and is surrounded by three fragments, two meth­oxy­phenyl and nitro­phenyl. The central thia­zole ring is twisted by −2.9 (2)° (C4—C7—C8—S1) to the nitro­phenyl ring, by −71.58 (18) (C10—N3—C17—C18) to the first meth­oxy­phenyl group and by −80.62 (15)° (C10—N2—C11—C16) to the second meth­oxy­phenyl group. The dihedral angles between the thia­zole ring and these three phenyl rings are 20.92 (6), 79.29 (6) and 71.31 (7)°, respectively. The mol­ecule exists in an Z,Z conformation with respect to the C10=N3 imine bond. Some bond angles of the aromatic rings are slightly out of normal range due to the presence of the meth­oxy and nitro substituents, viz. C4—C5 = 1.4040 (17), C12—C11 = 1.3724 (19), C22—C17 = 1.4046 (19) Å; C2—C1—C6 = 122.26 (12), C3—C4—C5 = 118.42 (12), C12—C13—C14 = 118.78 (14), C13—C14—C15 = 121.52 (14), C19—C20—C21 = 121.28 (14)°.

An external file that holds a picture, illustration, etc.
Object name is e-73-00511-scheme1.jpg

Figure 1
Crystal structure of the title compound, with the atom-numbering scheme (displacement ellipsoids are drawn at the 50% probability level). H atoms are shown as small spheres of arbitrary radii.

Supra­molecular features  

In the extended structure of the title compound, weak C—H(...)N, C—H(...)O and C—H(...)S hydrogen bonds (Table 1  , Fig. 2  ) connect the mol­ecules into a three-dimensional supra­molecular network. π–π stacking involving the benzene rings is also observed [Cg(...)Cg(−x, −y, −z) = 3.7664 (8) Å; Cg is the centroid of the C1–C6 ring].

Figure 2
The crystal packing viewed along the c axis.
Table 1
Hydrogen-bond geometry (Å, °)

Quantum-chemical calculations  

Geometry optimization has been performed using DFT(B3YLP) methods with the 6-31G(d,p) basis set (Becke, 1997  ; Rauhut & Pulay, 1995  ). All calculations were carried out by using Gaussian package (Frisch et al., 2004  ) and the obtained data visualized by means of GaussView 4.1 (Dennington et al., 2007  ). The optimized structure is shown in Fig. 3  . The calculated geometrical parameters such as bond lengths, bond angles and torsion angles (given in the Supporting information) are in good agreement with experimental values on basis of the diffraction study. The torsion angle between the first meth­oxy­phenyl ring and the thia­zole ring is −67.40° [experimental: −71.58 (18)°] and between the second meth­oxy­phenyl ring and the thia­zole ring is −84.61° [experimental: −80.62 (15)°].

Figure 3
Optimized structure of the title compound, calculated at the B3LYP/6–31 G(d,p) level.

Synthesis and crystallization  

The synthesis of the title compound was performed according to the scheme in Fig. 4  . To a solution of o-anisidine (0.02 mol) in ethanol (10 mL) was added carbon di­sulfide (0.01 mol) and the resulting solution was refluxed for 6 h to gave N,N′ diaryl thio­uria. (0.01 mol) of the compound and (0.01 mol) of ethyl bromo­acetate were refluxed in 40 mL of absolute ethanol in the presence of (0.04 mol) of anhydrous CH3COONa for 2 h. The precipitate thus obtained was filtered, dried and recrystallized from ethanol to formed 3-N-(2-meth­oxy­phen­yl)-2-N′-(2-meth­oxy­phenyl­imino)-thia­zolidin-4-one. 4-Nitro­benz­alde­hyde (0.01 mol) was added to a solution of the latter compound in 10 mL of acetic acid containing three equivalents of anhydrous sodium acetate. The reaction mixture was refluxed for 4 h and monitored by TLC on silica gel using di­chloro­methane:ethyl acetate (9:1) as a solvent system. The separated solid was filtered, washed with cold water and dried to give the title compound. Single crystals suitable for X-ray diffraction were obtained from ethanol solution.

Figure 4
Chemical pathways showing the formation of the title compound. Reagents and conditions: (a) CS2, EtOH, 346 K; (b) BrAcOEt, EtOH, CH3COONa 348 K; (c) NO2C6H4CHO; CH3COOH; CH3COONa, 365 K.

Spectroscopic data (FT–IR, 1H NMR and 13C NMR). IR (KBr, cm−1): 2941 (C—H), 1723 (C=O), 1516 (C=N), 1023 (C—N), 751 (C—S). 1H NMR, (CDCl3, 300 MHz) δ (ppm) J (Hz): 3.72 (s, 3H, OCH3), 3.82 (s, 3H, OCH3), 6.83 (m, 3H, Ar-H), 7.06 (m, 3H, Ar-H), 7.36–7.06 (m, 3H, Ar-H), 7.54 (d, 2H, J = 8.81 Hz, Ar-H), 7.73 (s, 1H, C=CH), 8.18 (d, 2H, J = 8.81 Hz, Ar-H). 13C NMR, (CDCl3, 300 MHz) δ (ppm): 55.90 (OCH3), 55.98 (OCH3), 112.24, 112.59, 120.99, 121.21, 121.85, 123.15, 124.17, 126.07, 126.93, 127.44, 129.85, 130.38, 131.12, 137.33, 140.12, 147.46, 150.09, 150.65, 155.02, 165.69 (C=O).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2  . H atoms were placed in calculated positions (C—H = 0.96–1.08 Å) and refined using a riding mode with U iso(H) = 1.5U eq(C) for methyl H atoms and 1.2U eq(C) for other H atoms.

Table 2
Experimental details

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017003218/xu5900sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017003218/xu5900Isup2.hkl

Geometrical parameters calculated theoretically. DOI: 10.1107/S2056989017003218/xu5900sup3.pdf

CCDC reference: 1534261

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C24H19N3O5SF(000) = 960
Mr = 461.48Dx = 1.407 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.6096 (4) ÅCell parameters from 100 reflections
b = 8.8817 (2) Åθ = 2–29°
c = 15.8973 (4) ŵ = 0.19 mm1
β = 98.601 (2)°T = 173 K
V = 2179.21 (9) Å3Prism, colourless
Z = 40.58 × 0.21 × 0.20 mm

Data collection

Nonius Kappa CCD diffractometer5119 reflections with I > 2σ(I)
θ/2θ scansRint = 0.031
Absorption correction: ψ scan (North et al., 1968)θmax = 31.1°, θmin = 3.0°
Tmin = 0.856, Tmax = 0.919h = −22→22
29723 measured reflectionsk = −12→11
6435 independent reflectionsl = −21→22

Refinement

Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.107w = 1/[σ2(Fo2) + (0.0467P)2 + 0.9373P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
6435 reflectionsΔρmax = 0.43 e Å3
300 parametersΔρmin = −0.29 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.18342 (2)0.24406 (4)0.20047 (2)0.02336 (9)
O1−0.09228 (8)−0.40177 (12)0.13728 (8)0.0385 (3)
N1−0.12541 (8)−0.30589 (14)0.08755 (8)0.0284 (3)
C1−0.08817 (8)−0.15360 (15)0.09366 (8)0.0233 (3)
C2−0.01765 (9)−0.12471 (16)0.15533 (9)0.0281 (3)
H20.0060−0.20150.19350.034*
O2−0.18878 (8)−0.32885 (13)0.03293 (8)0.0398 (3)
N20.21145 (7)0.51326 (12)0.14588 (7)0.0197 (2)
C30.01769 (9)0.01841 (16)0.16020 (9)0.0281 (3)
H30.06560.04020.20270.034*
O30.08023 (6)0.58248 (11)0.07287 (7)0.0285 (2)
N30.33242 (7)0.41049 (12)0.22794 (7)0.0243 (2)
C4−0.01599 (8)0.13165 (14)0.10343 (8)0.0208 (2)
O40.23121 (8)0.72664 (12)0.26528 (7)0.0359 (3)
C5−0.08835 (8)0.09794 (15)0.04270 (9)0.0240 (3)
H5−0.11280.17420.00460.029*
O50.45456 (6)0.24066 (12)0.17337 (7)0.0299 (2)
C6−0.12451 (9)−0.04434 (16)0.03746 (9)0.0263 (3)
H6−0.1733−0.0666−0.00390.032*
C70.02086 (8)0.28231 (14)0.10052 (8)0.0215 (2)
H7−0.01600.35430.06920.026*
C80.09867 (8)0.33479 (14)0.13522 (8)0.0196 (2)
C100.25405 (8)0.39911 (13)0.19484 (8)0.0186 (2)
C240.52583 (11)0.1648 (2)0.14553 (11)0.0417 (4)
H24A0.57920.18900.18390.063*
H24B0.53130.19740.08770.063*
H24C0.51590.05590.14590.063*
C220.44054 (8)0.21301 (15)0.25472 (9)0.0248 (3)
C210.48700 (9)0.11030 (17)0.30961 (10)0.0320 (3)
H210.53360.05560.29220.038*
C200.46488 (11)0.0882 (2)0.38997 (11)0.0401 (4)
H200.49650.01740.42720.048*
C190.39771 (11)0.1670 (2)0.41689 (11)0.0400 (4)
H190.38290.15020.47200.048*
C170.37238 (8)0.29463 (15)0.28143 (9)0.0240 (3)
C90.12547 (8)0.48965 (14)0.11388 (8)0.0197 (2)
C160.26397 (9)0.76094 (15)0.19277 (9)0.0252 (3)
C230.23024 (13)0.8433 (2)0.32592 (11)0.0458 (4)
H23A0.28990.87300.34790.069*
H23B0.20160.80740.37290.069*
H23C0.19860.93020.29890.069*
C150.30410 (9)0.89616 (16)0.17808 (10)0.0316 (3)
H150.31180.97220.22060.038*
C140.33285 (10)0.91874 (18)0.10035 (12)0.0383 (4)
H140.35931.01180.08980.046*
C130.32383 (10)0.80902 (19)0.03814 (11)0.0374 (3)
H130.34380.8260−0.01460.045*
C120.28481 (9)0.67286 (16)0.05420 (9)0.0278 (3)
H120.27900.59540.01250.033*
C110.25487 (8)0.65060 (14)0.13014 (8)0.0206 (2)
C180.35185 (9)0.27144 (18)0.36216 (10)0.0324 (3)
H180.30610.32720.38050.039*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.02100 (15)0.01858 (15)0.02879 (17)−0.00265 (11)−0.00189 (11)0.00798 (12)
O10.0485 (7)0.0222 (5)0.0483 (7)−0.0063 (5)0.0185 (5)0.0037 (5)
N10.0334 (6)0.0233 (6)0.0326 (6)−0.0093 (5)0.0178 (5)−0.0068 (5)
C10.0274 (6)0.0189 (6)0.0256 (6)−0.0076 (5)0.0106 (5)−0.0033 (5)
C20.0321 (7)0.0236 (7)0.0280 (7)−0.0056 (5)0.0027 (5)0.0064 (5)
O20.0416 (6)0.0358 (6)0.0428 (6)−0.0193 (5)0.0092 (5)−0.0119 (5)
N20.0196 (5)0.0146 (5)0.0239 (5)−0.0008 (4)−0.0003 (4)0.0028 (4)
C30.0294 (7)0.0260 (7)0.0262 (6)−0.0074 (5)−0.0044 (5)0.0061 (5)
O30.0240 (4)0.0207 (5)0.0372 (5)−0.0010 (4)−0.0066 (4)0.0082 (4)
N30.0198 (5)0.0196 (5)0.0324 (6)0.0004 (4)0.0005 (4)0.0051 (4)
C40.0205 (5)0.0201 (6)0.0218 (6)−0.0033 (4)0.0031 (4)0.0011 (5)
O40.0530 (7)0.0298 (6)0.0261 (5)0.0006 (5)0.0101 (5)−0.0058 (4)
C50.0210 (6)0.0232 (6)0.0268 (6)−0.0017 (5)0.0002 (5)0.0019 (5)
O50.0278 (5)0.0295 (5)0.0319 (5)0.0047 (4)0.0031 (4)0.0023 (4)
C60.0230 (6)0.0275 (7)0.0276 (6)−0.0062 (5)0.0014 (5)−0.0028 (5)
C70.0220 (6)0.0193 (6)0.0224 (6)−0.0016 (4)0.0008 (4)0.0027 (5)
C80.0211 (5)0.0171 (6)0.0200 (5)0.0000 (4)0.0008 (4)0.0024 (4)
C100.0199 (5)0.0154 (5)0.0206 (6)−0.0003 (4)0.0030 (4)0.0011 (4)
C240.0321 (8)0.0496 (10)0.0443 (9)0.0073 (7)0.0087 (7)−0.0022 (8)
C220.0201 (6)0.0221 (6)0.0302 (7)−0.0014 (5)−0.0026 (5)0.0013 (5)
C210.0251 (6)0.0283 (7)0.0399 (8)0.0060 (5)−0.0038 (6)0.0039 (6)
C200.0360 (8)0.0399 (9)0.0407 (9)0.0069 (7)−0.0065 (6)0.0145 (7)
C190.0365 (8)0.0484 (10)0.0342 (8)0.0019 (7)0.0019 (6)0.0147 (7)
C170.0179 (5)0.0201 (6)0.0322 (7)−0.0014 (4)−0.0028 (5)0.0049 (5)
C90.0197 (5)0.0181 (6)0.0204 (6)−0.0013 (4)0.0002 (4)0.0005 (4)
C160.0245 (6)0.0209 (6)0.0287 (6)0.0022 (5)−0.0003 (5)−0.0001 (5)
C230.0633 (11)0.0397 (9)0.0350 (9)0.0094 (8)0.0090 (8)−0.0132 (7)
C150.0308 (7)0.0183 (6)0.0430 (8)−0.0021 (5)−0.0029 (6)−0.0033 (6)
C140.0310 (7)0.0261 (7)0.0564 (10)−0.0091 (6)0.0025 (7)0.0095 (7)
C130.0379 (8)0.0373 (9)0.0390 (8)−0.0073 (7)0.0125 (6)0.0106 (7)
C120.0289 (6)0.0266 (7)0.0291 (7)−0.0011 (5)0.0076 (5)0.0032 (5)
C110.0195 (5)0.0167 (6)0.0246 (6)−0.0006 (4)0.0003 (4)0.0020 (5)
C180.0246 (6)0.0359 (8)0.0364 (8)0.0016 (6)0.0037 (5)0.0068 (6)

Geometric parameters (Å, º)

S1—C81.7507 (12)C8—C91.4914 (17)
S1—C101.7747 (12)C24—H24A0.9800
O1—N11.2229 (17)C24—H24B0.9800
N1—O21.2317 (16)C24—H24C0.9800
N1—C11.4696 (17)C22—C211.3893 (18)
C1—C61.3821 (19)C22—C171.4046 (19)
C1—C21.3841 (19)C21—C201.386 (2)
C2—C31.3833 (19)C21—H210.9500
C2—H20.9500C20—C191.381 (3)
N2—C91.3783 (15)C20—H200.9500
N2—C101.3860 (15)C19—C181.394 (2)
N2—C111.4355 (16)C19—H190.9500
C3—C41.4001 (18)C17—C181.384 (2)
C3—H30.9500C16—C111.3891 (18)
O3—C91.2107 (15)C16—C151.3903 (19)
N3—C101.2613 (16)C23—H23A0.9800
N3—C171.4186 (16)C23—H23B0.9800
C4—C51.4040 (17)C23—H23C0.9800
C4—C71.4600 (17)C15—C141.391 (2)
O4—C161.3636 (18)C15—H150.9500
O4—C231.4169 (19)C14—C131.381 (2)
C5—C61.3814 (19)C14—H140.9500
C5—H50.9500C13—C121.395 (2)
O5—C221.3658 (17)C13—H130.9500
O5—C241.4265 (19)C12—C111.3724 (19)
C6—H60.9500C12—H120.9500
C7—C81.3404 (17)C18—H180.9500
C7—H70.9500
C8—S1—C1091.89 (6)O5—C22—C17115.42 (11)
O1—N1—O2123.91 (12)C21—C22—C17119.79 (13)
O1—N1—C1118.25 (12)C20—C21—C22119.56 (14)
O2—N1—C1117.84 (13)C20—C21—H21120.2
C6—C1—C2122.26 (12)C22—C21—H21120.2
C6—C1—N1118.91 (12)C19—C20—C21121.28 (14)
C2—C1—N1118.83 (12)C19—C20—H20119.4
C3—C2—C1118.57 (13)C21—C20—H20119.4
C3—C2—H2120.7C20—C19—C18119.12 (15)
C1—C2—H2120.7C20—C19—H19120.4
C9—N2—C10117.06 (10)C18—C19—H19120.4
C9—N2—C11121.60 (10)C18—C17—C22119.63 (12)
C10—N2—C11121.34 (10)C18—C17—N3121.45 (13)
C2—C3—C4121.06 (12)C22—C17—N3118.57 (12)
C2—C3—H3119.5O3—C9—N2123.54 (11)
C4—C3—H3119.5O3—C9—C8126.13 (11)
C10—N3—C17120.27 (11)N2—C9—C8110.31 (10)
C3—C4—C5118.42 (12)O4—C16—C11115.92 (12)
C3—C4—C7124.55 (11)O4—C16—C15124.77 (13)
C5—C4—C7116.99 (11)C11—C16—C15119.31 (13)
C16—O4—C23117.08 (13)O4—C23—H23A109.5
C6—C5—C4121.06 (12)O4—C23—H23B109.5
C6—C5—H5119.5H23A—C23—H23B109.5
C4—C5—H5119.5O4—C23—H23C109.5
C22—O5—C24116.85 (12)H23A—C23—H23C109.5
C5—C6—C1118.61 (12)H23B—C23—H23C109.5
C5—C6—H6120.7C16—C15—C14119.15 (14)
C1—C6—H6120.7C16—C15—H15120.4
C8—C7—C4130.00 (12)C14—C15—H15120.4
C8—C7—H7115.0C13—C14—C15121.52 (14)
C4—C7—H7115.0C13—C14—H14119.2
C7—C8—C9119.66 (11)C15—C14—H14119.2
C7—C8—S1129.92 (10)C14—C13—C12118.78 (14)
C9—C8—S1110.27 (8)C14—C13—H13120.6
N3—C10—N2121.98 (11)C12—C13—H13120.6
N3—C10—S1127.75 (10)C11—C12—C13120.09 (14)
N2—C10—S1110.27 (8)C11—C12—H12120.0
O5—C24—H24A109.5C13—C12—H12120.0
O5—C24—H24B109.5C12—C11—C16121.13 (12)
H24A—C24—H24B109.5C12—C11—N2120.51 (12)
O5—C24—H24C109.5C16—C11—N2118.35 (12)
H24A—C24—H24C109.5C17—C18—C19120.61 (14)
H24B—C24—H24C109.5C17—C18—H18119.7
O5—C22—C21124.77 (13)C19—C18—H18119.7
O1—N1—C1—C6179.51 (12)O5—C22—C17—C18178.38 (12)
O2—N1—C1—C6−1.12 (18)C21—C22—C17—C18−0.3 (2)
O1—N1—C1—C2−0.23 (18)O5—C22—C17—N3−8.25 (17)
O2—N1—C1—C2179.14 (13)C21—C22—C17—N3173.07 (12)
C6—C1—C2—C3−0.4 (2)C10—N3—C17—C18−71.58 (18)
N1—C1—C2—C3179.33 (13)C10—N3—C17—C22115.18 (15)
C1—C2—C3—C4−0.9 (2)C10—N2—C9—O3177.23 (12)
C2—C3—C4—C51.8 (2)C11—N2—C9—O3−2.1 (2)
C2—C3—C4—C7−175.75 (13)C10—N2—C9—C8−4.25 (15)
C3—C4—C5—C6−1.5 (2)C11—N2—C9—C8176.45 (11)
C7—C4—C5—C6176.26 (13)C7—C8—C9—O37.2 (2)
C4—C5—C6—C10.3 (2)S1—C8—C9—O3−176.77 (12)
C2—C1—C6—C50.7 (2)C7—C8—C9—N2−171.26 (12)
N1—C1—C6—C5−179.01 (12)S1—C8—C9—N24.76 (13)
C3—C4—C7—C814.9 (2)C23—O4—C16—C11−172.66 (13)
C5—C4—C7—C8−162.70 (14)C23—O4—C16—C156.8 (2)
C4—C7—C8—C9172.27 (13)O4—C16—C15—C14−178.36 (13)
C4—C7—C8—S1−2.9 (2)C11—C16—C15—C141.1 (2)
C10—S1—C8—C7172.24 (13)C16—C15—C14—C13−1.2 (2)
C10—S1—C8—C9−3.25 (9)C15—C14—C13—C120.1 (2)
C17—N3—C10—N2176.56 (12)C14—C13—C12—C111.1 (2)
C17—N3—C10—S1−4.5 (2)C13—C12—C11—C16−1.1 (2)
C9—N2—C10—N3−179.07 (12)C13—C12—C11—N2177.44 (13)
C11—N2—C10—N30.23 (19)O4—C16—C11—C12179.55 (12)
C9—N2—C10—S11.80 (14)C15—C16—C11—C120.03 (19)
C11—N2—C10—S1−178.90 (9)O4—C16—C11—N20.94 (17)
C8—S1—C10—N3−178.06 (13)C15—C16—C11—N2−178.58 (12)
C8—S1—C10—N21.01 (9)C9—N2—C11—C12−79.97 (16)
C24—O5—C22—C21−4.2 (2)C10—N2—C11—C12100.76 (15)
C24—O5—C22—C17177.21 (13)C9—N2—C11—C1698.65 (14)
O5—C22—C21—C20−177.81 (14)C10—N2—C11—C16−80.62 (15)
C17—C22—C21—C200.7 (2)C22—C17—C18—C19−0.5 (2)
C22—C21—C20—C19−0.4 (2)N3—C17—C18—C19−173.70 (14)
C21—C20—C19—C18−0.5 (3)C20—C19—C18—C170.9 (2)

Hydrogen-bond geometry (Å, º)

D—H···AD—HH···AD···AD—H···A
C3—H3···S10.952.583.2594 (14)128
C3—H3···O1i0.952.573.3320 (18)138
C5—H5···O3ii0.952.583.3938 (17)145
C7—H7···O3ii0.952.403.1982 (15)142
C21—H21···N3iii0.952.523.4576 (19)170
C23—H23C···O1iv0.982.553.238 (2)127

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x, −y+1, −z; (iii) −x+1, y−1/2, −z+1/2; (iv) −x, y+3/2, −z+1/2.

References

  • Akhtar, J., Hameed, S., Al-Masoudi, N. A. & Khan, K. M. (2007). Heteroat. Chem. 18, 316–322.
  • Bahoussi, R. I., Djafri, A., Chouaih, A., Djafri, A. & Hamzaoui, F. (2017). Acta Cryst. E73, 173–176. [PMC free article] [PubMed]
  • Becke, A. D. (1997). J. Chem. Phys. 107, 8554–8560.
  • Benhalima, N., Toubal, K., Chouaih, A., Chita, G., Maggi, S., Djafri, A. & Hamzaoui, F. (2011). J. Chem. Crystallogr. 41, 1729–1736.
  • Boulakoud, M., Toubal, K., Yahiaoui, S., Chouaih, A., Chita, G., Djafri, A. & Hamzaoui, F. (2015). J. Struct. Chem. 56, 1373–1378.
  • Dennington, R., Keith, T. & Millam, J. (2007). GAUSSVIEW4.1. Semichem Inc., Shawnee Mission, KS, USA.
  • Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  • Frisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.
  • Khelloul, N., Toubal, K., Benhalima, N., Rahmani, R., Chouaih, A., Djafri, A. & Hamzaoui, F. (2016). Acta Chim. Slov. 63, 619–626. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  • Nonius (1998). KappaCCD. Nonius BV, Delft. The Netherlands.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276. Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Rahmani, R., Djafri, A., Daran, J.-C., Djafri, A., Chouaih, A. & Hamzaoui, F. (2016). Acta Cryst. E72, 155–157.
  • Rauhut, G. & Pulay, P. (1995). J. Phys. Chem. 99, 3093–3100.
  • Saeed, S., Rachid, N., Jones, P. G., Hussain, R. & Bhatti, M. H. (2010). Cent. Eur. J. Chem. 8, 550–558.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. [PMC free article] [PubMed]
  • Shokol, T. V., Gorbulenko, N. V., Turov, A. V. & Khilya, V. P. (2013). Chem. Heterocycl. Compd, 49, 325–330.
  • Smokal, V., Derkowska, B., Czaplicki, R., Krupka, O., Kolendo, A. & Sahraoui, B. (2009). Opt. Mater. 31, 554–557.
  • Toubal, K., Djafri, A., Chouaih, A. & Talbi, A. (2012). Molecules, 17, 3501–3509. [PubMed]

Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography