PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of scirepAboutEditorial BoardFor AuthorsScientific Reports
 
Sci Rep. 2017; 7: 45925.
Published online 2017 April 5. doi:  10.1038/srep45925
PMCID: PMC5381112

Chiral nanoparticles in singular light fields

Abstract

The studying of how twisted light interacts with chiral matter on the nanoscale is paramount for tackling the challenging task of optomechanical separation of nanoparticle enantiomers, whose solution can revolutionize the entire pharmaceutical industry. Here we calculate optical forces and torques exerted on chiral nanoparticles by Laguerre–Gaussian beams carrying a topological charge. We show that regardless of the beam polarization, the nanoparticles are exposed to both chiral and achiral forces with nonzero reactive and dissipative components. Longitudinally polarized beams are found to produce chirality densities that can be 109 times higher than those of transversely polarized beams and that are comparable to the chirality densities of beams polarized circularly. Our results and analytical expressions prove useful in designing new strategies for mechanical separation of chiral nanoobjects with the help of highly focussed beams.

The current progress of pharmaceutical research and technology is slowed down by the absence of a unified method of separation of enentiometic forms of chiral drug molecules, which often exhibit profoundly different interactions with biological tissues1. The separation of molecular enantiomers is an extremely difficult task, because they are indistinguishable through interactions with achiral objects and have mostly identical physical properties, such as densities, solubilities, boiling and melting points, etc.2. Chiral chromatography, derivatization, and other well developed techniques of racemate resolution are useful on analytical scale3,4, but become highly inefficient and quite expensive where kilograms of different chiral mixtures need to be quickly and reliably purified5.

A promising approach to tackling this problem is in using enantioselective mechanical forces induced by chiral light6,7,8,9,10. Unfortunately, the interaction of circular polarized light with chiral molecules themselves is naturally weak due to the smallness of molecules compared to the optical wavelength and because of the relatively small number of atoms constituting them11,12. A much stronger chiroptical response is featured by chiral plasmonic complexes13,14, chiral semiconductor nanocrystals15,16,17,18,19,20,21,22,23, quantum-dot molecules24, helix-type quantum-dot supercrystals25, and ‘Swiss-roll’ structures26. While all of them can in principle be used to advance existing and create new techniques for sensing, separation, and delivery of enantiomeric drug molecules, semiconductor nanocrystals appear to be especially promising due to their resistance to photobleaching, tuneable energy spectrum, and highly selective interaction with both enantiomeric molecules and living tissues27,28.

Our recent study of interaction of chiral nanoparticles with circularly polarized light has revealed an optimal field pattern which eliminates the achiral forces acting on the nanoparticles and maximizes the chiral ones29. This paper continues our research on the interaction of nanostructured chiral matter with chiral light fields. We use the dipolar approximation to analytically calculate optical forces that are exerted on small chiral nanoparticles by the electromagnetic fields of Laguerre-Gaussian beams of different polarizations. Since the chiral part of the force is induced by chirality flow and the gradient of chirality density, these quantities are also treated analytically and thoroughly analysed. We hope that this study will be useful in the development of new enantioseparation techniques and stimulate new experiments.

A small chiral nanoparticle can be modelled as a point dipole of electric polarizability An external file that holds a picture, illustration, etc.
Object name is srep45925-m1.jpg and mixed electric-magnetic polarizability An external file that holds a picture, illustration, etc.
Object name is srep45925-m2.jpg. Suppose that such a dipole is exposed to the field of a laser beam of frequency ω propagating in the positive direction of the z axis. To study the chiral effects associated with the inhomogeneity of the beam in the transverse plane, we go beyond the scalar approximation and define the electromagnetic field of the beam through its vector potential An external file that holds a picture, illustration, etc.
Object name is srep45925-m3.jpg, where

An external file that holds a picture, illustration, etc.
Object name is srep45925-m4.jpg

is the time-independent phasor, e is the unit polarization vector, k = ω/c is the wave number, and u(r) the complex amplitude of the beam. In what follows, we restrict ourselves to considering Laguerre-Gaussian beams, whose amplitude is given by

An external file that holds a picture, illustration, etc.
Object name is srep45925-m5.jpg

where

An external file that holds a picture, illustration, etc.
Object name is srep45925-m6.jpg
An external file that holds a picture, illustration, etc.
Object name is srep45925-m7.jpg

alm is the normalization constant, An external file that holds a picture, illustration, etc.
Object name is srep45925-m8.jpg is the waist radius, An external file that holds a picture, illustration, etc.
Object name is srep45925-m9.jpg is the beam width, An external file that holds a picture, illustration, etc.
Object name is srep45925-m10.jpg is the associated Laguerre polynomial, An external file that holds a picture, illustration, etc.
Object name is srep45925-m11.jpg is the wavefront curvature radius, An external file that holds a picture, illustration, etc.
Object name is srep45925-m12.jpg is the phase delay, l = 0, ±1, ±2, … is the topological charge of the beam, and m = 0, 1, 2, … is the number of nodes in the radial direction.

The electric and magnetic fields of the beam, defined similar to the vector potential as An external file that holds a picture, illustration, etc.
Object name is srep45925-m13.jpg and An external file that holds a picture, illustration, etc.
Object name is srep45925-m14.jpg, are given in the Lorenz gauge by the phasors

An external file that holds a picture, illustration, etc.
Object name is srep45925-m15.jpg
An external file that holds a picture, illustration, etc.
Object name is srep45925-m16.jpg

where An external file that holds a picture, illustration, etc.
Object name is srep45925-m17.jpg is the impedance of free space. By substituting Eq. (1) into Eqs (5) and (6) and using the paraxial approximation An external file that holds a picture, illustration, etc.
Object name is srep45925-m18.jpg, we arrive at the following general expressions for the electric and magnetic fields:

An external file that holds a picture, illustration, etc.
Object name is srep45925-m19.jpg
An external file that holds a picture, illustration, etc.
Object name is srep45925-m20.jpg

where

An external file that holds a picture, illustration, etc.
Object name is srep45925-m21.jpg

and we have taken into account that An external file that holds a picture, illustration, etc.
Object name is srep45925-m22.jpg.

The fields are normalized to the total power carried by the beam, which is given by the z component of its Poynting vector An external file that holds a picture, illustration, etc.
Object name is srep45925-m23.jpg integrated over the entire transverse plane,

An external file that holds a picture, illustration, etc.
Object name is srep45925-m24.jpg

The time-averaged forces and torques acting on a chiral nanoparticle are given by30,31

An external file that holds a picture, illustration, etc.
Object name is srep45925-m25.jpg
An external file that holds a picture, illustration, etc.
Object name is srep45925-m26.jpg
An external file that holds a picture, illustration, etc.
Object name is srep45925-m27.jpg

where An external file that holds a picture, illustration, etc.
Object name is srep45925-m28.jpg, An external file that holds a picture, illustration, etc.
Object name is srep45925-m29.jpg is the chirality density or simply ‘chirality’, An external file that holds a picture, illustration, etc.
Object name is srep45925-m30.jpg is the chirality flow, and An external file that holds a picture, illustration, etc.
Object name is srep45925-m31.jpg and An external file that holds a picture, illustration, etc.
Object name is srep45925-m32.jpg are the electric and magnetic ellipticities. The signs of An external file that holds a picture, illustration, etc.
Object name is srep45925-m33.jpg and An external file that holds a picture, illustration, etc.
Object name is srep45925-m34.jpg distinguish between the two nanoparticle enantiomers and determine the directions of the chiral force and torque. In what follows, we shall focus on An external file that holds a picture, illustration, etc.
Object name is srep45925-m35.jpg and An external file that holds a picture, illustration, etc.
Object name is srep45925-m36.jpg while assuming that the achiral force is cancelled or minimized by the off-resonant excitation of nanoparticles31.

The chiral optical force produced by a Laguerre-Gaussian beam can be used to separate chiral nanoparticles exhibiting sufficiently strong circular dichroism (CD). The CD signal is proportional to the imaginary part of the electric-magnetic polarizability, An external file that holds a picture, illustration, etc.
Object name is srep45925-m37.jpg, and determines the degree of enantioselectivity in the nanoparticle interaction with chiral light29. Of course, in addition to pure electric and electric-magnetic polarizabilities, nanoparticles also possess a much smaller magnetic polarizability, An external file that holds a picture, illustration, etc.
Object name is srep45925-m38.jpg, which is ignored in Eqs (11,12,13). Since the three polarizabilities of a nanoparticle of size a are related as the three consecutive powers of kaAn external file that holds a picture, illustration, etc.
Object name is srep45925-m39.jpg — the assumption of zero magnetic polarizability is well justified as long as ka [double less-than sign] 1. But even if the nanoparticle is not small compared to the optical wavelength, its pure magnetic response contributes to the achiral component of the optical force and does not affect the chiral one31.

Results and Discussion

We begin by analysing how a chiral dipole interacts with a light beam produced by a transversely polarised vector potential. By setting e = ex in Eqs (7) and (8), we find that the electric and magnetic fields of the beam are given by

An external file that holds a picture, illustration, etc.
Object name is srep45925-m40.jpg
An external file that holds a picture, illustration, etc.
Object name is srep45925-m41.jpg

These fields are almost completely transverse, with small longitudinal components originating from the dependence of u on the transverse coordinates.

Using the obtained fields in the above definitions yields

An external file that holds a picture, illustration, etc.
Object name is srep45925-m42.jpg
An external file that holds a picture, illustration, etc.
Object name is srep45925-m43.jpg
An external file that holds a picture, illustration, etc.
Object name is srep45925-m44.jpg
An external file that holds a picture, illustration, etc.
Object name is srep45925-m45.jpg

where An external file that holds a picture, illustration, etc.
Object name is srep45925-m46.jpg is the local intensity of the beam. Equations (10) and (19) give the normalization constant of the form

An external file that holds a picture, illustration, etc.
Object name is srep45925-m47.jpg

where An external file that holds a picture, illustration, etc.
Object name is srep45925-m48.jpg for n = 1, 2, 3, … and (x)0 = 1 is the Pochhammer symbol32.

One can see that a chiral dipole illuminated by a transversely polarized Laguerre-Gaussian beam carrying a nonzero orbital angular momentum An external file that holds a picture, illustration, etc.
Object name is srep45925-m49.jpg exhibits both achiral and chiral forces, each of which has a reactive and dissipative components. Since the characteristic ρ- and z-scales of chirality variations are w and z0, and z0 [dbl greater-than sign] w, the reactive chiral force has a dominant ρ component and the dissipative chiral force has a dominant z component, which are about z0/w times larger than the nondominant ones:

An external file that holds a picture, illustration, etc.
Object name is srep45925-m50.jpg

Figure 1 shows chirality density, reactive part of the chiral force, and dissipative part of the chiral force produced by the transversely polarized Laguerre-Gaussian beam with l = m = 1. The sign of chirality near the center of this beam and the beams with l > 0 coincides with the sign of chirality of right circularly polarized light. For l = ±1 the chirality on the beam axis scales like [proportional, variant] m + 1. Panels (a) and (b) of the figure illustrate the fact that the dissipative part of chiral force, given by the second term in Eq. (21), is fully determined by the chirality density. For l = 1 this density peaks at the beam axis, where the optical intensity is zero. For larger l the central peak disappears, because the first derivative of intensity with respect to the radius vanishes at ρ = 0, and the transverse distribution of chirality density has a ring structure. In this case, the maximal chirality resides in the first (closest to the axis) ring, near the point where function I(ρ) has an inflection. On the other hand, the reactive part of the chiral force scales in proportion to the first derivative of chirality density. Panel (c) shows that, depending on the sign of An external file that holds a picture, illustration, etc.
Object name is srep45925-m51.jpg, chiral nanoparticles are either pulled into the area of negative chirality near the beam axis or pulled out of it.

Figure 1
(a) Normalized chirality density, (b) reactive component of chiral force, and (c) dissipative component of chiral force in planes z = 0 (left panels) and y = 0 (right panels) for transversely polarized Laguerre-Gaussian ...

Another beam of practical interest is the one with a circularly polarized vector potential. Its electric and magnetic fields are

An external file that holds a picture, illustration, etc.
Object name is srep45925-m52.jpg
An external file that holds a picture, illustration, etc.
Object name is srep45925-m53.jpg

where An external file that holds a picture, illustration, etc.
Object name is srep45925-m54.jpg and the plus or minus sign corresponds to, respectively, the left circularly polarized (LCP) or right circularly polarized (RCP) vector potential. Similar to the previous case, the field polarization nearly coincides with the polarization of A0.

The fields of circularly polarized beam (CPB) yield the following chirality density, chirality flow, and Poynting vector:

An external file that holds a picture, illustration, etc.
Object name is srep45925-m55.jpg
An external file that holds a picture, illustration, etc.
Object name is srep45925-m56.jpg
An external file that holds a picture, illustration, etc.
Object name is srep45925-m57.jpg

where

An external file that holds a picture, illustration, etc.
Object name is srep45925-m58.jpg

and the normalization constant is given by Eq. (20).

Much like the transversely polarized beam (TPB) of linear polarization, the CPB carries angular momentum Lz = lP/() and exerts on a chiral dipole two kinds of reactive and dissipative forces. In contrast to the linearly polarized beam, the chirality flow of the CPB exceeds the curl of the Poynting vector throughout the entire space except the immediate vicinity of the phase singularity. As a consequence, the dissipative part of the chiral force is, again, proportional to chirality, An external file that holds a picture, illustration, etc.
Object name is srep45925-m59.jpg. Figure 2 shows chirality density and reactive part of chiral force produced by the CPB with l = m = 1. The distribution of chirality density follows the intensity profile of the beam and is nonzero even in the absence of topological charge. The characteristic radius of this distribution is larger than in the case of TPB, which is evidenced by the comparison of Fig. 2(a) with Fig. 1(a) and Eq. (24) with Eq. (16). The radial component of the reactive chiral force is proportional to the derivative An external file that holds a picture, illustration, etc.
Object name is srep45925-m60.jpg of beam intensity and, therefore, has a complex ring structure even for small m. At the same time, the magnitude of this force decays with the distance from the beam axis more gradually than in the case of TPB.

Figure 2
The same as in Fig. 1(a) and (b) but for left circularly polarized Laguerre-Gaussian beam with l = m = 1; the chirality and the magnitude of the force are in the units of An external file that holds a picture, illustration, etc.
Object name is srep45925-m85.jpg and An external file that holds a picture, illustration, etc.
Object name is srep45925-m86.jpg.

Finally, we consider a Laguerre-Gaussian beam with a longitudinally polarized vector potential (e = ez), which does not have a plane-wave analogue. The electric and magnetic fields of this beam,

An external file that holds a picture, illustration, etc.
Object name is srep45925-m61.jpg
An external file that holds a picture, illustration, etc.
Object name is srep45925-m62.jpg

both vanish for purely transverse plane waves, with u = const and l = 0. With these fields, the above definitions give

An external file that holds a picture, illustration, etc.
Object name is srep45925-m63.jpg
An external file that holds a picture, illustration, etc.
Object name is srep45925-m64.jpg
An external file that holds a picture, illustration, etc.
Object name is srep45925-m65.jpg

Some algebra leads to the normalization constant

An external file that holds a picture, illustration, etc.
Object name is srep45925-m66.jpg

In contrast to the previous two cases, the longitudinally polarized beam (LPB) does not carry an angular momentum in the z direction, because An external file that holds a picture, illustration, etc.
Object name is srep45925-m67.jpg. But similar to the CPB, for An external file that holds a picture, illustration, etc.
Object name is srep45925-m68.jpg we have An external file that holds a picture, illustration, etc.
Object name is srep45925-m69.jpg and An external file that holds a picture, illustration, etc.
Object name is srep45925-m70.jpg. The chirality density produced by a LPB is similar in form to Eq. (16). However, due to different intensities of the two beams, their actual chiralities can differ by many orders of magnitude. This can be seen from Eqs (16), (20), (24), (30), and (33), which give the following ratios of chirality density of LPB to the chiralities of TPB and CPB far away from the phase singularity:

An external file that holds a picture, illustration, etc.
Object name is srep45925-m71.jpg
An external file that holds a picture, illustration, etc.
Object name is srep45925-m72.jpg

where |u| is the profile of either LPB or CPB, and we have taken into account that for CPB An external file that holds a picture, illustration, etc.
Object name is srep45925-m73.jpg. It is easy to see that An external file that holds a picture, illustration, etc.
Object name is srep45925-m74.jpg, where An external file that holds a picture, illustration, etc.
Object name is srep45925-m75.jpg is the angular radius of cone which is asymptotically approached by the 1/e2 irradiance contours of the beam. Hence, one can enhance the chirality of LPB as compared to the chirality of TPB by simply reducing the divergence of the beam. In the above examples, with z0 = 100 m and λ = 500 nm, the enhancement factor exceeds 109. By further estimating near z = 0 that ρ ~ w0 and An external file that holds a picture, illustration, etc.
Object name is srep45925-m76.jpg, we find from Eq. (35) that An external file that holds a picture, illustration, etc.
Object name is srep45925-m77.jpg. This result implies that the LPBs with m = 0 can produce chiralities that are comparable in strength to the chirality of circularly polarized Gaussian beam of zero topological charge.

The z component of the Poynting vector of the LPB with l = m = 1 is shown in Fig. 3. An interesting feature to note here is that the Poynting vector reaches its maximal value on the beam axis. This feature originates from the derivative in Eq. (32) and is specific to LPBs with l = ±1. Indeed, for ρ  0 one can show that

Figure 3
Magnitude of Poynting vector of longitudinally polarized Laguerre-Gaussian beam with l = m = 1; the unit of measurement is An external file that holds a picture, illustration, etc.
Object name is srep45925-m87.jpg.
An external file that holds a picture, illustration, etc.
Object name is srep45925-m78.jpg

By considering here that An external file that holds a picture, illustration, etc.
Object name is srep45925-m79.jpg, for l = ±1 we get An external file that holds a picture, illustration, etc.
Object name is srep45925-m80.jpg, where An external file that holds a picture, illustration, etc.
Object name is srep45925-m81.jpg.

As a concluding remark, we would like to note the need of a tradeoff between the magnitude of the enantioselective optical forces exerted on chiral nanoparticles by TPB and LPB and the degree of spatial separation provided by them. This conclusion simply follows from the fact that these forces are determined by the derivatives of the beam intensity and, therefore, are the stronger the smaller the typical length scale of intensity variations. Hence, an increase of the beam waste w0 or a reduction of the number of radial nodes m for a given beam power inevitably reduces the chiral optical forces.

In conclusion, we have calculated optical forces and torques exerted on chiral nanoparticles by Laguerre-Gaussian beams of transverse, circular, and longitudinal polarizations. The chirality density of the longitudinally polarized beam was found to be comparable to the chirality density of the circularly polarized beam. For a weakly divergent beam, it can exceed the chirality of the transversely polarized beam by a factor of 109. It was also shown that regardless of their polarization, Laguerre-Gaussian beams with topological charges exert on the nanoparticles chiral and achiral forces with both reactive and dissipative components. We believe that our findings and derived analytical expressions will help to solve the problem of optomechanical separation of nanoparticle enantiomers.

Additional Information

How to cite this article: Vovk, I. A. et al. Chiral nanoparticles in singular light fields. Sci. Rep. 7, 45925; doi: 10.1038/srep45925 (2017).

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments

This work was funded by Grant 14.B25.31.0002 of the Ministry of Education and Science of the Russian Federation. A.S.B. and I.D.R. also gratefully acknowledge the financial support from the Ministry of Education and Science of the Russian Federation through its Scholarship of the President of the Russian Federation for young scientists and its Grant of the President of the Russian Federation for young scientists MD-1294.2017.2 (2017–2018). W.Z. thanks Natural Science Foundation of Shanghai for its Grant 17ZR1414300.

Footnotes

The authors declare no competing financial interests.

Author Contributions I.D.R., A.G.S., A.V.B. and A.V.F. jointly suggested the study conducted by I.A.V., W.Z. and A.S.B. Namely, I.A.V., W.Z. and A.S.B., performed analytical calculations and analyzed the obtained expressions, drew the figures, and prepared the first draft of the manuscript. I.D.R., A.G.S., A.V.B. and A.V.F. supervised the study, contributed to the analysis and interpretation of the results, helped to formulate and present the research outcomes, and thoroughly edited the manuscript.

References

  • Crossley R. Chirality and the Biological Activity of Drugs (Boca Raton: CRC Press Inc., 1995).
  • Li B. & Haynie D. T. Chiral drug separation. Encycl. Chem. Process. 1, 449–458 (2006).
  • Gübitz G. & Schmid M. G. Chiral separation principles in chromatographic and electromigration techniques. Mol. Biotechnol. 32, 159–179 (2006). [PubMed]
  • Welch C. J. Chiral chromatography in support of pharmaceutical process research. In Cox G. B. (ed.) Preparative Enantioselective Chromatography (Blackwell Publishing Ltd, Oxford, UK, 2005).
  • Wang Y. & Chen A. M. Enantioenrichment by crystallization. Org. Process Res. Dev. 12, 282–290 (2008).
  • Ho C.-S., Garcia-Etxarri A., Zhao Y. & Dionne J. Enhancing enantioselective absorption using dielectric nanospheres. ACS Photonics 4, 197–203 (2017).
  • Baimuratov A. S. et al. . Mixing of quantum states: A new route to creating optical activity. Sci. Rep. 6, 5 (2016). [PMC free article] [PubMed]
  • Hayat A., Mueller J. P. B. & Capasso F. Lateral chirality-sorting optical forces. Proc. Natl. Acad. Sci. 112, 13190–13194 (2015). [PubMed]
  • Tkachenko G. & Brasselet E. Optofluidic sorting of material chirality by chiral light. Nat. Commun. 5, 3577 (2014). [PubMed]
  • Cameron R. P., Barnett S. M. & Yao A. M. Discriminatory optical force for chiral molecules. New J. Phys. 16, 013020 (2014).
  • He Y., Bo W., Dukor R. K. & Nafie L. A. Determination of absolute configuration of chiral molecules using vibrational optical activity: A review. Appl. Spectrosc. 65, 699–723 (2011). [PubMed]
  • Quack M., Stohner J. & Willeke M. High-resolution spectroscopic studies and theory of parity violation in chiral molecules. Annu. Rev. Phys. Chem. 59, 741–769 (2008). [PubMed]
  • Govorov A. O. et al. . Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects. J. Mater. Chem. 21, 16806 (2011).
  • Govorov A. O., Fan Z., Hernandez P., Slocik J. M. & Naik R. R. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects. Nano Lett. 10, 1374–1382 (2010). [PubMed]
  • Tepliakov N. V. et al. . Engineering optical activity of semiconductor nanocrystals via ion doping. Nanophotonics 5, 573–578 (2016).
  • Rukhlenko I. D., Baimuratov A. S., Tepliakov N. V., Baranov A. V. & Fedorov A. V. Shape-induced optical activity of chiral nanocrystals. Opt. Lett. 41, 2438–2441 (2016). [PubMed]
  • Tepliakov N. V., Baimuratov A. S., Baranov A. V., Fedorov A. V. & Rukhlenko I. D. Optical activity of chirally distorted nanocrystals. J. Appl. Phys. 119, 194302 (2016).
  • Purcell-Milton F., Govan J., Mukhina M. V. & Gun’ko Y. K. The chiral nano-world: Chiroptically active quantum nanostructures. Nanoscale Horiz. 1, 14–26 (2016).
  • Mukhina M. V. et al. . Intrinsic chirality of CdSe/ZnS quantum dots and quantum rods. Nano Lett. 15, 2844–2851 (2015). [PubMed]
  • Moloney M. P., Govan J., Loudon A., Mukhina M. & Gun’ko Y. K. Preparation of chiral quantum dots. Nature Protoc. 10, 558–573 (2015). [PubMed]
  • Baimuratov A. S., Rukhlenko I. D., Gun’ko Y. K., Baranov A. V. & Fedorov A. V. Dislocation-induced chirality of semiconductor nanocrystals. Nano Lett. 15, 1710–1715 (2015). [PubMed]
  • Yang B. et al. . Dislocation-induced nanoparticle decoration on a GaN nanowire. ACS Appl. Mater. Interfaces 7, 2790–2796 (2015). [PubMed]
  • Baimuratov A. S. et al. . Giant optical activity of quantum dots, rods, and disks with screw dislocations. Sci. Rep. 5, 14712 (2015). [PMC free article] [PubMed]
  • Shlykov A. I., Baimuratov A. S., Baranov A. V., Fedorov A. V. & Rukhlenko I. D. Optically active quantum-dot molecules. Opt. Express 25, 3811–3825 (2017). [PubMed]
  • Baimuratov A. S., Gun’ko Y. K., Baranov A. V., Fedorov A. V. & Rukhlenko I. D. Chiral quantum supercrystals with total dissymmetry of optical response. Sci. Rep. 6, 23321 (2016). [PMC free article] [PubMed]
  • Pendry J. B. A chiral route to negative refraction. Science 306, 1353–1355 (2004). [PubMed]
  • Mukhina M. V. et al. . Molecular recognition of biomolecules by chiral CdSe quantum dots. Sci. Rep. 6, 24177 (2016). [PMC free article] [PubMed]
  • Gun’ko Y. K. et al. . Chiral nanomaterials and their applications. In META'15 Proceedings 1575–1576 (2015).
  • Rukhlenko I. D. et al. . Completely chiral optical force for enantioseparation. Sci. Rep. 6, 36884 (2016). [PMC free article] [PubMed]
  • Ding K., Ng J., Zhou L. & Chan C. T. Realization of optical pulling forces using chirality. Phys. Rev. A 89, 063825 (2014).
  • Canaguier-Durand A., Hutchison J. A., Genet C. & Ebbesen T. W. Mechanical separation of chiral dipoles by chiral light. New J. Phys. 15, 123037 (2013).
  • Abramowitz M. & Stegun I. A. (eds) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing edn (New York: Dover, 1972).

Articles from Scientific Reports are provided here courtesy of Nature Publishing Group