PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actae2this articlesearchopen accesssubmitActa Crystallographica Section E: Crystallographic CommunicationsActa Crystallographica Section E: Crystallographic Communications
 
Acta Crystallogr E Crystallogr Commun. 2017 March 1; 73(Pt 3): 459–462.
Published online 2017 February 28. doi:  10.1107/S205698901700281X
PMCID: PMC5347077

Crystal structure of (2,2′-bi­pyridine-κ2 N,N′)bis­(3,5-di-tert-butyl-o-benzo­quinonato-κ2 O,O′)ruthenium(II)

Abstract

In the title mononuclear complex, [Ru(C14H20O2)2(C10H8N2)], the RuII ion has a distorted octa­hedral coordination environment defined by two N atoms of the chelating 2,2′-bi­pyridine ligand and four O atoms from two 3,5-di-tert-butyl-o-benzo­quinone ligands. In the crystal, the complex mol­ecules are linked by inter­molecular C—H(...)O hydrogen bonds and π–π stacking inter­actions between the 2,2′-bi­pyridine ligands [centroid–centroid distance = 3.538 (3) Å], resulting in a layer structure extending parallel to the ab plane.

Keywords: crystal structure, Ru(II) complex, π–π stacking, 3,5-di-tert-butyl-o-benzo­quinone, 2,2′-bi­pyridine

Chemical context  

The coordination chemistry of o-quinone ligands has been a subject of inter­est since the beginning of the century, but only within the past decade have detailed studies on the composition and properties of o-quinone complexes been carried out. It has been reported that o-quinone derivatives are non-innocent electroactive ligands that can be found as neutral quinones, radical semi­quinones or dianionic catecholates (Lever et al., 1988  ). The coordination chemistry of ruthenium complexes has been studied over the past few decades because of their versatile and diverse applications in mol­ecular catalysis (Pagliaro et al., 2005  ; Ramakrishna & Bhat, 2011  ) and bioinorganic chemistry (van Rijt & Sadler, 2009  ). Ruthenium complexes with two o-quinone derivatives and one 2,2′-bi­pyridine (bpy) ligand, namely [Ru(bpy)(C6H4O2)2] and [Ru(bpy)(C14H20O2)2] (title compound), have been investigated by using various experimental techniques (Lever et al., 1988  ). Although the ruthenium metals in these complexes potentially could be in the (II), (III) or (IV) oxidation state, according to the oxidation states of the two o-quinone ligands, the state of the metals was confirmed to be bivalent by photoelectron spectroscopy. In order to obtain ruthenium(III) species, it was necessary to oxidize the complexes by silver perchlorate in non-aqueous media. Lever et al. (1988  ) concluded that the complexes are best regarded as RuII(bpy)(sq)2 (sq: semi­quinone anion-radical) with significant mixing of metal and ligand orbitals through Ru–sq π back-donation, which results in elongation of the C—O bonds of o-quinone ligands. This elongation has been demonstrated for [Ru(bpy)(C6H4O2)2] by X-ray single crystal analysis, but the structure of the title compound has not previously been characterized.

An external file that holds a picture, illustration, etc.
Object name is e-73-00459-scheme1.jpg

Structural commentary  

In the title compound, the RuII ion has a distorted octa­hedral RuN2O4 coordination environment defined by two 3,5-di-tert-butyl-o-benzosemi­quinone anion-radicals and one 2,2′-bi­pyridine ligand (Fig. 1  ). The coordination environment is identified by Ru—O and Ru—N bonds (Table 1  ). The C—N and C—C bond lengths in the 2,2′-bi­pyridine ligand are normal for 2-substituted pyridine derivatives (Krämer & Fritsky, 2000  ; Strotmeyer et al., 2003  ; Moroz et al., 2012  ). The benzosemi­quinone ligands exhibit almost equivalent C—O distances (Table 1  ). These bond lengths are inter­mediate between values expected for the semi­quinone (1.29 Å) and catecholate (1.34 Å) forms (Buchanan et al., 1978  ). The Ru—O, Ru—N, C—O and C—C bond lengths in the title complex are very close to those observed in [Ru(bpy)(C6H4O2)2] (Lever et al., 1988  ).

Figure 1
The mol­ecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level.
Table 1
Selected bond lengths (Å)

Supra­molecular features  

In the crystal, the complex mol­ecules are linked via C—H(...)O hydrogen bonds (Table 2  ) and π–π stacking inter­actions between inversion-related 2,2′-bi­pyridine ligands [centroid–centroid distance = 3.538 (3) Å], which results in a layer structure parallel to the ab plane (Figs. 2  and 3  ).

Figure 2
A packing view of the title compound with the C—H(...)O and π–π inter­actions shown as dashed lines.
Figure 3
A packing diagram of the title compound viewed along the b axis.
Table 2
Hydrogen-bond geometry (Å, °)

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.37, update May 2016; Groom et al., 2016  ) gave 14 hits for mononuclear ruthenium complexes with 3,5-di-tert-butyl-o-benzo­quinone ligands in three possible catecholate, semi­quinone and quinone forms (CSD refcodes: EHUMEZ, EHUMID, EHUMOJ, FAGKON, FAGKON10, FIHQOC, FIRVIL, JECHII, JECHOO, MAFHOR, SAHHUF, SOCCAO, VINZIB, WUPGUJ).

Synthesis and crystallization  

3,5-Di-tert-butyl-o-benzo­quinone (0.2 g, 0.90 mmol) was added to 20 ml dry methanol and then tri­ethyl­amine (0.181 g, 1.8 mmol) was added dropwise and the resultant mixture was stirred for 5 min. Ru(bpy)2Cl2 (0.288 g, 0.45 mmol) was then added to the solution and the contents were refluxed for 6 h. After refluxing, the reaction mixture was cooled down to room temperature and the contents were filtered off. The obtained residue was washed with cold methanol and dried in vacuo (yield: 0.160 g, 70%). Slow evaporation of a solution of the compound in a CH2Cl2–MeOH mixture (1:1, v/v) yielded single crystals suitable for X-ray diffraction. Crystals of title compound gave no EPR signal at room and liquid nitro­gen temperatures, and thus are diamagnetic.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3  . H atoms of the methyl groups were located in a difference Fourier map and refined as part of rigid rotating groups, with C—H = 0.96 Å and U iso(H) = 1.5U eq(C). The remaining (aromatic) H atoms were placed geometrically and refined using a riding model, with C—H = 0.93 Å and U iso(H) = 1.2U eq(C).

Table 3
Experimental details

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901700281X/is5467sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901700281X/is5467Isup2.hkl

CCDC reference: 1533648

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Dr Igor Fritsky and Dr Musheer Ahmad for important discussions.

supplementary crystallographic information

Crystal data

[Ru(C14H20O2)2(C10H8N2)]Z = 2
Mr = 697.85F(000) = 732
Triclinic, P1Dx = 1.319 Mg m3
a = 10.125 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.325 (5) ÅCell parameters from 1535 reflections
c = 17.419 (5) Åθ = 2.0–25.0°
α = 76.583 (5)°µ = 0.49 mm1
β = 83.238 (5)°T = 100 K
γ = 85.777 (5)°Block, red
V = 1756.9 (13) Å30.21 × 0.17 × 0.13 mm

Data collection

Bruker SMART APEX CCD diffractometer6058 independent reflections
Radiation source: fine-focus sealed tube4508 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
/w–scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −12→9
Tmin = 0.902, Tmax = 0.925k = −12→12
8836 measured reflectionsl = −20→20

Refinement

Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.142w = 1/[σ2(Fo2) + (0.0802P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
6058 reflectionsΔρmax = 0.95 e Å3
418 parametersΔρmin = −0.48 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ru10.23460 (4)0.24040 (4)0.88962 (2)0.02318 (15)
O10.3873 (3)0.2156 (3)0.81046 (19)0.0282 (8)
O20.2021 (3)0.4171 (3)0.81903 (18)0.0248 (7)
O30.3497 (3)0.3434 (3)0.93673 (17)0.0230 (7)
O40.1382 (3)0.1589 (3)0.82104 (18)0.0265 (7)
N10.2578 (4)0.0644 (4)0.9718 (2)0.0218 (8)
N20.0725 (3)0.2515 (4)0.9701 (2)0.0195 (8)
C10.2025 (5)0.1849 (5)0.7483 (3)0.0302 (12)
C20.1427 (6)0.1768 (5)0.6815 (3)0.0345 (12)
H20.05440.15390.68680.041*
C30.2142 (6)0.2025 (5)0.6076 (3)0.0405 (14)
C40.1509 (6)0.2096 (6)0.5313 (3)0.0476 (15)
C50.1523 (8)0.3538 (7)0.4812 (4)0.071 (2)
H5A0.10630.41270.51190.107*
H5B0.10870.35940.43440.107*
H5C0.24270.37920.46620.107*
C60.2347 (7)0.1222 (6)0.4809 (3)0.0571 (18)
H6A0.32190.15620.46570.086*
H6B0.19220.12380.43430.086*
H6C0.24190.03220.51150.086*
C70.0131 (8)0.1589 (9)0.5479 (4)0.085 (3)
H7A0.01480.07180.58260.127*
H7B−0.01900.15400.49900.127*
H7C−0.04490.21840.57280.127*
C80.3507 (6)0.2296 (6)0.6035 (3)0.0430 (14)
H80.39910.24440.55370.052*
C90.4180 (6)0.2358 (5)0.6674 (3)0.0369 (13)
C100.5641 (6)0.2666 (6)0.6581 (3)0.0422 (14)
C110.6255 (6)0.2910 (7)0.5711 (3)0.0560 (17)
H11A0.71750.31040.56810.084*
H11B0.57850.36510.53990.084*
H11C0.61870.21280.55110.084*
C120.6420 (6)0.1452 (6)0.7054 (4)0.0503 (16)
H12A0.63190.06810.68500.075*
H12B0.60780.12870.76040.075*
H12C0.73470.16360.70010.075*
C130.5878 (6)0.3889 (6)0.6898 (3)0.0480 (15)
H13A0.68130.40400.68290.072*
H13B0.55620.37350.74520.072*
H13C0.54070.46570.66120.072*
C140.3400 (5)0.2136 (5)0.7421 (3)0.0330 (12)
C150.3032 (5)0.4926 (5)0.8173 (3)0.0268 (11)
C160.3288 (5)0.6132 (5)0.7597 (3)0.0265 (11)
C170.2379 (5)0.6627 (5)0.6931 (3)0.0332 (12)
C180.2382 (6)0.5619 (6)0.6419 (3)0.0406 (14)
H18A0.32820.54180.62220.061*
H18B0.18720.59840.59810.061*
H18C0.19960.48170.67310.061*
C190.0951 (5)0.6859 (6)0.7286 (3)0.0415 (14)
H19A0.06670.60640.76590.062*
H19B0.03740.70780.68690.062*
H19C0.09130.75800.75510.062*
C200.2839 (6)0.7960 (6)0.6391 (3)0.0480 (16)
H20A0.28000.86240.67000.072*
H20B0.22650.82440.59760.072*
H20C0.37370.78420.61620.072*
C210.4410 (5)0.6772 (5)0.7656 (3)0.0285 (11)
H210.45910.75650.72870.034*
C220.5310 (5)0.6303 (5)0.8242 (3)0.0267 (11)
C230.6572 (5)0.7058 (5)0.8201 (3)0.0293 (11)
C240.7223 (5)0.7433 (6)0.7339 (3)0.0377 (13)
H24A0.80300.78760.73230.057*
H24B0.66210.80180.70150.057*
H24C0.74240.66400.71400.057*
C250.6181 (6)0.8344 (5)0.8485 (3)0.0395 (13)
H25A0.58910.81280.90430.059*
H25B0.54700.88180.82010.059*
H25C0.69350.88920.83900.059*
C260.7603 (5)0.6276 (5)0.8714 (3)0.0350 (12)
H26A0.72640.61510.92630.052*
H26B0.84030.67590.86190.052*
H26C0.77950.54230.85830.052*
C270.5004 (5)0.5190 (4)0.8824 (3)0.0234 (10)
H270.55430.48990.92340.028*
C280.3879 (5)0.4494 (5)0.8800 (3)0.0263 (11)
C290.3592 (4)−0.0251 (5)0.9692 (3)0.0259 (11)
H290.4255−0.00850.92680.031*
C300.3697 (5)−0.1417 (5)1.0271 (3)0.0298 (11)
H300.4428−0.20101.02390.036*
C310.2708 (5)−0.1692 (5)1.0893 (3)0.0290 (11)
H310.2759−0.24741.12840.035*
C320.1639 (5)−0.0781 (5)1.0924 (3)0.0245 (11)
H320.0957−0.09491.13350.029*
C330.1593 (4)0.0378 (4)1.0338 (3)0.0210 (10)
C340.0541 (4)0.1448 (4)1.0321 (3)0.0202 (10)
C35−0.0556 (5)0.1385 (5)1.0880 (3)0.0250 (11)
H35−0.06760.06321.12900.030*
C36−0.1470 (5)0.2455 (5)1.0822 (3)0.0278 (11)
H36−0.22100.24351.11950.033*
C37−0.1272 (5)0.3559 (5)1.0201 (3)0.0267 (11)
H37−0.18690.42951.01570.032*
C38−0.0182 (5)0.3549 (5)0.9653 (3)0.0265 (11)
H38−0.00640.42850.92310.032*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ru10.0207 (2)0.0254 (2)0.0202 (2)−0.00348 (15)0.00222 (14)0.00001 (15)
O10.0239 (18)0.0285 (18)0.0270 (19)−0.0015 (15)0.0055 (14)0.0005 (15)
O20.0191 (17)0.0296 (18)0.0230 (18)−0.0046 (14)0.0020 (13)−0.0014 (14)
O30.0200 (17)0.0250 (17)0.0208 (17)−0.0023 (14)0.0014 (13)−0.0002 (14)
O40.0244 (18)0.0298 (18)0.0229 (18)−0.0054 (15)0.0021 (14)−0.0019 (14)
N10.021 (2)0.020 (2)0.023 (2)−0.0054 (17)0.0011 (16)−0.0031 (17)
N20.015 (2)0.022 (2)0.020 (2)−0.0029 (16)−0.0050 (15)0.0014 (16)
C10.037 (3)0.028 (3)0.022 (3)−0.006 (2)0.004 (2)0.000 (2)
C20.041 (3)0.031 (3)0.032 (3)−0.003 (2)−0.004 (2)−0.007 (2)
C30.055 (4)0.037 (3)0.029 (3)−0.007 (3)0.001 (3)−0.009 (3)
C40.061 (4)0.051 (4)0.033 (3)−0.008 (3)−0.005 (3)−0.011 (3)
C50.099 (6)0.068 (5)0.050 (4)0.016 (4)−0.030 (4)−0.012 (4)
C60.088 (5)0.044 (4)0.035 (4)−0.007 (4)−0.002 (3)0.000 (3)
C70.071 (5)0.143 (8)0.048 (4)−0.032 (5)−0.007 (4)−0.026 (5)
C80.052 (4)0.043 (3)0.030 (3)−0.003 (3)0.007 (3)−0.007 (3)
C90.041 (3)0.037 (3)0.031 (3)−0.001 (3)0.003 (2)−0.006 (2)
C100.046 (4)0.041 (3)0.031 (3)0.002 (3)0.017 (3)−0.003 (3)
C110.043 (4)0.079 (5)0.034 (3)0.008 (3)0.012 (3)−0.001 (3)
C120.044 (4)0.045 (4)0.050 (4)0.009 (3)0.010 (3)0.002 (3)
C130.042 (4)0.052 (4)0.044 (4)−0.004 (3)0.012 (3)−0.005 (3)
C140.044 (3)0.027 (3)0.025 (3)−0.004 (2)0.003 (2)−0.002 (2)
C150.025 (3)0.027 (3)0.026 (3)0.003 (2)0.001 (2)−0.006 (2)
C160.027 (3)0.024 (3)0.026 (3)0.003 (2)−0.002 (2)−0.002 (2)
C170.036 (3)0.034 (3)0.025 (3)0.002 (2)0.002 (2)−0.001 (2)
C180.045 (3)0.045 (3)0.028 (3)−0.003 (3)−0.012 (2)0.005 (3)
C190.031 (3)0.055 (4)0.035 (3)0.012 (3)−0.008 (2)−0.006 (3)
C200.051 (4)0.043 (3)0.044 (4)−0.005 (3)−0.019 (3)0.008 (3)
C210.031 (3)0.022 (3)0.027 (3)0.000 (2)0.004 (2)0.000 (2)
C220.027 (3)0.027 (3)0.024 (3)0.002 (2)0.003 (2)−0.004 (2)
C230.027 (3)0.029 (3)0.028 (3)−0.005 (2)0.003 (2)−0.001 (2)
C240.028 (3)0.054 (4)0.029 (3)−0.012 (3)0.001 (2)−0.003 (3)
C250.037 (3)0.037 (3)0.044 (3)−0.005 (3)−0.004 (3)−0.008 (3)
C260.029 (3)0.037 (3)0.036 (3)−0.001 (2)−0.004 (2)−0.001 (2)
C270.023 (3)0.026 (3)0.020 (2)0.002 (2)−0.0039 (19)−0.002 (2)
C280.029 (3)0.030 (3)0.016 (2)−0.001 (2)0.0051 (19)−0.002 (2)
C290.016 (2)0.028 (3)0.031 (3)−0.001 (2)0.002 (2)−0.003 (2)
C300.023 (3)0.027 (3)0.040 (3)−0.001 (2)−0.006 (2)−0.008 (2)
C310.030 (3)0.020 (3)0.034 (3)−0.004 (2)−0.006 (2)0.004 (2)
C320.023 (3)0.030 (3)0.020 (3)−0.007 (2)−0.0008 (19)−0.002 (2)
C330.017 (2)0.025 (2)0.022 (2)−0.0087 (19)0.0000 (18)−0.005 (2)
C340.021 (2)0.021 (2)0.019 (2)−0.0067 (19)−0.0002 (18)−0.003 (2)
C350.026 (3)0.028 (3)0.020 (3)−0.004 (2)−0.002 (2)−0.002 (2)
C360.027 (3)0.035 (3)0.021 (3)−0.002 (2)0.000 (2)−0.005 (2)
C370.021 (3)0.026 (3)0.032 (3)0.005 (2)−0.004 (2)−0.006 (2)
C380.031 (3)0.023 (3)0.025 (3)−0.006 (2)−0.004 (2)−0.003 (2)

Geometric parameters (Å, º)

Ru1—O21.978 (3)C16—C211.381 (6)
Ru1—O41.988 (3)C16—C171.536 (7)
Ru1—O11.990 (3)C17—C181.520 (7)
Ru1—O31.994 (3)C17—C191.529 (7)
Ru1—N22.044 (4)C17—C201.545 (7)
Ru1—N12.053 (4)C18—H18A0.9600
O1—C141.340 (6)C18—H18B0.9600
O2—C151.325 (5)C18—H18C0.9600
O3—C281.340 (5)C19—H19A0.9600
O4—C11.332 (6)C19—H19B0.9600
N1—C291.334 (6)C19—H19C0.9600
N1—C331.373 (6)C20—H20A0.9600
N2—C381.350 (6)C20—H20B0.9600
N2—C341.359 (5)C20—H20C0.9600
C1—C21.395 (7)C21—C221.426 (7)
C1—C141.431 (7)C21—H210.9300
C2—C31.379 (7)C22—C271.372 (6)
C2—H20.9300C22—C231.531 (7)
C3—C81.421 (8)C23—C261.516 (7)
C3—C41.526 (7)C23—C251.532 (7)
C4—C71.499 (9)C23—C241.542 (7)
C4—C51.542 (9)C24—H24A0.9600
C4—C61.543 (9)C24—H24B0.9600
C5—H5A0.9600C24—H24C0.9600
C5—H5B0.9600C25—H25A0.9600
C5—H5C0.9600C25—H25B0.9600
C6—H6A0.9600C25—H25C0.9600
C6—H6B0.9600C26—H26A0.9600
C6—H6C0.9600C26—H26B0.9600
C7—H7A0.9600C26—H26C0.9600
C7—H7B0.9600C27—C281.401 (6)
C7—H7C0.9600C27—H270.9300
C8—C91.387 (7)C29—C301.386 (7)
C8—H80.9300C29—H290.9300
C9—C141.421 (7)C30—C311.379 (7)
C9—C101.518 (8)C30—H300.9300
C10—C131.536 (8)C31—C321.386 (7)
C10—C111.539 (7)C31—H310.9300
C10—C121.550 (8)C32—C331.382 (6)
C11—H11A0.9600C32—H320.9300
C11—H11B0.9600C33—C341.474 (6)
C11—H11C0.9600C34—C351.384 (6)
C12—H12A0.9600C35—C361.381 (7)
C12—H12B0.9600C35—H350.9300
C12—H12C0.9600C36—C371.385 (7)
C13—H13A0.9600C36—H360.9300
C13—H13B0.9600C37—C381.373 (7)
C13—H13C0.9600C37—H370.9300
C15—C161.425 (6)C38—H380.9300
C15—C281.438 (6)
O2—Ru1—O489.04 (13)C21—C16—C15116.4 (4)
O2—Ru1—O186.32 (13)C21—C16—C17123.2 (4)
O4—Ru1—O181.90 (13)C15—C16—C17120.3 (4)
O2—Ru1—O382.41 (12)C18—C17—C19108.6 (4)
O4—Ru1—O3167.90 (12)C18—C17—C16111.1 (4)
O1—Ru1—O388.99 (13)C19—C17—C16110.1 (4)
O2—Ru1—N296.44 (14)C18—C17—C20108.2 (4)
O4—Ru1—N294.41 (13)C19—C17—C20107.9 (4)
O1—Ru1—N2175.38 (14)C16—C17—C20110.9 (4)
O3—Ru1—N295.04 (13)C17—C18—H18A109.5
O2—Ru1—N1174.28 (14)C17—C18—H18B109.5
O4—Ru1—N193.75 (14)H18A—C18—H18B109.5
O1—Ru1—N199.00 (14)C17—C18—H18C109.5
O3—Ru1—N195.53 (13)H18A—C18—H18C109.5
N2—Ru1—N178.39 (15)H18B—C18—H18C109.5
C14—O1—Ru1108.6 (3)C17—C19—H19A109.5
C15—O2—Ru1109.2 (3)C17—C19—H19B109.5
C28—O3—Ru1107.3 (3)H19A—C19—H19B109.5
C1—O4—Ru1108.0 (3)C17—C19—H19C109.5
C29—N1—C33118.2 (4)H19A—C19—H19C109.5
C29—N1—Ru1125.3 (3)H19B—C19—H19C109.5
C33—N1—Ru1116.5 (3)C17—C20—H20A109.5
C38—N2—C34118.0 (4)C17—C20—H20B109.5
C38—N2—Ru1125.1 (3)H20A—C20—H20B109.5
C34—N2—Ru1116.9 (3)C17—C20—H20C109.5
O4—C1—C2122.4 (5)H20A—C20—H20C109.5
O4—C1—C14116.6 (4)H20B—C20—H20C109.5
C2—C1—C14120.9 (5)C16—C21—C22124.5 (4)
C3—C2—C1120.2 (5)C16—C21—H21117.7
C3—C2—H2119.9C22—C21—H21117.7
C1—C2—H2119.9C27—C22—C21118.4 (4)
C2—C3—C8117.5 (5)C27—C22—C23122.6 (4)
C2—C3—C4122.8 (5)C21—C22—C23119.0 (4)
C8—C3—C4119.7 (5)C26—C23—C22113.5 (4)
C7—C4—C3111.8 (5)C26—C23—C25108.0 (4)
C7—C4—C5111.7 (6)C22—C23—C25108.4 (4)
C3—C4—C5109.3 (5)C26—C23—C24108.1 (4)
C7—C4—C6107.2 (6)C22—C23—C24110.2 (4)
C3—C4—C6109.9 (5)C25—C23—C24108.4 (4)
C5—C4—C6106.7 (5)C23—C24—H24A109.5
C4—C5—H5A109.5C23—C24—H24B109.5
C4—C5—H5B109.5H24A—C24—H24B109.5
H5A—C5—H5B109.5C23—C24—H24C109.5
C4—C5—H5C109.5H24A—C24—H24C109.5
H5A—C5—H5C109.5H24B—C24—H24C109.5
H5B—C5—H5C109.5C23—C25—H25A109.5
C4—C6—H6A109.5C23—C25—H25B109.5
C4—C6—H6B109.5H25A—C25—H25B109.5
H6A—C6—H6B109.5C23—C25—H25C109.5
C4—C6—H6C109.5H25A—C25—H25C109.5
H6A—C6—H6C109.5H25B—C25—H25C109.5
H6B—C6—H6C109.5C23—C26—H26A109.5
C4—C7—H7A109.5C23—C26—H26B109.5
C4—C7—H7B109.5H26A—C26—H26B109.5
H7A—C7—H7B109.5C23—C26—H26C109.5
C4—C7—H7C109.5H26A—C26—H26C109.5
H7A—C7—H7C109.5H26B—C26—H26C109.5
H7B—C7—H7C109.5C22—C27—C28119.8 (4)
C9—C8—C3125.6 (5)C22—C27—H27120.1
C9—C8—H8117.2C28—C27—H27120.1
C3—C8—H8117.2O3—C28—C27122.7 (4)
C8—C9—C14115.3 (5)O3—C28—C15116.2 (4)
C8—C9—C10122.5 (5)C27—C28—C15121.1 (4)
C14—C9—C10122.2 (5)N1—C29—C30122.5 (4)
C9—C10—C13112.5 (5)N1—C29—H29118.7
C9—C10—C11112.4 (5)C30—C29—H29118.7
C13—C10—C11107.8 (5)C31—C30—C29119.5 (5)
C9—C10—C12108.7 (5)C31—C30—H30120.3
C13—C10—C12107.9 (5)C29—C30—H30120.3
C11—C10—C12107.3 (5)C30—C31—C32118.7 (5)
C10—C11—H11A109.5C30—C31—H31120.7
C10—C11—H11B109.5C32—C31—H31120.7
H11A—C11—H11B109.5C33—C32—C31119.6 (4)
C10—C11—H11C109.5C33—C32—H32120.2
H11A—C11—H11C109.5C31—C32—H32120.2
H11B—C11—H11C109.5N1—C33—C32121.5 (4)
C10—C12—H12A109.5N1—C33—C34113.6 (4)
C10—C12—H12B109.5C32—C33—C34124.8 (4)
H12A—C12—H12B109.5N2—C34—C35121.9 (4)
C10—C12—H12C109.5N2—C34—C33114.5 (4)
H12A—C12—H12C109.5C35—C34—C33123.6 (4)
H12B—C12—H12C109.5C36—C35—C34119.1 (4)
C10—C13—H13A109.5C36—C35—H35120.4
C10—C13—H13B109.5C34—C35—H35120.4
H13A—C13—H13B109.5C35—C36—C37119.2 (5)
C10—C13—H13C109.5C35—C36—H36120.4
H13A—C13—H13C109.5C37—C36—H36120.4
H13B—C13—H13C109.5C38—C37—C36119.0 (4)
O1—C14—C9124.0 (5)C38—C37—H37120.5
O1—C14—C1115.6 (4)C36—C37—H37120.5
C9—C14—C1120.4 (5)N2—C38—C37122.7 (4)
O2—C15—C16124.3 (4)N2—C38—H38118.7
O2—C15—C28116.2 (4)C37—C38—H38118.7
C16—C15—C28119.5 (4)
Ru1—O4—C1—C2−160.9 (4)C17—C16—C21—C22−176.7 (5)
Ru1—O4—C1—C1423.0 (5)C16—C21—C22—C27−4.8 (7)
O4—C1—C2—C3−178.9 (5)C16—C21—C22—C23175.5 (5)
C14—C1—C2—C3−3.0 (8)C27—C22—C23—C2615.3 (7)
C1—C2—C3—C83.5 (8)C21—C22—C23—C26−165.0 (4)
C1—C2—C3—C4−173.5 (5)C27—C22—C23—C25−104.6 (5)
C2—C3—C4—C7−11.4 (9)C21—C22—C23—C2575.1 (6)
C8—C3—C4—C7171.7 (6)C27—C22—C23—C24136.8 (5)
C2—C3—C4—C5112.8 (6)C21—C22—C23—C24−43.5 (6)
C8—C3—C4—C5−64.1 (7)C21—C22—C27—C284.4 (7)
C2—C3—C4—C6−130.4 (6)C23—C22—C27—C28−175.9 (4)
C8—C3—C4—C652.7 (7)Ru1—O3—C28—C27−158.8 (4)
C2—C3—C8—C9−1.8 (9)Ru1—O3—C28—C1523.9 (5)
C4—C3—C8—C9175.3 (6)C22—C27—C28—O3−177.2 (4)
C3—C8—C9—C14−0.5 (8)C22—C27—C28—C150.0 (7)
C3—C8—C9—C10−179.4 (5)O2—C15—C28—O3−4.9 (6)
C8—C9—C10—C13122.6 (6)C16—C15—C28—O3173.0 (4)
C14—C9—C10—C13−56.3 (7)O2—C15—C28—C27177.7 (4)
C8—C9—C10—C110.7 (8)C16—C15—C28—C27−4.4 (7)
C14—C9—C10—C11−178.2 (5)C33—N1—C29—C30−1.2 (6)
C8—C9—C10—C12−117.9 (6)Ru1—N1—C29—C30179.4 (3)
C14—C9—C10—C1263.2 (7)N1—C29—C30—C311.4 (7)
Ru1—O1—C14—C9161.2 (4)C29—C30—C31—C32−0.5 (7)
Ru1—O1—C14—C1−19.8 (5)C30—C31—C32—C33−0.5 (7)
C8—C9—C14—O1180.0 (5)C29—N1—C33—C320.1 (6)
C10—C9—C14—O1−1.0 (8)Ru1—N1—C33—C32179.5 (3)
C8—C9—C14—C11.0 (8)C29—N1—C33—C34178.4 (4)
C10—C9—C14—C1180.0 (5)Ru1—N1—C33—C34−2.1 (5)
O4—C1—C14—O1−2.3 (7)C31—C32—C33—N10.8 (6)
C2—C1—C14—O1−178.4 (4)C31—C32—C33—C34−177.4 (4)
O4—C1—C14—C9176.8 (4)C38—N2—C34—C351.8 (6)
C2—C1—C14—C90.7 (8)Ru1—N2—C34—C35−176.8 (3)
Ru1—O2—C15—C16165.0 (4)C38—N2—C34—C33−178.7 (4)
Ru1—O2—C15—C28−17.2 (5)Ru1—N2—C34—C332.7 (5)
O2—C15—C16—C21−178.2 (4)N1—C33—C34—N2−0.4 (5)
C28—C15—C16—C214.0 (7)C32—C33—C34—N2177.9 (4)
O2—C15—C16—C17−1.0 (7)N1—C33—C34—C35179.1 (4)
C28—C15—C16—C17−178.8 (4)C32—C33—C34—C35−2.6 (7)
C21—C16—C17—C18116.4 (5)N2—C34—C35—C36−2.1 (6)
C15—C16—C17—C18−60.6 (6)C33—C34—C35—C36178.5 (4)
C21—C16—C17—C19−123.2 (5)C34—C35—C36—C370.6 (7)
C15—C16—C17—C1959.8 (6)C35—C36—C37—C381.1 (7)
C21—C16—C17—C20−4.0 (7)C34—N2—C38—C37−0.1 (6)
C15—C16—C17—C20179.0 (5)Ru1—N2—C38—C37178.4 (3)
C15—C16—C21—C220.4 (7)C36—C37—C38—N2−1.3 (7)

Hydrogen-bond geometry (Å, º)

D—H···AD—HH···AD···AD—H···A
C30—H30···O3i0.932.543.427 (6)159
C32—H32···O4ii0.932.493.322 (6)148
C35—H35···O4ii0.932.393.232 (6)151

Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x, −y, −z+2.

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  • Brandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Buchanan, R. M., Kessel, S. L., Downs, H. H., Pierpont, C. G. & Hendrickson, D. N. (1978). J. Am. Chem. Soc. 100, 7894–7900.
  • Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [PMC free article] [PubMed]
  • Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510.
  • Lever, A. B. P., Auburn, P. R., Dodsworth, E. S., Haga, M. A., Liu, W., Melnik, M. & Nevin, W. A. (1988). J. Am. Chem. Soc. 110, 8076–8084.
  • Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447. [PubMed]
  • Pagliaro, M., Campestrini, S. & Ciriminna, R. (2005). Chem. Soc. Rev. 34, 837–845. [PubMed]
  • Ramakrishna, D. & Bhat, B. R. (2011). Inorg. Chem. Commun. 14, 155–158.
  • Rijt, S. H. van & Sadler, P. J. (2009). Drug Discov. Today, 14, 1089–1097. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. [PMC free article] [PubMed]
  • Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547.

Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography