PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of scirepAboutEditorial BoardFor AuthorsScientific Reports
 
Sci Rep. 2017; 7: 42353.
Published online 2017 March 7. doi:  10.1038/srep42353
PMCID: PMC5339709

Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography

Gongpu Lan1,2,3 and Guoqiang Lia,1,2,3

Abstract

Nonlinear sampling of the interferograms in wavenumber (k) space degrades the depth-dependent signal sensitivity in conventional spectral domain optical coherence tomography (SD-OCT). Here we report a linear-in-wavenumber (k-space) spectrometer for an ultra-broad bandwidth (760 nm–920 nm) SD-OCT, whereby a combination of a grating and a prism serves as the dispersion group. Quantitative ray tracing is applied to optimize the linearity and minimize the optical path differences for the dispersed wavenumbers. Zemax simulation is used to fit the point spread functions to the rectangular shape of the pixels of the line-scan camera and to improve the pixel sampling rates. An experimental SD-OCT is built to test and compare the performance of the k-space spectrometer with that of a conventional one. Design results demonstrate that this k-space spectrometer can reduce the nonlinearity error in k-space from 14.86% to 0.47% (by approximately 30 times) compared to the conventional spectrometer. The 95% confidence interval for RMS diameters is 5.48 ± 1.76 μm—significantly smaller than both the pixel size (14 μm × 28 μm) and the Airy disc (25.82 μm in diameter, calculated at the wavenumber of 7.548 μm−1). Test results demonstrate that the fall-off curve from the k-space spectrometer exhibits much less decay (maximum as −5.20 dB) than the conventional spectrometer (maximum as –16.84 dB) over the whole imaging depth (2.2 mm).

Spectral domain optical coherence tomography (SD-OCT) enables high-speed volumetric biomedical imaging with micrometric resolution and millimetric depth for scientific research and clinical study1,2,3. In SD-OCT, signal sensitivity tends to be weaker in deeper imaging regions. This depth-dependent loss in signal sensitivity is called “fall-off”4. Reducing sensitivity fall-off is a primary concern for the design of the spectrometer in a SD-OCT system.

In SD-OCT, depth profiles are constructed by the inverse Fourier transform (FT−1) of the interferograms under the premise that the spectrum is linearly sampled in wavenumber (k) space. However, the diffractive grating used in a conventional spectrometer disperses the light spectrum at the angles evenly spread versus wavelength (λ) rather than wavenumber (k). Digital rescaling of the spectrum from λ-space to k-space is required prior to FT−1, resulting in the fact that the spectral bands integrated by the camera pixels are unequal and leading to the fact that the signal sensitivity is decreased in depth5,6,7.

Ideally, increasing the number of pixels of the detector can improve the spectral-sampling frequency and reduce the depth-dependent sensitivity loss8,9. In practice, there is often a trade-off between the pixel number and the pixel size under a limited pixel array dimension. As a consequence, smaller pixel pitch often requires higher optics performance10. If the point spread functions (PSFs) for the dispersed spectrum are much larger than the pixel pitches (for example, more than two pixels are required to sample one PSF of a particular wavenumber), the optical performance of the spectrometer rather than the number of the pixels becomes the limit for the effective spectral sampling. In addition, the linear camera with more pixels tends to be more expensive, and both the time needed to capture an OCT frame and the time to process it is increased with more pixels.

An alternative method to reduce the sensitivity fall-off generated by the unequal sampling is to use the k-space spectrometer which disperses the spectrum optically with the necessary degree of equidistance in wavenumber. One of the possibilities to design such a spectrometer is to use a combination of a diffractive grating and a prism, where the nonlinearity in wavenumber caused by one can be offset by the other11. This combination can be either cemented as a “grism”11 or separated to provide more degrees of freedom in optimization6,7. By utilizing the k-space spectrometer in SD-OCT, previous literatures6,7 have demonstrated obvious improvement in sensitivity as well as reduction in computing time. However, these k-space spectrometers were designed for SD-OCT systems with limited axial resolution. In ref. 6, the center wavelength is 1310 nm and the bandwidth is 68 nm, corresponding to an axial resolution of 11.14 μm in air (8.07 μm in tissue, assuming an average refractive index 1.38); In ref. 7, two systems were designed. One has a center wavelength 1270 nm with a bandwidth of 70 nm, corresponding to an axial resolution of 10.17 μm in air (7.37 μm in tissue) and the other has a center wavelength 830 nm with a bandwidth of 40 nm, corresponding to an axial resolution of 7.60 μm in air (5.51 μm in tissue).

There is an increasing demand for developing the broadband or ultra-broadband OCT system with higher axial resolution to distinguish smaller structures, such as cellular boundaries and types12. This demand casts more difficulties for the k-space spectrometer design in the nonlinearity error correction and in the optical path difference (OPD) minimization for the dispersion element, as well as in the aberration correction for the focusing lens. Here we present a new design for the k-space spectrometer which outperforms the previous ones in a SD-OCT system with a center wavelength 840 nm and a bandwidth 160 nm, corresponding to an axial resolution of 1.95 μm in air (1.41 μm in tissue).

Linear-in-k Optimization

In many biomedical applications, ultrahigh axial resolution is required for OCT systems to distinguish cellular boundaries and types12. Typically, an ultra-broadband light source is required to meet this purpose. We use a combined superluminescent laser diode (SLD) as the light source with a center wavelength of 840 nm and a bandwidth of 160 nm (760 nm–920 nm). Within this bandwidth (8.267 μm−1–6.830 μm−1 in k-space), 11 wavenumbers (k1k11) are chosen with an equal increment −0.144 μm−1 for calculation and design purposes. The center wavenumber k6 is 7.548 μm−1, corresponding to 832.38 nm in wavelength. The selected wavenumbers (k1k11) and their corresponding wavelengths (λ1λ11) are listed in Table 1.

Table 1
Selected wavenumbers (k1k11) and their corresponding wavelengths (λ1λ11).

Diffraction grating (e.g. transmissive volume phase holographic grating) is widely used as the dispersion component. If the collimated light is incident under a blaze condition for λ6 (k6), the blaze angle (in air) can be calculated as

An external file that holds a picture, illustration, etc.
Object name is srep42353-m1.jpg

where d is the line spacing (2d for the period). The diffraction angle αi (in air) for the corresponding wavelength λiis given by

An external file that holds a picture, illustration, etc.
Object name is srep42353-m2.jpg

From eq. (2), it is noted that αiis linear in wavelength (λ) rather than in wavenumber (k). To address this problem, we can use an isosceles prism (with the apex angle of ρ) to be paired with the grating as the dispersion group, as shown in Fig. 1(a,b).

Figure 1
Linear-in-k optimization by combining a diffraction grating with an isosceles prism as the dispersion component in the SD-OCT spectrometer.

In Fig. 1(a), an arbitrary light with the wavenumber of ki coming out of the grating at the diffraction angle of αi, passes through the prism after two consecutive refractions. The incident and the refraction angles at the front surface are βi and βi′ respectively. The incident and refraction angles at the back surface are ηi and ηi′ respectively, where

An external file that holds a picture, illustration, etc.
Object name is srep42353-m3.jpg

From Snell’s law, we have

An external file that holds a picture, illustration, etc.
Object name is srep42353-m4.jpg

where ni is the refractive index of the material related to the wavelengths (or wavenumbers). The prism material is Bk7, and the refractive indices n1n11 for different wavenumbers13 are listed in Table 2.

Table 2
Ray tracing values for the wavenumbers of k1k11 in the dispersion group.

ϕi is defined as the deviation angle between the exit light and the entrance light, where

An external file that holds a picture, illustration, etc.
Object name is srep42353-m5.jpg

Therefore, ϕi is a function of the incidence angle βi, the apex angle of the prism ρ, and the refractive index ni from eqs (3,4,5).

For the reference wavenumber k6 (7.548 μm−1), we have

An external file that holds a picture, illustration, etc.
Object name is srep42353-m6.jpg

For other wavenumbers, βi can be expressed as

An external file that holds a picture, illustration, etc.
Object name is srep42353-m7.jpg

From eqs (34, 67), ηi′ can be calculated accordingly, and it is a function of αi and ρ.

For a grating with 1200 lines/mm (d = 0.83 μm), θB is calculated as 29.96° according to eq. (1). α1α11 are calculated based on eq. (2) and are listed in Table 2.

To optimize the linearity of the dispersion spectrum in k space, we set a root-mean-square deviation function RMSDG + P(ρ) for the grating-prism (G + P) group as

An external file that holds a picture, illustration, etc.
Object name is srep42353-m8.jpg

where

An external file that holds a picture, illustration, etc.
Object name is srep42353-m9.jpg

Based on eqs (8, 9), ρ is optimized in the angular range of 0°–90° and the optimized value is 65.19°, where RMSDG + P(ρ) has the minimum value of 0.006°, as shown in Fig. 1(c). Under this situation, β1β11, β1′ – β11, η1η11and η1′ – η11′ can be all calculated (Table 2). The total dispersion angle range (η11′−η1′) is −12.93° with the average increment of −1.29°.

Figure 1(d) compares the increments of Δαi(for grating only) and −Δηi′ (for the grating-prism pair) respectively. It is obvious that significant improvement of linearity in dispersion as a function of wavenumber has been achieved after pairing the grating with prism. We can also calculate the coefficients of variation in linearity (CVLs) for the output angles from the grating only (α1α11) and from grating + prism (η1′ – η11′) in k-space as

An external file that holds a picture, illustration, etc.
Object name is srep42353-m10.jpg

Quantitative calculations based on eq. (10) demonstrate that by utilizing grating and prism together as the dispersion group in our new design, the k-space angular nonlinearity errors can be greatly reduced from 14.86% (CVLG) to 0.47% (CVLG + P). In other words, we can achieve constant dispersion as a function of wavenumber with the linearity up to 99.53% in k-space spectrometer over the wave bandwidth of 160 nm, from 760 nm to 920 nm.

Optical Path Difference Reduction

As shown in Fig. 1(b), the grating disperses the light at the point of O. For the reference light with the wavenumber k6, its chief ray goes through the prism (shown as the triangle ABC) with the interaction points of D and E. D is the center point of An external file that holds a picture, illustration, etc.
Object name is srep42353-m11.jpg, so An external file that holds a picture, illustration, etc.
Object name is srep42353-m12.jpg; similarly, E is the center point of An external file that holds a picture, illustration, etc.
Object name is srep42353-m13.jpg, i.e., An external file that holds a picture, illustration, etc.
Object name is srep42353-m14.jpg, thus An external file that holds a picture, illustration, etc.
Object name is srep42353-m15.jpg. If a 2-inch prism (An external file that holds a picture, illustration, etc.
Object name is srep42353-m16.jpg = 50.80 mm) is chosen, An external file that holds a picture, illustration, etc.
Object name is srep42353-m17.jpg = 27.366 mm.

Given a pair of light rays with their wavenumbers of k6−j and k6 + j, which are centered at the reference wavenumber of k6 (j = 1, 2, …, 5), the chief ray of k6−j goes through the prism with the interaction points of F and G, while the chief ray of k6 + j goes through the prism with the interaction points of H and I. To calculate the optical path difference (OPD) between k6−j and k6 + j, we set a reference line of GK, which is perpendicular to the output chief ray of k6 at point J and interacts with the output chief ray of k6 + j at point K.

Thus, the optical path difference (OPD) between k6 + j and k6−j can be expressed as

An external file that holds a picture, illustration, etc.
Object name is srep42353-m18.jpg

where An external file that holds a picture, illustration, etc.
Object name is srep42353-m19.jpg, An external file that holds a picture, illustration, etc.
Object name is srep42353-m20.jpg, An external file that holds a picture, illustration, etc.
Object name is srep42353-m21.jpg, An external file that holds a picture, illustration, etc.
Object name is srep42353-m22.jpg and An external file that holds a picture, illustration, etc.
Object name is srep42353-m23.jpg can be all related to the values of An external file that holds a picture, illustration, etc.
Object name is srep42353-m24.jpg and An external file that holds a picture, illustration, etc.
Object name is srep42353-m25.jpg. Thus eq. (11) can be modified as

An external file that holds a picture, illustration, etc.
Object name is srep42353-m26.jpg

where

An external file that holds a picture, illustration, etc.
Object name is srep42353-m27.jpg

Substituting the values from Table 2 into eq. (13), we can calculate Xj and Yj (j = 1, 2, …, 5) as shown in Table 3.

Table 3
The values of Xj and Yj for OPD minimization.

Under a given value of An external file that holds a picture, illustration, etc.
Object name is srep42353-m28.jpg, a corresponding value of An external file that holds a picture, illustration, etc.
Object name is srep42353-m29.jpg can be chosen to cancel the OPD between any pair of light rays with the wavenumbers of k6−j and k6−j. However, all the OPDs between all pairs of the rays cannot be canceled simultaneously. If the average value of An external file that holds a picture, illustration, etc.
Object name is srep42353-m30.jpg is canceled, whereAn external file that holds a picture, illustration, etc.
Object name is srep42353-m31.jpg is calculated as 14.872 mm, the residual OPDs are: OPD(k7-k5) = −0.013 mm; OPD(k8-k4) = −0.022 mm; OPD(k9-k3) = −0.020 mm; OPD(k10-k2) = −0.002 mm; OPD(k11-k1) = 0.052 mm.

Spectrometer Design Results

Zemax software (Zemax, LLC) was used to design and demonstrate this k-space spectrometer. The light coming out of the fiber (NA = 0.13) is first collimated by a 90° off-axis reflective parabolic mirror with the reflective focal length of 38.10 mm, then is dispersed by the grating and prism with the linear spectral distribution in k-space, and is finally focused by the focusing group onto the linear camera.

The linear camera has 2048 pixels and 14 μm × 28 μm pixel size. The required focal length for the focusing group is

An external file that holds a picture, illustration, etc.
Object name is srep42353-m32.jpg

where L is the length of the effective pixel array of the line camera, equaling 28.67 mm. f is calculated to be 126.51 mm. To correct the aberrations (especially the field curves) for the dispersed spectrum, we can combine a commercial plano-convex lens (La1301-b, Thorlabs) with a custom designed aspherical lens. Their curved surfaces are facing each other. The final design results are shown in Fig. 2(a) and Table 4.

Figure 2
Optical design for the k-space spectrometer.
Table 4
General design parameters for the k-linear spectrometer.

The image quality for k1k11 can be evaluated by their point spread functions (PSFs) as shown in Fig. 2(b). The top row shows the spot diagrams referenced to the pixel size (14 μm × 28 μm) while the bottom row shows the cross-sectional PSFs in both X direction and Y direction. The spots are designed to be narrower in X direction than in Y direction to fit the pixel shape and to improve the sampling rate. The RMS diameters are 9.63 μm, 5.50 μm, 3.41 μm, 3.60 μm, 4.27 μm, 4.33 μm, 3.65 μm, 2.76 μm, 3.76 μm, 7.21 μm, and 12.13 μm respectively. The 95% confidence interval for RMS diameters are 5.48 ± 1.76 μm. All of the RMS diameters for k1k11 are smaller than the Airy disc diameter of 25.82 μm (calculated at k6).

The sensitivity fall-off can be calculated theoretically based on eq. (15) consisting of a logarithm of the product of a sinc function and a Gaussian function, which are related to the Fourier transform of the shape of CCD pixels and the Gaussian beam profile in the spectrometer respectively5,10,14,15,16:

An external file that holds a picture, illustration, etc.
Object name is srep42353-m33.jpg

where p is the pixel size in x direction (p = 14 μm), and R is the reciprocal linear dispersion, indicating the width of the spectrum (in wavenumber) spread over 1 μm at the focal plane. R = Δk/p, where Δk is the wavenumber segment covered by one pixel. In our case, R = 5.015 × 10–5 μm−2. Zi is the imaging depth and is in the range of 0–Zmax, where Zmax is the maximum ranging depth (calculated in air). An external file that holds a picture, illustration, etc.
Object name is srep42353-m34.jpg, where Δλ is the bandwidth, and N is the number of pixels of the linear camera. Here, Zmaxis equal to 2.26 mm. W is the RMS spot diameter (i.e. 5.48 μm, from the simulation result). The theoretical sensitivity fall-off estimation is shown in Fig. 2(c), where the maximum fall-off value is −3.39 dB at 2.26 mm depth.

Experimental Verification

We built an experimental SD-OCT system to compare the performance of this k-space spectrometer with a conventional spectrometer (with identical elements except the prism), as shown in Fig. 3(a). The OCT light source is a customized superluminescent diode (SLD, Inphenix, Inc.) with the central wavelength of 840 nm and the bandwidth of 160 nm (760 nm–920 nm). The maximum output power is ~7 mw. The light coming out of the SLD went through an isolator and then was split by a 90:10 fiber coupler (AC Photonics) into both the sample and reference arms. A line camera with 2048 pixels (Ev71yem4cl2014-ba9, E2v) was used in both spectrometers. The axial resolution is 1.95 μm in air. The maximum imaging depth is 2.26 mm (in air).

Figure 3
Detection sensitivity comparison between the k-space and the conventional spectrometers.

Two identical collimators (F280apc-780, Thorlabs) and mirrors were used in the sample and reference arms. The reference mirror was moved to induce optical path length differences (corresponding to the acquired imaging depths) between these two arms. Since the axial resolution and the sensitivity fall-off are irrelevant to the beam size, we controlled the irises (Sm1d12d, Thorlabs) in both arms to maximize the interference signal and to avoid camera saturation. The raw interference spectrum generated from each test location was acquired either by the k-space spectrometer or by the conventional spectrometer at a rate of 70 kHz through a camera link frame grabber (PCIE-1429, NI) into computer and then was processed via FFT to acquire the A-line intensity signal using the code in C++.

Depth related sensitivity measurements were compared between the k-space and conventional spectrometers in Fig. 3(b-1) and Fig. 3(b-2) respectively. It is noted that the fall-off curve from the k-space spectrometer measurement exhibits much less decay than the conventional spectrometer over the whole imaging depth. The maximum fall-off from the k-space spectrometer is −5.20 dB at 2.18 mm—smaller than the −6 dB criterion8,15. The maximum fall-off from the conventional spectrometer is −16.84 dB at 2.20 mm and the −6 dB fall-off position is ~1.10 mm. This comparison experiment demonstrates that the k-space spectrometer can effectively improve the signal sensitivity and image contrast in deeper imaging regions for SD-OCT system.

Conclusion and Discussion

We have demonstrated a detailed theory for optimizing the dispersion components that consist of a diffraction grating and a prism. This method offers significant improvement in system sensitivity and it can be a guide for the designers in the OCT field. The key strategies include: (1) k-space linearity optimization by addressing the apex angle in the prism; and (2) optical path difference reduction among the dispersed spectrum for aberration minimization. By utilizing the grating and prism together as the dispersion group, we can significantly reduce the k-space angular nonlinearity errors from 14.86% to 0.47%. In other words, we can achieve constant wave-number dispersion with the linearity up to 99.53%.

We have designed a k-space spectrometer using Zemax. The RMS spot diameters for different wave numbers are in the range of 2.76 μm–12.13 μm with the 95% confidence interval of 5.48 ± 1.76 μm—much smaller than the Airy disc diameter of 25.82 μm (calculated at k6). In addition, the PSFs spread more in Y direction than in X direction in order to fit the pixel shape (28 μm in Y direction and 14 μm in X direction) of the line camera and to improve the sampling rates.

Comparison between the calculated [Fig. 2(c)] and the measured [Fig. 3(b-1)] sensitivity envelopes for the k-space spectrometer shows that the maximum drop values are −3.39 dB (at 2.26 mm) from calculation and −5.20 dB (at 2.18 mm) from measurement, respectively. This difference might be induced by the factors such as the spectrum shape of the light source, the quantum efficiency of the camera, manufacture and alignment errors, etc.

Comparison between the measured sensitivity envelopes in the k-space spectrometer [Fig. 3(b-1)] and the conventional spectrometer [Fig. 3(b-2)] shows that the sensitivity curve of the k-space spectrometer has much smaller decay over the whole imaging depth. The all-depth sensitivity fall-off for the k-space spectrometer is less than −6 dB criterion, while the −6 dB fall-off position for the conventional spectrometer is ~1.10 mm. It has been validated that the k-space spectrometer can effectively improve the signal sensitivity and image contrast in deeper imaging regions for SD-OCT system. In the next step, we will apply our system to imaging of the eye and other biomedical samples and the corresponding results will be reported in the near future.

Additional Information

How to cite this article: Lan, G. and Li, G. Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography. Sci. Rep. 7, 42353; doi: 10.1038/srep42353 (2017).

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments

This work was supported in part by National Institutes of Health National Eye Institute, USA (through grant R01 EY020641), National Institute of Biomedical Imaging and Bioengineering, USA (through grant R21 EB008857), National Institute of General Medical Sciences, USA (through grant R21 RR026254/R21GM103439). We thank Dr. Zhilin Hu for his helpful consultation.

Footnotes

The authors declare no competing financial interests.

Author Contributions The manuscript was contributed by both authors. G. Li initiated and organized research. G. Lan performed the theoretical calculation and the optical design for the k-space spectrometer. G. Lan and G. Li built up the experimental OCT system and carried out the experiment. G. Lan wrote the main manuscript. G. Li reviewed and finalized the manuscript.

References

  • Fercher A. F., Hitzenberger C. K., Kamp G. & Elzaiat S. Y. Measurement of Intraocular Distances by Backscattering Spectral Interferometry. Opt Commun 117, 43–48, doi: (1995).10.1016/0030-4018(95)00119-S [Cross Ref]
  • Hausler G. & Lindner M. W. “Coherence Radar” and “Spectral Radar”-New Tools for Dermatological Diagnosis. J Biomed Opt 3, 21–31, doi: (1998).10.1117/1.429899 [PubMed] [Cross Ref]
  • Tomlins P. H. & Wang R. K. Theory, developments and applications of optical coherence tomography. J Phys D Appl Phys 38, 2519–2535, doi: (2005).10.1088/0022-3727/38/15/002 [Cross Ref]
  • Izatt J. & Choma M. In Optical coherence tomography 47–72 (Springer, 2008).
  • Dorrer C., Belabas N., Likforman J. P. & Joffre M. Spectral resolution and sampling issues in Fourier-transform spectral interferometry. J Opt Soc Am B 17, 1795–1802, doi: (2000).10.1364/Josab.17.001795 [Cross Ref]
  • Hu Z. & Rollins A. M. Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer. Opt Lett 32, 3525–3527, doi: (2007).10.1364/Ol.32.003525 [PubMed] [Cross Ref]
  • Gelikonov V. M., Gelikonov G. V. & Shilyagin P. A. Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography. Opt Spectrosc+ 106, 459–465, doi: (2009).10.1134/S0030400x09030242 [Cross Ref]
  • An L., Li P., Lan G. P., Malchow D. & Wang R. K. K. High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth. Biomed Opt Express 4, 245–259 (2013). [PMC free article] [PubMed]
  • Li P. et al. . Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate. J Biomed Opt 18, doi: Artn 016012 (2013).10.1117/1.Jbo.18.1.016012 [PubMed] [Cross Ref]
  • Hu Z. L., Pan Y. S. & Rollins A. M. Analytical model of spectrometer-based two-beam spectral interferometry. Appl Optics 46, 8499–8505, doi: (2007).10.1364/Ao.46.008499 [PubMed] [Cross Ref]
  • Traub W. A. Constant-Dispersion Grism Spectrometer for Channeled Spectra. J Opt Soc Am A 7, 1779–1791, doi: (1990).10.1364/Josaa.7.001779 [Cross Ref]
  • Boppart S. A., Bouma B. E., Pitris C., Southern J. F., Brezinski M. E. & Fujimoto J. G. In vivo cellular optical coherence tomography imaging. Nat. Med. 8, 861–865 (1998). [PubMed]
  • http://refractiveindex.info/?shelf=glass&book=BK7&page=SCHOTT.
  • Yun S. H., Tearney G. J., Bouma B. E., Park B. H. & de Boer J. F. High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength. Opt Express 11, 3598–3604, doi: (2003).10.1364/Oe.11.003598 [PMC free article] [PubMed] [Cross Ref]
  • Drexler W. & Fujimoto J. G. Optical coherence tomography: technology and applications. (Springer Science & Business Media, 2008).
  • Wang K. et al. . Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system. Opt Express 17, 12121–12131, doi: (2009).10.1364/Oe.17.012121 [PubMed] [Cross Ref]

Articles from Scientific Reports are provided here courtesy of Nature Publishing Group