PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of springeropenLink to Publisher's site
The European Physical Journal. C, Particles and Fields
 
Eur Phys J C Part Fields. 2016; 76(11): 585.
Published online 2016 October 27. doi:  10.1140/epjc/s10052-016-4400-6
PMCID: PMC5335571

Search for minimal supersymmetric standard model Higgs Bosons H / A and for a Z boson in the ττ final state produced in pp collisions at s=13 TeV with the ATLAS detector

M. Aaboud,179 G. Aad,114 B. Abbott,143 J. Abdallah,10 O. Abdinov,14 B. Abeloos,147 R. Aben,137 O. S. AbouZeid,182 N. L. Abraham,198 H. Abramowicz,202 H. Abreu,201 R. Abreu,146 Y. Abulaiti,194,195 B. S. Acharya,163 S. Adachi,204 L. Adamczyk,60 D. L. Adams,36 J. Adelman,138 S. Adomeit,129 T. Adye,169 A. A. Affolder,103 T. Agatonovic-Jovin,16 J. Agricola,79 J. A. Aguilar-Saavedra,158,163 S. P. Ahlen,30 F. Ahmadov,93 G. Aielli,172,173 H. Akerstedt,194,195 T. P. A. Åkesson,110 A. V. Akimov,125 G. L. Alberghi,27,28 J. Albert,220 S. Albrand,80 M. J. Alconada Verzini,99 M. Aleksa,45 I. N. Aleksandrov,93 C. Alexa,38 G. Alexander,202 T. Alexopoulos,12 M. Alhroob,143 B. Ali,166 M. Aliev,101,102 G. Alimonti,120 J. Alison,46 S. P. Alkire,56 B. M. M. Allbrooke,198 B. W. Allen,146 P. P. Allport,21 A. Aloisio,133,134 A. Alonso,57 F. Alonso,99 C. Alpigiani,183 A. A. Alshehri,78 M. Alstaty,114 B. Alvarez Gonzalez,45 D. Álvarez Piqueras,218 M. G. Alviggi,133,134 B. T. Amadio,18 K. Amako,94 Y. Amaral Coutinho,32 C. Amelung,31 D. Amidei,118 S. P. Amor Dos Santos,158,160 A. Amorim,158,159 S. Amoroso,45 G. Amundsen,31 C. Anastopoulos,184 L. S. Ancu,72 N. Andari,21 T. Andeen,13 C. F. Anders,83 G. Anders,45 J. K. Anders,103 K. J. Anderson,46 A. Andreazza,120,121 V. Andrei,82 S. Angelidakis,11 I. Angelozzi,137 P. Anger,67 A. Angerami,56 F. Anghinolfi,45 A. V. Anisenkov,139 N. Anjos,15 A. Annovi,155,156 C. Antel,82 M. Antonelli,70 A. Antonov,1,127 F. Anulli,170 M. Aoki,94 L. Aperio Bella,21 G. Arabidze,119 Y. Arai,94 J. P. Araque,158 A. T. H. Arce,68 F. A. Arduh,99 J-F. Arguin,124 S. Argyropoulos,91 M. Arik,22 A. J. Armbruster,188 L. J. Armitage,105 O. Arnaez,45 H. Arnold,71 M. Arratia,43 O. Arslan,29 A. Artamonov,126 G. Artoni,150 S. Artz,112 S. Asai,204 N. Asbah,65 A. Ashkenazi,202 B. Åsman,194,195 L. Asquith,198 K. Assamagan,36 R. Astalos,189 M. Atkinson,217 N. B. Atlay,186 K. Augsten,166 G. Avolio,45 B. Axen,18 M. K. Ayoub,147 G. Azuelos,124 M. A. Baak,45 A. E. Baas,82 M. J. Baca,21 H. Bachacou,181 K. Bachas,101,102 M. Backes,150 M. Backhaus,45 P. Bagiacchi,170,171 P. Bagnaia,170,171 Y. Bai,49 J. T. Baines,169 O. K. Baker,227 E. M. Baldin,139 P. Balek,223 T. Balestri,197 F. Balli,181 W. K. Balunas,153 E. Banas,62 Sw. Banerjee,224 A. A. E. Bannoura,226 L. Barak,45 E. L. Barberio,117 D. Barberis,73,74 M. Barbero,114 T. Barillari,130 M-S Barisits,45 T. Barklow,188 N. Barlow,43 S. L. Barnes,113 B. M. Barnett,169 R. M. Barnett,18 Z. Barnovska-Blenessy,7 A. Baroncelli,174 G. Barone,31 A. J. Barr,150 L. Barranco Navarro,218 F. Barreiro,111 J. Baarreiro Guimrães da Costa,49 R. Bartoldus,188 A. E. Barton,100 P. Bartos,189 A. Basalaev,154 A. Bassalat,147 R. L. Bates,78 S. J. Batista,207 J. R. Batley,43 M. Battaglia,182 M. Bauce,170,171 F. Bauer,181 H. S. Bawa,188 J. B. Beacham,141 M. D. Beattie,100 T. Beau,109 P. H. Beauchemin,211 P. Bechtle,29 H. P. Beck,20 K. Becker,150 M. Becker,112 M. Beckingham,221 C. Becot,140 A. J. Beddall,25 A. Beddall,23 V. A. Bednyakov,93 M. Bedognetti,137 C. P. Bee,197 L. J. Beemster,137 T. A. Beermann,45 M. Begel,36 J. K. Behr,65 C. Belanger-Champagne,116 A. S. Bell,107 G. Bella,202 L. Bellagamba,27 A. Bellerive,44 M. Bellomo,115 K. Belotskiy,127 O. Beltramello,45 N. L. Belyaev,127 O. Benary,202 D. Benchekroun,176 M. Bender,129 K. Bendtz,194,195 N. Benekos,12 Y. Benhammou,202 E. Benhar Noccioli,227 J. Benitez,91 D. P. Benjamin,68 J. R. Bensinger,31 S. Bentvelsen,137 L. Beresford,150 M. Beretta,70 D. Berge,137 E. Bergeaas Kuutmann,216 N. Berger,7 J. Beringer,18 S. Berlendis,80 N. R. Bernard,115 C. Bernius,140 F. U. Bernlochner,29 T. Berry,106 P. Berta,167 C. Bertella,112 G. Bertoli,194,195 F. Bertolucci,155,156 I. A. Bertram,100 C. Bertsche,65 D. Bertsche,143 G. J. Besjes,57 O. Bessidskaia Bylund,194,195 M. Bessner,65 N. Besson,181 C. Betancourt,71 A. Bethani,80 S. Bethke,130 A. J. Bevan,105 R. M. Bianchi,157 L. Bianchini,31 M. Bianco,45 O. Biebel,129 D. Biedermann,19 R. Bielski,113 N. V. Biesuz,155,156 M. Biglietti,174 J. Bilbao De Mendizabal,72 T. R. V. Billoud,124 H. Bilokon,70 M. Bindi,79 S. Binet,147 A. Bingul,23 C. Bini,170,171 S. Biondi,27,28 T. Bisanz,79 D. M. Bjergaard,68 C. W. Black,199 J. E. Black,188 K. M. Black,30 D. Blackburn,183 R. E. Blair,8 J. -B. Blanchard,181 T. Blazek,189 I. Bloch,65 C. Blocker,31 A. Blue,78 W. Blum,1,112 U. Blumenschein,79 S. Blunier,47 G. J. Bobbink,137 V. S. Bobrovnikov,139 S. S. Bocchetta,110 A. Bocci,68 C. Bock,129 M. Boehler,71 D. Boerner,226 J. A. Bogaerts,45 D. Bogavac,16 A. G. Bogdanchikov,139 C. Bohm,194 V. Boisvert,106 P. Bokan,16 T. Bold,60 A. S. Boldyrev,213,215 M. Bomben,109 M. Bona,105 M. Boonekamp,181 A. Borisov,168 G. Borissov,100 J. Bortfeldt,45 D. Bortoletto,150 V. Bortolotto,86,87,88 K. Bos,137 D. Boscherini,27 M. Bosman,15 J. D. Bossio Sola,42 J. Boudreau,157 J. Bouffard,2 E. V. Bouhova-Thacker,100 D. Boumediene,55 C. Bourdarios,147 S. K. Boutle,78 A. Boveia,45 J. Boyd,45 I. R. Boyko,93 J. Bracinik,21 A. Brandt,10 G. Brandt,79 O. Brandt,82 U. Bratzler,205 B. Brau,115 J. E. Brau,146 W. D. Breaden Madden,78 K. Brendlinger,153 A. J. Brennan,117 L. Brenner,137 R. Brenner,216 S. Bressler,223 T. M. Bristow,69 D. Britton,78 D. Britzger,65 F. M. Brochu,43 I. Brock,29 R. Brock,119 G. Brooijmans,56 T. Brooks,106 W. K. Brooks,48 J. Brosamer,18 E. Brost,138 J. H Broughton,21 P. A. Bruckman de Renstrom,62 D. Bruncko,190 R. Bruneliere,71 A. Bruni,27 G. Bruni,27 L. S. Bruni,137 BH Brunt,43 M. Bruschi,27 N. Bruscino,29 P. Bryant,46 L. Bryngemark,110 T. Buanes,17 Q. Buat,187 P. Buchholz,186 A. G. Buckley,78 I. A. Budagov,93 F. Buehrer,71 M. K. Bugge,149 O. Bulekov,127 D. Bullock,10 H. Burckhart,45 S. Burdin,103 C. D. Burgard,71 B. Burghgrave,138 K. Burka,62 S. Burke,169 I. Burmeister,66 J. T. P. Burr,150 E. Busato,55 D. Büscher,71 V. Büscher,112 P. Bussey,78 J. M. Butler,30 C. M. Buttar,78 J. M. Butterworth,107 P. Butti,137 W. Buttinger,36 A. Buzatu,78 A. R. Buzykaev,139 S. Cabrera Urbán,218 D. Caforio,166 V. M. Cairo,58,59 O. Cakir,4 N. Calace,72 P. Calafiura,18 A. Calandri,114 G. Calderini,109 P. Calfayan,129 G. Callea,58,59 L. P. Caloba,32 S. Calvente Lopez,111 D. Calvet,55 S. Calvet,55 T. P. Calvet,114 R. Camacho Toro,46 S. Camarda,45 P. Camarri,172,173 D. Cameron,149 R. Caminal Armadans,217 C. Camincher,80 S. Campana,45 M. Campanelli,107 A. Camplani,120,121 A. Campoverde,186 V. Canale,133,134 A. Canepa,208 M. Cano Bret,53 J. Cantero,144 T. Cao,63 M. D. M. Capeans Garrido,45 I. Caprini,38 M. Caprini,38 M. Capua,58,59 R. M. Carbone,56 R. Cardarelli,172 F. Cardillo,71 I. Carli,167 T. Carli,45 G. Carlino,133 L. Carminati,120,121 S. Caron,136 E. Carquin,48 G. D. Carrillo-Montoya,45 J. R. Carter,43 J. Carvalho,158,160 D. Casadei,21 M. P. Casado,15 M. Casolino,15 D. W. Casper,212 E. Castaneda-Miranda,191 R. Castelijn,137 A. Castelli,137 V. Castillo Gimenez,218 N. F. Castro,158 A. Catinaccio,45 J. R. Catmore,149 A. Cattai,45 J. Caudron,29 V. Cavaliere,217 E. Cavallaro,15 D. Cavalli,120 M. Cavalli-Sforza,15 V. Cavasinni,155,156 F. Ceradini,174,175 L. Cerda Alberich,218 B. C. Cerio,68 A. S. Cerqueira,33 A. Cerri,198 L. Cerrito,172,173 F. Cerutti,18 M. Cerv,45 A. Cervelli,20 S. A. Cetin,24 A. Chafaq,176 D. Chakraborty,138 S. K. Chan,81 Y. L. Chan,86 P. Chang,217 J. D. Chapman,43 D. G. Charlton,21 A. Chatterjee,72 C. C. Chau,207 C. A. Chavez Barajas,198 S. Che,141 S. Cheatham,213,215 A. Chegwidden,119 S. Chekanov,8 S. V. Chekulaev,208 G. A. Chelkov,93 M. A. Chelstowska,118 C. Chen,92 H. Chen,36 K. Chen,197 S. Chen,51 S. Chen,204 X. Chen,54 Y. Chen,95 H. C. Cheng,118 H. J Cheng,49 Y. Cheng,46 A. Cheplakov,93 E. Cheremushkina,168 R. Cherkaoui El Moursli,180 V. Chernyatin,1,36 E. Cheu,9 L. Chevalier,181 V. Chiarella,70 G. Chiarelli,155,156 G. Chiodini,101 A. S. Chisholm,45 A. Chitan,38 M. V. Chizhov,93 K. Choi,89 A. R. Chomont,55 S. Chouridou,11 B. K. B. Chow,129 V. Christodoulou,107 D. Chromek-Burckhart,45 J. Chudoba,165 A. J. Chuinard,116 J. J. Chwastowski,62 L. Chytka,145 G. Ciapetti,170,171 A. K. Ciftci,4 D. Cinca,66 V. Cindro,104 I. A. Cioara,29 C. Ciocca,27,28 A. Ciocio,18 F. Cirotto,133,134 Z. H. Citron,223 M. Citterio,120 M. Ciubancan,38 A. Clark,72 B. L. Clark,81 M. R. Clark,56 P. J. Clark,69 R. N. Clarke,18 C. Clement,194,195 Y. Coadou,114 M. Cobal,213,215 A. Coccaro,72 J. Cochran,92 L. Colasurdo,136 B. Cole,56 A. P. Colijn,137 J. Collot,80 T. Colombo,212 G. Compostella,130 P. Conde Muiño,158,159 E. Coniavitis,71 S. H. Connell,192 I. A. Connelly,106 V. Consorti,71 S. Constantinescu,38 G. Conti,45 F. Conventi,133 M. Cooke,18 B. D. Cooper,107 A. M. Cooper-Sarkar,150 K. J. R. Cormier,207 T. Cornelissen,226 M. Corradi,170,171 F. Corriveau,116 A. Cortes-Gonzalez,45 G. Cortiana,130 G. Costa,120 M. J. Costa,218 D. Costanzo,184 G. Cottin,43 G. Cowan,106 B. E. Cox,113 K. Cranmer,140 S. J. Crawley,78 G. Cree,44 S. Crépé-Renaudin,80 F. Crescioli,109 W. A. Cribbs,194,195 M. Crispin Ortuzar,150 M. Cristinziani,29 V. Croft,136 G. Crosetti,58,59 A. Cueto,111 T. Cuhadar Donszelmann,184 J. Cummings,227 M. Curatolo,70 J. Cúth,112 H. Czirr,186 P. Czodrowski,3 G. D’amen,27,28 S. D’Auria,78 M. D’Onofrio,103 M. J. Da Cunha Sargedas De Sousa,158,159 C. Da Via,113 W. Dabrowski,60 T. Dado,189 T. Dai,118 O. Dale,17 F. Dallaire,124 C. Dallapiccola,115 M. Dam,57 J. R. Dandoy,46 N. P. Dang,71 A. C. Daniells,21 N. S. Dann,113 M. Danninger,219 M. Dano Hoffmann,181 V. Dao,71 G. Darbo,73 S. Darmora,10 J. Dassoulas,3 A. Dattagupta,146 W. Davey,29 C. David,220 T. Davidek,167 M. Davies,202 P. Davison,107 E. Dawe,117 I. Dawson,184 K. De,10 R. de Asmundis,133 A. De Benedetti,143 S. De Castro,27,28 S. De Cecco,109 N. De Groot,136 P. de Jong,137 H. De la Torre,119 F. De Lorenzi,92 A. De Maria,79 D. De Pedis,170 A. De Salvo,170 U. De Sanctis,198 A. De Santo,198 J. B. De Vivie De Regie,147 W. J. Dearnaley,100 R. Debbe,36 C. Debenedetti,182 D. V. Dedovich,93 N. Dehghanian,3 I. Deigaard,137 M. Del Gaudio,58,59 J. Del Peso,111 T. Del Prete,155,156 D. Delgove,147 F. Deliot,181 C. M. Delitzsch,72 A. Dell’Acqua,45 L. Dell’Asta,30 M. Dell’Orso,155,156 M. Della Pietra,133 D. della Volpe,72 M. Delmastro,7 P. A. Delsart,80 D. A. DeMarco,207 S. Demers,227 M. Demichev,93 A. Demilly,109 S. P. Denisov,168 D. Denysiuk,181 D. Derendarz,62 J. E. Derkaoui,179 F. Derue,109 P. Dervan,103 K. Desch,29 C. Deterre,65 K. Dette,66 P. O. Deviveiros,45 A. Dewhurst,169 S. Dhaliwal,31 A. Di Ciaccio,172,173 L. Di Ciaccio,7 W. K. Di Clemente,153 C. Di Donato,170,171 A. Di Girolamo,45 B. Di Girolamo,45 B. Di Micco,174,175 R. Di Nardo,45 A. Di Simone,71 R. Di Sipio,207 D. Di Valentino,44 C. Diaconu,114 M. Diamond,207 F. A. Dias,69 M. A. Diaz,47 E. B. Diehl,118 J. Dietrich,19 S. Díez Cornell,65 A. Dimitrievska,16 J. Dingfelder,29 P. Dita,38 S. Dita,38 F. Dittus,45 F. Djama,114 T. Djobava,76 J. I. Djuvsland,82 M. A. B. do Vale,34 D. Dobos,45 M. Dobre,38 C. Doglioni,110 J. Dolejsi,167 Z. Dolezal,167 M. Donadelli,35 S. Donati,155,156 P. Dondero,151,152 J. Donini,55 J. Dopke,169 A. Doria,133 M. T. Dova,99 A. T. Doyle,78 E. Drechsler,79 M. Dris,12 Y. Du,52 J. Duarte-Campderros,202 E. Duchovni,223 G. Duckeck,129 O. A. Ducu,124 D. Duda,137 A. Dudarev,45 A. Chr. Dudder,112 E. M. Duffield,18 L. Duflot,147 M. Dührssen,45 M. Dumancic,223 M. Dunford,82 H. Duran Yildiz,4 M. Düren,77 A. Durglishvili,76 D. Duschinger,67 B. Dutta,65 M. Dyndal,65 C. Eckardt,65 K. M. Ecker,130 R. C. Edgar,118 N. C. Edwards,69 T. Eifert,45 G. Eigen,17 K. Einsweiler,18 T. Ekelof,216 M. El Kacimi,178 V. Ellajosyula,114 M. Ellert,216 S. Elles,7 F. Ellinghaus,226 A. A. Elliot,220 N. Ellis,45 J. Elmsheuser,36 M. Elsing,45 D. Emeliyanov,169 Y. Enari,204 O. C. Endner,112 J. S. Ennis,221 J. Erdmann,66 A. Ereditato,20 G. Ernis,226 J. Ernst,2 M. Ernst,36 S. Errede,217 E. Ertel,112 M. Escalier,147 H. Esch,66 C. Escobar,157 B. Esposito,70 A. I. Etienvre,181 E. Etzion,202 H. Evans,89 A. Ezhilov,154 M. Ezzi,180 F. Fabbri,27,28 L. Fabbri,27,28 G. Facini,46 R. M. Fakhrutdinov,168 S. Falciano,170 R. J. Falla,107 J. Faltova,45 Y. Fang,49 M. Fanti,120,121 A. Farbin,10 A. Farilla,174 C. Farina,157 E. M. Farina,151,152 T. Farooque,15 S. Farrell,18 S. M. Farrington,221 P. Farthouat,45 F. Fassi,180 P. Fassnacht,45 D. Fassouliotis,11 M. Faucci Giannelli,106 A. Favareto,73,74 W. J. Fawcett,150 L. Fayard,147 O. L. Fedin,154 W. Fedorko,219 S. Feigl,149 L. Feligioni,114 C. Feng,52 E. J. Feng,45 H. Feng,118 A. B. Fenyuk,168 L. Feremenga,10 P. Fernandez Martinez,218 S. Fernandez Perez,15 J. Ferrando,65 A. Ferrari,216 P. Ferrari,137 R. Ferrari,151 D. E. Ferreira de Lima,83 A. Ferrer,218 D. Ferrere,72 C. Ferretti,118 A. Ferretto Parodi,73,74 F. Fiedler,112 A. Filipčič,104 M. Filipuzzi,65 F. Filthaut,136 M. Fincke-Keeler,220 K. D. Finelli,199 M. C. N. Fiolhais,158,160 L. Fiorini,218 A. Firan,63 A. Fischer,2 C. Fischer,15 J. Fischer,226 W. C. Fisher,119 N. Flaschel,65 I. Fleck,186 P. Fleischmann,118 G. T. Fletcher,184 R. R. M. Fletcher,153 T. Flick,226 L. R. Flores Castillo,86 M. J. Flowerdew,130 G. T. Forcolin,113 A. Formica,181 A. Forti,113 A. G. Foster,21 D. Fournier,147 H. Fox,100 S. Fracchia,15 P. Francavilla,109 M. Franchini,27,28 D. Francis,45 L. Franconi,149 M. Franklin,81 M. Frate,212 M. Fraternali,151,152 D. Freeborn,107 S. M. Fressard-Batraneanu,45 F. Friedrich,67 D. Froidevaux,45 J. A. Frost,150 C. Fukunaga,205 E. Fullana Torregrosa,112 T. Fusayasu,131 J. Fuster,218 C. Gabaldon,80 O. Gabizon,226 A. Gabrielli,27,28 A. Gabrielli,18 G. P. Gach,60 S. Gadatsch,45 S. Gadomski,106 G. Gagliardi,73,74 L. G. Gagnon,124 P. Gagnon,89 C. Galea,136 B. Galhardo,158,160 E. J. Gallas,150 B. J. Gallop,169 P. Gallus,166 G. Galster,57 K. K. Gan,141 J. Gao,50 Y. Gao,69 Y. S. Gao,188 F. M. Garay Walls,69 C. García,218 J. E. García Navarro,218 M. Garcia-Sciveres,18 R. W. Gardner,46 N. Garelli,188 V. Garonne,149 A. Gascon Bravo,65 K. Gasnikova,65 C. Gatti,70 A. Gaudiello,73,74 G. Gaudio,151 L. Gauthier,124 I. L. Gavrilenko,125 C. Gay,219 G. Gaycken,29 E. N. Gazis,12 Z. Gecse,219 C. N. P. Gee,169 Ch. Geich-Gimbel,29 M. Geisen,112 M. P. Geisler,82 K. Gellerstedt,194,195 C. Gemme,73 M. H. Genest,80 C. Geng,50 S. Gentile,170,171 C. Gentsos,203 S. George,106 D. Gerbaudo,15 A. Gershon,202 S. Ghasemi,186 M. Ghneimat,29 B. Giacobbe,27 S. Giagu,170,171 P. Giannetti,155,156 B. Gibbard,36 S. M. Gibson,106 M. Gignac,219 M. Gilchriese,18 T. P. S. Gillam,43 D. Gillberg,44 G. Gilles,226 D. M. Gingrich,3 N. Giokaris,11 M. P. Giordani,213,215 F. M. Giorgi,27 F. M. Giorgi,19 P. F. Giraud,181 P. Giromini,81 D. Giugni,120 F. Giuli,150 C. Giuliani,130 M. Giulini,83 B. K. Gjelsten,149 S. Gkaitatzis,203 I. Gkialas,203 E. L. Gkougkousis,147 L. K. Gladilin,128 C. Glasman,111 J. Glatzer,71 P. C. F. Glaysher,69 A. Glazov,65 M. Goblirsch-Kolb,31 J. Godlewski,62 S. Goldfarb,117 T. Golling,72 D. Golubkov,168 A. Gomes,158,159,161 R. Gonçalo,158 J. Goncalves Pinto Firmino Da Costa,181 G. Gonella,71 L. Gonella,21 A. Gongadze,93 S. González de la Hoz,218 G. Gonzalez Parra,15 S. Gonzalez-Sevilla,72 L. Goossens,45 P. A. Gorbounov,126 H. A. Gordon,36 I. Gorelov,135 B. Gorini,45 E. Gorini,101,102 A. Gorišek,104 E. Gornicki,62 A. T. Goshaw,68 C. Gössling,66 M. I. Gostkin,93 C. R. Goudet,147 D. Goujdami,178 A. G. Goussiou,183 N. Govender,192 E. Gozani,201 L. Graber,79 I. Grabowska-Bold,60 P. O. J. Gradin,80 P. Grafström,27,28 J. Gramling,72 E. Gramstad,149 S. Grancagnolo,19 V. Gratchev,154 P. M. Gravila,41 H. M. Gray,45 E. Graziani,174 Z. D. Greenwood,108 C. Grefe,29 K. Gregersen,107 I. M. Gregor,65 P. Grenier,188 K. Grevtsov,7 J. Griffiths,10 A. A. Grillo,182 K. Grimm,100 S. Grinstein,15 Ph. Gris,55 J. -F. Grivaz,147 S. Groh,112 J. P. Grohs,67 E. Gross,223 J. Grosse-Knetter,79 G. C. Grossi,108 Z. J. Grout,107 L. Guan,118 W. Guan,224 J. Guenther,90 F. Guescini,72 D. Guest,212 O. Gueta,202 E. Guido,73,74 T. Guillemin,7 S. Guindon,2 U. Gul,78 C. Gumpert,45 J. Guo,53 Y. Guo,50 R. Gupta,63 S. Gupta,150 G. Gustavino,170,171 P. Gutierrez,143 N. G. Gutierrez Ortiz,107 C. Gutschow,67 C. Guyot,181 C. Gwenlan,150 C. B. Gwilliam,103 A. Haas,140 C. Haber,18 H. K. Hadavand,10 N. Haddad,180 A. Hadef,114 S. Hageböck,29 M. Hagihara,210 Z. Hajduk,62 H. Hakobyan,1,228 M. Haleem,65 J. Haley,144 G. Halladjian,119 G. D. Hallewell,114 K. Hamacher,226 P. Hamal,145 K. Hamano,220 A. Hamilton,191 G. N. Hamity,184 P. G. Hamnett,65 L. Han,50 K. Hanagaki,94 K. Hanawa,204 M. Hance,182 B. Haney,153 P. Hanke,82 R. Hanna,181 J. B. Hansen,57 J. D. Hansen,57 M. C. Hansen,29 P. H. Hansen,57 K. Hara,210 A. S. Hard,224 T. Harenberg,226 F. Hariri,147 S. Harkusha,122 R. D. Harrington,69 P. F. Harrison,221 F. Hartjes,137 N. M. Hartmann,129 M. Hasegawa,95 Y. Hasegawa,185 A. Hasib,143 S. Hassani,181 S. Haug,20 R. Hauser,119 L. Hauswald,67 M. Havranek,165 C. M. Hawkes,21 R. J. Hawkings,45 D. Hayakawa,206 D. Hayden,119 C. P. Hays,150 J. M. Hays,105 H. S. Hayward,103 S. J. Haywood,169 S. J. Head,21 T. Heck,112 V. Hedberg,110 L. Heelan,10 S. Heim,153 T. Heim,18 B. Heinemann,18 J. J. Heinrich,129 L. Heinrich,140 C. Heinz,77 J. Hejbal,165 L. Helary,45 S. Hellman,194,195 C. Helsens,45 J. Henderson,150 R. C. W. Henderson,100 Y. Heng,224 S. Henkelmann,219 A. M. Henriques Correia,45 S. Henrot-Versille,147 G. H. Herbert,19 H. Herde,31 V. Herget,225 Y. Hernández Jiménez,218 G. Herten,71 R. Hertenberger,129 L. Hervas,45 G. G. Hesketh,107 N. P. Hessey,137 J. W. Hetherly,63 R. Hickling,105 E. Higón-Rodriguez,218 E. Hill,220 J. C. Hill,43 K. H. Hiller,65 S. J. Hillier,21 I. Hinchliffe,18 E. Hines,153 R. R. Hinman,18 M. Hirose,71 D. Hirschbuehl,226 J. Hobbs,197 N. Hod,208 M. C. Hodgkinson,184 P. Hodgson,184 A. Hoecker,45 M. R. Hoeferkamp,135 F. Hoenig,129 D. Hohn,29 T. R. Holmes,18 M. Homann,66 T. Honda,94 T. M. Hong,157 B. H. Hooberman,217 W. H. Hopkins,146 Y. Horii,132 A. J. Horton,187 J-Y. Hostachy,80 S. Hou,200 A. Hoummada,176 J. Howarth,65 J. Hoya,99 M. Hrabovsky,145 I. Hristova,19 J. Hrivnac,147 T. Hryn’ova,7 A. Hrynevich,123 C. Hsu,193 P. J. Hsu,200 S. -C. Hsu,183 Q. Hu,50 S. Hu,53 Y. Huang,65 Z. Hubacek,166 F. Hubaut,114 F. Huegging,29 T. B. Huffman,150 E. W. Hughes,56 G. Hughes,100 M. Huhtinen,45 P. Huo,197 N. Huseynov,93 J. Huston,119 J. Huth,81 G. Iacobucci,72 G. Iakovidis,36 I. Ibragimov,186 L. Iconomidou-Fayard,147 E. Ideal,227 Z. Idrissi,180 P. Iengo,45 O. Igonkina,137 T. Iizawa,222 Y. Ikegami,94 M. Ikeno,94 Y. Ilchenko,13 D. Iliadis,203 N. Ilic,188 T. Ince,130 G. Introzzi,151,152 P. Ioannou,1,11 M. Iodice,174 K. Iordanidou,56 V. Ippolito,81 N. Ishijima,148 M. Ishino,204 M. Ishitsuka,206 R. Ishmukhametov,141 C. Issever,150 S. Istin,22 F. Ito,210 J. M. Iturbe Ponce,113 R. Iuppa,57 W. Iwanski,90 H. Iwasaki,94 J. M. Izen,64 V. Izzo,133 S. Jabbar,3 B. Jackson,153 P. Jackson,1 V. Jain,2 K. B. Jakobi,112 K. Jakobs,71 S. Jakobsen,45 T. Jakoubek,165 D. O. Jamin,144 D. K. Jana,108 R. Jansky,90 J. Janssen,29 M. Janus,79 G. Jarlskog,110 N. Javadov,93 T. Javůrek,71 F. Jeanneau,181 L. Jeanty,18 G. -Y. Jeng,199 D. Jennens,117 P. Jenni,71 C. Jeske,221 S. Jézéquel,7 H. Ji,224 J. Jia,197 H. Jiang,92 Y. Jiang,50 S. Jiggins,107 J. Jimenez Pena,218 S. Jin,49 A. Jinaru,38 O. Jinnouchi,206 H. Jivan,193 P. Johansson,184 K. A. Johns,9 W. J. Johnson,183 K. Jon-And,194,195 G. Jones,221 R. W. L. Jones,100 S. Jones,9 T. J. Jones,103 J. Jongmanns,82 P. M. Jorge,158,159 J. Jovicevic,208 X. Ju,224 A. Juste Rozas,15 M. K. Köhler,223 A. Kaczmarska,62 M. Kado,147 H. Kagan,141 M. Kagan,188 S. J. Kahn,114 T. Kaji,222 E. Kajomovitz,68 C. W. Kalderon,150 A. Kaluza,112 S. Kama,63 A. Kamenshchikov,168 N. Kanaya,204 S. Kaneti,43 L. Kanjir,104 V. A. Kantserov,127 J. Kanzaki,94 B. Kaplan,140 L. S. Kaplan,224 A. Kapliy,46 D. Kar,193 K. Karakostas,12 A. Karamaoun,3 N. Karastathis,12 M. J. Kareem,79 E. Karentzos,12 M. Karnevskiy,112 S. N. Karpov,93 Z. M. Karpova,93 K. Karthik,140 V. Kartvelishvili,100 A. N. Karyukhin,168 K. Kasahara,210 L. Kashif,224 R. D. Kass,141 A. Kastanas,17 Y. Kataoka,204 C. Kato,204 A. Katre,72 J. Katzy,65 K. Kawagoe,98 T. Kawamoto,204 G. Kawamura,79 V. F. Kazanin,139 R. Keeler,220 R. Kehoe,63 J. S. Keller,65 J. J. Kempster,106 K Kentaro,132 H. Keoshkerian,207 O. Kepka,165 B. P. Kerševan,104 S. Kersten,226 R. A. Keyes,116 M. Khader,217 F. Khalil-zada,14 A. Khanov,144 A. G. Kharlamov,139 T. Kharlamova,139 T. J. Khoo,72 V. Khovanskiy,126 E. Khramov,93 J. Khubua,76 S. Kido,95 C. R. Kilby,106 H. Y. Kim,10 S. H. Kim,210 Y. K. Kim,46 N. Kimura,203 O. M. Kind,19 B. T. King,103 M. King,218 J. Kirk,169 A. E. Kiryunin,130 T. Kishimoto,204 D. Kisielewska,60 F. Kiss,71 K. Kiuchi,210 O. Kivernyk,181 E. Kladiva,190 M. H. Klein,56 M. Klein,103 U. Klein,103 K. Kleinknecht,112 P. Klimek,138 A. Klimentov,36 R. Klingenberg,66 J. A. Klinger,184 T. Klioutchnikova,45 E. -E. Kluge,82 P. Kluit,137 S. Kluth,130 J. Knapik,62 E. Kneringer,90 E. B. F. G. Knoops,114 A. Knue,78 A. Kobayashi,204 D. Kobayashi,206 T. Kobayashi,204 M. Kobel,67 M. Kocian,188 P. Kodys,167 N. M. Koehler,130 T. Koffas,44 E. Koffeman,137 T. Koi,188 H. Kolanoski,19 M. Kolb,83 I. Koletsou,7 A. A. Komar,1,125 Y. Komori,204 T. Kondo,94 N. Kondrashova,65 K. Köneke,71 A. C. König,136 T. Kono,94 R. Konoplich,140 N. Konstantinidis,107 R. Kopeliansky,89 S. Koperny,60 L. Köpke,112 A. K. Kopp,71 K. Korcyl,62 K. Kordas,203 A. Korn,107 A. A. Korol,139 I. Korolkov,15 E. V. Korolkova,184 O. Kortner,130 S. Kortner,130 T. Kosek,167 V. V. Kostyukhin,29 A. Kotwal,68 A. Kourkoumeli-Charalampidi,151,152 C. Kourkoumelis,11 V. Kouskoura,36 A. B. Kowalewska,62 R. Kowalewski,220 T. Z. Kowalski,60 C. Kozakai,204 W. Kozanecki,181 A. S. Kozhin,168 V. A. Kramarenko,128 G. Kramberger,104 D. Krasnopevtsev,127 M. W. Krasny,109 A. Krasznahorkay,45 A. Kravchenko,36 M. Kretz,84 J. Kretzschmar,103 K. Kreutzfeldt,77 P. Krieger,207 K. Krizka,46 K. Kroeninger,66 H. Kroha,130 J. Kroll,153 J. Kroseberg,29 J. Krstic,16 U. Kruchonak,93 H. Krüger,29 N. Krumnack,92 M. C. Kruse,68 M. Kruskal,30 T. Kubota,117 H. Kucuk,107 S. Kuday,5 J. T. Kuechler,226 S. Kuehn,71 A. Kugel,84 F. Kuger,225 A. Kuhl,182 T. Kuhl,65 V. Kukhtin,93 R. Kukla,181 Y. Kulchitsky,122 S. Kuleshov,48 M. Kuna,170,171 T. Kunigo,96 A. Kupco,165 H. Kurashige,95 Y. A. Kurochkin,122 V. Kus,165 E. S. Kuwertz,220 M. Kuze,206 J. Kvita,145 T. Kwan,220 D. Kyriazopoulos,184 A. La Rosa,130 J. L. La Rosa Navarro,35 L. La Rotonda,58,59 C. Lacasta,218 F. Lacava,170,171 J. Lacey,44 H. Lacker,19 D. Lacour,109 V. R. Lacuesta,218 E. Ladygin,93 R. Lafaye,7 B. Laforge,109 T. Lagouri,227 S. Lai,79 S. Lammers,89 W. Lampl,9 E. Lançon,181 U. Landgraf,71 M. P. J. Landon,105 M. C. Lanfermann,72 V. S. Lang,82 J. C. Lange,15 A. J. Lankford,212 F. Lanni,36 K. Lantzsch,29 A. Lanza,151 S. Laplace,109 C. Lapoire,45 J. F. Laporte,181 T. Lari,120 F. Lasagni Manghi,27,28 M. Lassnig,45 P. Laurelli,70 W. Lavrijsen,18 A. T. Law,182 P. Laycock,103 T. Lazovich,81 M. Lazzaroni,120,121 B. Le,117 O. Le Dortz,109 E. Le Guirriec,114 E. P. Le Quilleuc,181 M. LeBlanc,220 T. LeCompte,8 F. Ledroit-Guillon,80 C. A. Lee,36 S. C. Lee,200 L. Lee,1 B. Lefebvre,116 G. Lefebvre,109 M. Lefebvre,220 F. Legger,129 C. Leggett,18 A. Lehan,103 G. Lehmann Miotto,45 X. Lei,9 W. A. Leight,44 A. Leisos,203 A. G. Leister,227 M. A. L. Leite,35 R. Leitner,167 D. Lellouch,223 B. Lemmer,79 K. J. C. Leney,107 T. Lenz,29 B. Lenzi,45 R. Leone,9 S. Leone,155,156 C. Leonidopoulos,69 S. Leontsinis,12 G. Lerner,198 C. Leroy,124 A. A. J. Lesage,181 C. G. Lester,43 M. Levchenko,154 J. Levêque,7 D. Levin,118 L. J. Levinson,223 M. Levy,21 D. Lewis,105 A. M. Leyko,29 M. Leyton,64 B. Li,50 C. Li,50 H. Li,197 H. L. Li,46 L. Li,68 L. Li,53 Q. Li,49 S. Li,68 X. Li,113 Y. Li,186 Z. Liang,49 B. Liberti,172 A. Liblong,207 P. Lichard,45 K. Lie,217 J. Liebal,29 W. Liebig,17 A. Limosani,199 S. C. Lin,200 T. H. Lin,112 B. E. Lindquist,197 A. E. Lionti,72 E. Lipeles,153 A. Lipniacka,17 M. Lisovyi,83 T. M. Liss,217 A. Lister,219 A. M. Litke,182 B. Liu,200 D. Liu,200 H. Liu,118 H. Liu,36 J. Liu,114 J. B. Liu,50 K. Liu,114 L. Liu,217 M. Liu,68 M. Liu,50 Y. L. Liu,50 Y. Liu,50 M. Livan,151,152 A. Lleres,80 J. Llorente Merino,49 S. L. Lloyd,105 F. Lo Sterzo,200 E. M. Lobodzinska,65 P. Loch,9 W. S. Lockman,182 F. K. Loebinger,113 A. E. Loevschall-Jensen,57 K. M. Loew,31 A. Loginov,1,227 T. Lohse,19 K. Lohwasser,65 M. Lokajicek,165 B. A. Long,30 J. D. Long,217 R. E. Long,100 L. Longo,101,102 K. A. Looper,141 J. A. López,48 D. Lopez Mateos,81 B. Lopez Paredes,184 I. Lopez Paz,15 A. Lopez Solis,109 J. Lorenz,129 N. Lorenzo Martinez,89 M. Losada,26 P. J. Lösel,129 X. Lou,49 A. Lounis,147 J. Love,8 P. A. Love,100 H. Lu,86 N. Lu,118 H. J. Lubatti,183 C. Luci,170,171 A. Lucotte,80 C. Luedtke,71 F. Luehring,89 W. Lukas,90 L. Luminari,170 O. Lundberg,194,195 B. Lund-Jensen,196 P. M. Luzi,109 D. Lynn,36 R. Lysak,165 E. Lytken,110 V. Lyubushkin,93 H. Ma,36 L. L. Ma,52 Y. Ma,52 G. Maccarrone,70 A. Macchiolo,130 C. M. Macdonald,184 B. Maček,104 J. Machado Miguens,153,159 D. Madaffari,114 R. Madar,55 H. J. Maddocks,216 W. F. Mader,67 A. Madsen,65 J. Maeda,95 S. Maeland,17 T. Maeno,36 A. Maevskiy,128 E. Magradze,79 J. Mahlstedt,137 C. Maiani,147 C. Maidantchik,32 A. A. Maier,130 T. Maier,129 A. Maio,158,159,161 S. Majewski,146 Y. Makida,94 N. Makovec,147 B. Malaescu,109 Pa. Malecki,62 V. P. Maleev,154 F. Malek,80 U. Mallik,91 D. Malon,8 C. Malone,188 C. Malone,43 S. Maltezos,12 S. Malyukov,45 J. Mamuzic,218 G. Mancini,70 L. Mandelli,120 I. Mandić,104 J. Maneira,158,159 L. Manhaes de Andrade Filho,33 J. Manjarres Ramos,209 A. Mann,129 A. Manousos,45 B. Mansoulie,181 J. D. Mansour,49 R. Mantifel,116 M. Mantoani,79 S. Manzoni,120,121 L. Mapelli,45 G. Marceca,42 L. March,72 G. Marchiori,109 M. Marcisovsky,165 M. Marjanovic,16 D. E. Marley,118 F. Marroquim,32 S. P. Marsden,113 Z. Marshall,18 S. Marti-Garcia,218 B. Martin,119 T. A. Martin,221 V. J. Martin,69 B. Martin dit Latour,17 M. Martinez,15 V. I. Martinez Outschoorn,217 S. Martin-Haugh,169 V. S. Martoiu,38 A. C. Martyniuk,107 A. Marzin,45 L. Masetti,112 T. Mashimo,204 R. Mashinistov,125 J. Masik,113 A. L. Maslennikov,139 I. Massa,27,28 L. Massa,27,28 P. Mastrandrea,7 A. Mastroberardino,58,59 T. Masubuchi,204 P. Mättig,226 J. Mattmann,112 J. Maurer,38 S. J. Maxfield,103 D. A. Maximov,139 R. Mazini,200 S. M. Mazza,120,121 N. C. Mc Fadden,135 G. Mc Goldrick,207 S. P. Mc Kee,118 A. McCarn,118 R. L. McCarthy,197 T. G. McCarthy,130 L. I. McClymont,107 E. F. McDonald,117 J. A. Mcfayden,107 G. Mchedlidze,79 S. J. McMahon,169 R. A. McPherson,220 M. Medinnis,65 S. Meehan,183 S. Mehlhase,129 A. Mehta,103 K. Meier,82 C. Meineck,129 B. Meirose,64 D. Melini,218 B. R. Mellado Garcia,193 M. Melo,189 F. Meloni,20 A. Mengarelli,27,28 S. Menke,130 E. Meoni,211 S. Mergelmeyer,19 P. Mermod,72 L. Merola,133,134 C. Meroni,120 F. S. Merritt,46 A. Messina,170,171 J. Metcalfe,8 A. S. Mete,212 C. Meyer,112 C. Meyer,153 J-P. Meyer,181 J. Meyer,137 H. Meyer Zu Theenhausen,82 F. Miano,198 R. P. Middleton,169 S. Miglioranzi,73,74 L. Mijović,69 G. Mikenberg,223 M. Mikestikova,165 M. Mikuž,104 M. Milesi,117 A. Milic,90 D. W. Miller,46 C. Mills,69 A. Milov,223 D. A. Milstead,194,195 A. A. Minaenko,168 Y. Minami,204 I. A. Minashvili,93 A. I. Mincer,140 B. Mindur,60 M. Mineev,93 Y. Minegishi,204 Y. Ming,224 L. M. Mir,15 K. P. Mistry,153 T. Mitani,222 J. Mitrevski,129 V. A. Mitsou,218 A. Miucci,20 P. S. Miyagawa,184 J. U. Mjörnmark,110 M. Mlynarikova,167 T. Moa,194,195 K. Mochizuki,124 S. Mohapatra,56 S. Molander,194,195 R. Moles-Valls,29 R. Monden,96 M. C. Mondragon,119 K. Mönig,65 J. Monk,57 E. Monnier,114 A. Montalbano,197 J. Montejo Berlingen,45 F. Monticelli,99 S. Monzani,120,121 R. W. Moore,3 N. Morange,147 D. Moreno,26 M. Moreno Llácer,79 P. Morettini,73 S. Morgenstern,45 D. Mori,187 T. Mori,204 M. Morii,81 M. Morinaga,204 V. Morisbak,149 S. Moritz,112 A. K. Morley,199 G. Mornacchi,45 J. D. Morris,105 S. S. Mortensen,57 L. Morvaj,197 M. Mosidze,76 J. Moss,188 K. Motohashi,206 R. Mount,188 E. Mountricha,36 E. J. W. Moyse,115 S. Muanza,114 R. D. Mudd,21 F. Mueller,130 J. Mueller,157 R. S. P. Mueller,129 T. Mueller,43 D. Muenstermann,100 P. Mullen,78 G. A. Mullier,20 F. J. Munoz Sanchez,113 J. A. Murillo Quijada,21 W. J. Murray,169,221 H. Musheghyan,79 M. Muškinja,104 A. G. Myagkov,168 M. Myska,166 B. P. Nachman,188 O. Nackenhorst,72 K. Nagai,150 R. Nagai,94 K. Nagano,94 Y. Nagasaka,85 K. Nagata,210 M. Nagel,71 E. Nagy,114 A. M. Nairz,45 Y. Nakahama,132 K. Nakamura,94 T. Nakamura,204 I. Nakano,142 H. Namasivayam,64 R. F. Naranjo Garcia,65 R. Narayan,13 D. I. Narrias Villar,82 I. Naryshkin,154 T. Naumann,65 G. Navarro,26 R. Nayyar,9 H. A. Neal,118 P. Yu. Nechaeva,125 T. J. Neep,113 A. Negri,151,152 M. Negrini,27 S. Nektarijevic,136 C. Nellist,147 A. Nelson,212 S. Nemecek,165 P. Nemethy,140 A. A. Nepomuceno,32 M. Nessi,45 M. S. Neubauer,217 M. Neumann,226 R. M. Neves,140 P. Nevski,36 P. R. Newman,21 D. H. Nguyen,8 T. Nguyen Manh,124 R. B. Nickerson,150 R. Nicolaidou,181 J. Nielsen,182 A. Nikiforov,19 V. Nikolaenko,168 I. Nikolic-Audit,109 K. Nikolopoulos,21 J. K. Nilsen,149 P. Nilsson,36 Y. Ninomiya,204 A. Nisati,170 R. Nisius,130 T. Nobe,204 M. Nomachi,148 I. Nomidis,44 T. Nooney,105 S. Norberg,143 M. Nordberg,45 N. Norjoharuddeen,150 O. Novgorodova,67 S. Nowak,130 M. Nozaki,94 L. Nozka,145 K. Ntekas,212 E. Nurse,107 F. Nuti,117 F. O’grady,9 D. C. O’Neil,187 A. A. O’Rourke,65 V. O’Shea,78 F. G. Oakham,44 H. Oberlack,130 T. Obermann,29 J. Ocariz,109 A. Ochi,95 I. Ochoa,56 J. P. Ochoa-Ricoux,47 S. Oda,98 S. Odaka,94 H. Ogren,89 A. Oh,113 S. H. Oh,68 C. C. Ohm,18 H. Ohman,216 H. Oide,45 H. Okawa,210 Y. Okumura,204 T. Okuyama,94 A. Olariu,38 L. F. Oleiro Seabra,158 S. A. Olivares Pino,69 D. Damazio,36 A. Olszewski,62 J. Olszowska,62 A. Onofre,158,162 K. Onogi,132 P. U. E. Onyisi,13 M. J. Oreglia,46 Y. Oren,202 D. Orestano,174,175 N. Orlando,87 R. S. Orr,207 B. Osculati,1,52 R. Ospanov,113 G. Otero y Garzon,42 H. Otono,98 M. Ouchrif,179 F. Ould-Saada,149 A. Ouraou,181 K. P. Oussoren,137 Q. Ouyang,49 M. Owen,78 R. E. Owen,21 V. E. Ozcan,22 N. Ozturk,10 K. Pachal,187 A. Pacheco Pages,15 L. Pacheco Rodriguez,181 C. Padilla Aranda,15 M. Pagáčová,71 S. Pagan Griso,18 M. Paganini,227 F. Paige,36 P. Pais,115 K. Pajchel,149 G. Palacino,209 S. Palazzo,58,59 S. Palestini,45 M. Palka,61 D. Pallin,55 E. St. Panagiotopoulou,12 C. E. Pandini,109 J. G. Panduro Vazquez,106 P. Pani,194,195 S. Panitkin,36 D. Pantea,38 L. Paolozzi,72 Th. D. Papadopoulou,12 K. Papageorgiou,203 A. Paramonov,8 D. Paredes Hernandez,227 A. J. Parker,100 M. A. Parker,43 K. A. Parker,184 F. Parodi,73,74 J. A. Parsons,56 U. Parzefall,71 V. R. Pascuzzi,207 E. Pasqualucci,170 S. Passaggio,73 Fr. Pastore,106 G. Pásztor,44 S. Pataraia,226 J. R. Pater,113 T. Pauly,45 J. Pearce,220 B. Pearson,143 L. E. Pedersen,57 M. Pedersen,149 S. Pedraza Lopez,218 R. Pedro,158,159 S. V. Peleganchuk,139 O. Penc,165 C. Peng,49 H. Peng,50 J. Penwell,89 B. S. Peralva,33 M. M. Perego,181 D. V. Perepelitsa,36 E. Perez Codina,208 L. Perini,120,121 H. Pernegger,45 S. Perrella,133,134 R. Peschke,65 V. D. Peshekhonov,93 K. Peters,65 R. F. Y. Peters,113 B. A. Petersen,45 T. C. Petersen,57 E. Petit,80 A. Petridis,1 C. Petridou,203 P. Petroff,147 E. Petrolo,170 M. Petrov,150 F. Petrucci,174,175 N. E. Pettersson,115 A. Peyaud,181 R. Pezoa,48 P. W. Phillips,169 G. Piacquadio,188 E. Pianori,221 A. Picazio,115 E. Piccaro,105 M. Piccinini,27,28 M. A. Pickering,150 R. Piegaia,42 J. E. Pilcher,46 A. D. Pilkington,113 A. W. J. Pin,113 M. Pinamonti,163 J. L. Pinfold,3 A. Pingel,57 S. Pires,109 H. Pirumov,65 M. Pitt,223 L. Plazak,189 M. -A. Pleier,36 V. Pleskot,112 E. Plotnikova,93 P. Plucinski,119 D. Pluth,92 R. Poettgen,194,195 L. Poggioli,147 D. Pohl,29 G. Polesello,151 A. Poley,65 A. Policicchio,58,59 R. Polifka,207 A. Polini,27 C. S. Pollard,78 V. Polychronakos,36 K. Pommès,45 L. Pontecorvo,170 B. G. Pope,119 G. A. Popeneciu,39 A. Poppleton,45 S. Pospisil,166 K. Potamianos,18 I. N. Potrap,93 C. J. Potter,43 C. T. Potter,146 G. Poulard,45 J. Poveda,45 V. Pozdnyakov,93 M. E. Pozo Astigarraga,45 P. Pralavorio,114 A. Pranko,18 S. Prell,92 D. Price,113 L. E. Price,8 M. Primavera,101 S. Prince,116 K. Prokofiev,88 F. Prokoshin,48 S. Protopopescu,36 J. Proudfoot,8 M. Przybycien,60 D. Puddu,174,175 M. Purohit,36 P. Puzo,147 J. Qian,118 G. Qin,78 Y. Qin,113 A. Quadt,79 W. B. Quayle,213,214 M. Queitsch-Maitland,113 D. Quilty,78 S. Raddum,149 V. Radeka,36 V. Radescu,150 S. K. Radhakrishnan,197 P. Radloff,146 P. Rados,117 F. Ragusa,120,121 G. Rahal,229 J. A. Raine,113 S. Rajagopalan,36 M. Rammensee,45 C. Rangel-Smith,216 M. G. Ratti,120,121 F. Rauscher,129 S. Rave,112 T. Ravenscroft,78 I. Ravinovich,223 M. Raymond,45 A. L. Read,149 N. P. Readioff,103 M. Reale,101,102 D. M. Rebuzzi,151,152 A. Redelbach,225 G. Redlinger,36 R. Reece,182 R. G. Reed,193 K. Reeves,64 L. Rehnisch,19 J. Reichert,153 A. Reiss,112 C. Rembser,45 H. Ren,49 M. Rescigno,170 S. Resconi,120 O. L. Rezanova,139 P. Reznicek,167 R. Rezvani,124 R. Richter,130 S. Richter,107 E. Richter-Was,61 O. Ricken,29 M. Ridel,109 P. Rieck,19 C. J. Riegel,226 J. Rieger,79 O. Rifki,143 M. Rijssenbeek,197 A. Rimoldi,151,152 M. Rimoldi,20 L. Rinaldi,27 B. Ristić,72 E. Ritsch,45 I. Riu,15 F. Rizatdinova,144 E. Rizvi,105 C. Rizzi,15 S. H. Robertson,116 A. Robichaud-Veronneau,116 D. Robinson,43 J. E. M. Robinson,65 A. Robson,78 C. Roda,155,156 Y. Rodina,114 A. Rodriguez Perez,15 D. Rodriguez Rodriguez,218 S. Roe,45 C. S. Rogan,81 O. Røhne,149 A. Romaniouk,127 M. Romano,27,28 S. M. Romano Saez,55 E. Romero Adam,218 N. Rompotis,183 M. Ronzani,71 L. Roos,109 E. Ros,218 S. Rosati,170 K. Rosbach,71 P. Rose,182 N. -A. Rosien,79 V. Rossetti,194,195 E. Rossi,133,134 L. P. Rossi,73 J. H. N. Rosten,43 R. Rosten,183 M. Rotaru,38 I. Roth,223 J. Rothberg,183 D. Rousseau,147 A. Rozanov,114 Y. Rozen,201 X. Ruan,193 F. Rubbo,188 M. S. Rudolph,207 F. Rühr,71 A. Ruiz-Martinez,44 Z. Rurikova,71 N. A. Rusakovich,93 A. Ruschke,129 H. L. Russell,183 J. P. Rutherfoord,9 N. Ruthmann,45 Y. F. Ryabov,154 M. Rybar,217 G. Rybkin,147 S. Ryu,8 A. Ryzhov,168 G. F. Rzehorz,79 A. F. Saavedra,199 G. Sabato,137 S. Sacerdoti,42 H. F-W. Sadrozinski,182 R. Sadykov,93 F. Safai Tehrani,170 P. Saha,138 M. Sahinsoy,82 M. Saimpert,181 T. Saito,204 H. Sakamoto,204 Y. Sakurai,222 G. Salamanna,174,175 A. Salamon,172,173 J. E. Salazar Loyola,48 D. Salek,137 P. H. Sales De Bruin,183 D. Salihagic,130 A. Salnikov,188 J. Salt,218 D. Salvatore,58,59 F. Salvatore,198 A. Salvucci,86 A. Salzburger,45 D. Sammel,71 D. Sampsonidis,203 A. Sanchez,133,134 J. Sánchez,218 V. Sanchez Martinez,218 H. Sandaker,149 R. L. Sandbach,105 H. G. Sander,112 M. Sandhoff,226 C. Sandoval,26 D. P. C. Sankey,169 M. Sannino,73,74 A. Sansoni,70 C. Santoni,55 R. Santonico,172,173 H. Santos,158 I. Santoyo Castillo,198 K. Sapp,157 A. Sapronov,93 J. G. Saraiva,158,161 B. Sarrazin,29 O. Sasaki,94 K. Sato,210 E. Sauvan,7 G. Savage,106 P. Savard,207 N. Savic,130 C. Sawyer,169 L. Sawyer,108 J. Saxon,46 C. Sbarra,27 A. Sbrizzi,27,28 T. Scanlon,107 D. A. Scannicchio,212 M. Scarcella,199 V. Scarfone,58,59 J. Schaarschmidt,223 P. Schacht,130 B. M. Schachtner,129 D. Schaefer,45 L. Schaefer,153 R. Schaefer,65 J. Schaeffer,112 S. Schaepe,29 S. Schaetzel,83 U. Schäfer,112 A. C. Schaffer,147 D. Schaile,129 R. D. Schamberger,197 V. Scharf,82 V. A. Schegelsky,154 D. Scheirich,167 M. Schernau,212 C. Schiavi,73,74 S. Schier,182 C. Schillo,71 M. Schioppa,58,59 S. Schlenker,45 K. R. Schmidt-Sommerfeld,130 K. Schmieden,45 C. Schmitt,112 S. Schmitt,65 S. Schmitz,112 B. Schneider,208 U. Schnoor,71 L. Schoeffel,181 A. Schoening,83 B. D. Schoenrock,119 E. Schopf,29 M. Schott,112 J. F. P. Schouwenberg,136 J. Schovancova,10 S. Schramm,72 M. Schreyer,225 N. Schuh,112 A. Schulte,112 M. J. Schultens,29 H.-C. Schultz-Coulon,82 H. Schulz,19 M. Schumacher,71 B. A. Schumm,182 Ph. Schune,181 A. Schwartzman,188 T. A. Schwarz,118 H. Schweiger,113 Ph. Schwemling,181 R. Schwienhorst,119 J. Schwindling,181 T. Schwindt,29 G. Sciolla,31 F. Scuri,155,156 F. Scutti,117 J. Searcy,118 P. Seema,29 S. C. Seidel,135 A. Seiden,182 F. Seifert,166 J. M. Seixas,32 G. Sekhniaidze,133 K. Sekhon,118 S. J. Sekula,63 D. M. Seliverstov,1,154 N. Semprini-Cesari,27,28 C. Serfon,149 L. Serin,147 L. Serkin,213,214 M. Sessa,174,175 R. Seuster,220 H. Severini,143 T. Sfiligoj,104 F. Sforza,45 A. Sfyrla,72 E. Shabalina,79 N. W. Shaikh,194,195 L. Y. Shan,49 R. Shang,217 J. T. Shank,30 M. Shapiro,18 P. B. Shatalov,126 K. Shaw,213,214 S. M. Shaw,113 A. Shcherbakova,194,195 C. Y. Shehu,198 P. Sherwood,107 L. Shi,200 S. Shimizu,95 C. O. Shimmin,212 M. Shimojima,131 S. Shirabe,98 M. Shiyakova,93 A. Shmeleva,125 D. Shoaleh Saadi,124 M. J. Shochet,46 S. Shojaii,120,121 D. R. Shope,143 S. Shrestha,141 E. Shulga,127 M. A. Shupe,9 P. Sicho,165 A. M. Sickles,217 P. E. Sidebo,196 O. Sidiropoulou,225 D. Sidorov,144 A. Sidoti,27,28 F. Siegert,67 Dj. Sijacki,16 J. Silva,158,161 S. B. Silverstein,194 V. Simak,166 Lj. Simic,16 S. Simion,147 E. Simioni,112 B. Simmons,107 D. Simon,55 M. Simon,112 P. Sinervo,207 N. B. Sinev,146 M. Sioli,27,28 G. Siragusa,225 S. Yu. Sivoklokov,128 J. Sjölin,194,195 M. B. Skinner,100 H. P. Skottowe,81 P. Skubic,143 M. Slater,21 T. Slavicek,166 M. Slawinska,137 K. Sliwa,211 R. Slovak,167 V. Smakhtin,223 B. H. Smart,7 L. Smestad,17 J. Smiesko,189 S. Yu. Smirnov,127 Y. Smirnov,127 L. N. Smirnova,128 O. Smirnova,110 M. N. K. Smith,56 R. W. Smith,56 M. Smizanska,100 K. Smolek,166 A. A. Snesarev,125 I. M. Snyder,146 S. Snyder,36 R. Sobie,220 F. Socher,67 A. Soffer,202 D. A. Soh,200 G. Sokhrannyi,104 C. A. Solans Sanchez,45 M. Solar,166 E. Yu. Soldatov,127 U. Soldevila,218 A. A. Solodkov,168 A. Soloshenko,93 O. V. Solovyanov,168 V. Solovyev,154 P. Sommer,71 H. Son,211 H. Y. Song,50 A. Sood,18 A. Sopczak,166 V. Sopko,166 V. Sorin,15 D. Sosa,83 C. L. Sotiropoulou,155,156 R. Soualah,213,215 A. M. Soukharev,139 D. South,65 B. C. Sowden,106 S. Spagnolo,101,102 M. Spalla,155,156 M. Spangenberg,221 F. Spanò,106 D. Sperlich,19 F. Spettel,130 R. Spighi,27 G. Spigo,45 L. A. Spiller,117 M. Spousta,167 R. D. St. Denis,1,78 A. Stabile,120 R. Stamen,82 S. Stamm,19 E. Stanecka,62 R. W. Stanek,8 C. Stanescu,174 M. Stanescu-Bellu,65 M. M. Stanitzki,65 S. Stapnes,149 E. A. Starchenko,168 G. H. Stark,46 J. Stark,80 P. Staroba,165 P. Starovoitov,82 S. Stärz,45 R. Staszewski,62 P. Steinberg,36 B. Stelzer,187 H. J. Stelzer,45 O. Stelzer-Chilton,208 H. Stenzel,77 G. A. Stewart,78 J. A. Stillings,29 M. C. Stockton,116 M. Stoebe,116 G. Stoicea,38 P. Stolte,79 S. Stonjek,130 A. R. Stradling,10 A. Straessner,67 M. E. Stramaglia,20 J. Strandberg,196 S. Strandberg,194,195 A. Strandlie,149 M. Strauss,143 P. Strizenec,190 R. Ströhmer,225 D. M. Strom,146 R. Stroynowski,63 A. Strubig,136 S. A. Stucci,36 B. Stugu,17 N. A. Styles,65 D. Su,188 J. Su,157 S. Suchek,82 Y. Sugaya,148 M. Suk,166 V. V. Sulin,125 S. Sultansoy,6 T. Sumida,96 S. Sun,81 X. Sun,49 J. E. Sundermann,71 K. Suruliz,198 G. Susinno,58,59 M. R. Sutton,198 S. Suzuki,94 M. Svatos,165 M. Swiatlowski,46 I. Sykora,189 T. Sykora,167 D. Ta,71 C. Taccini,174,175 K. Tackmann,65 J. Taenzer,207 A. Taffard,212 R. Tafirout,208 N. Taiblum,202 H. Takai,36 R. Takashima,97 T. Takeshita,185 Y. Takubo,94 M. Talby,114 A. A. Talyshev,139 K. G. Tan,117 J. Tanaka,204 M. Tanaka,206 R. Tanaka,147 S. Tanaka,94 R. Tanioka,95 B. B. Tannenwald,141 S. Tapia Araya,48 S. Tapprogge,112 S. Tarem,201 G. F. Tartarelli,120 P. Tas,167 M. Tasevsky,165 T. Tashiro,96 E. Tassi,58,59 A. Tavares Delgado,158,159 Y. Tayalati,180 A. C. Taylor,135 G. N. Taylor,117 P. T. E. Taylor,117 W. Taylor,209 F. A. Teischinger,45 P. Teixeira-Dias,106 K. K. Temming,71 D. Temple,187 H. Ten Kate,45 P. K. Teng,200 J. J. Teoh,148 F. Tepel,226 S. Terada,94 K. Terashi,204 J. Terron,111 S. Terzo,15 M. Testa,70 R. J. Teuscher,207 T. Theveneaux-Pelzer,114 J. P. Thomas,21 J. Thomas-Wilsker,106 E. N. Thompson,56 P. D. Thompson,21 A. S. Thompson,78 L. A. Thomsen,227 E. Thomson,153 M. Thomson,43 M. J. Tibbetts,18 R. E. Ticse Torres,114 V. O. Tikhomirov,125 Yu. A. Tikhonov,139 S. Timoshenko,127 P. Tipton,227 S. Tisserant,114 K. Todome,206 T. Todorov,1,7 S. Todorova-Nova,167 J. Tojo,98 S. Tokár,189 K. Tokushuku,94 E. Tolley,81 L. Tomlinson,113 M. Tomoto,132 L. Tompkins,188 K. Toms,135 B. Tong,81 P. Tornambe,71 E. Torrence,146 H. Torres,187 E. Torró Pastor,183 J. Toth,114 F. Touchard,114 D. R. Tovey,184 T. Trefzger,225 A. Tricoli,36 I. M. Trigger,208 S. Trincaz-Duvoid,109 M. F. Tripiana,15 W. Trischuk,207 B. Trocmé,80 A. Trofymov,65 C. Troncon,120 M. Trottier-McDonald,18 M. Trovatelli,220 L. Truong,213,215 M. Trzebinski,62 A. Trzupek,62 J. C.-L. Tseng,150 P. V. Tsiareshka,122 G. Tsipolitis,12 N. Tsirintanis,11 S. Tsiskaridze,15 V. Tsiskaridze,71 E. G. Tskhadadze,75 K. M. Tsui,86 I. I. Tsukerman,126 V. Tsulaia,18 S. Tsuno,94 D. Tsybychev,197 Y. Tu,87 A. Tudorache,38 V. Tudorache,38 A. N. Tuna,81 S. A. Tupputi,27,28 S. Turchikhin,93 D. Turecek,166 D. Turgeman,223 R. Turra,120,121 P. M. Tuts,56 M. Tyndel,169 G. Ucchielli,27,28 I. Ueda,204 M. Ughetto,194,195 F. Ukegawa,210 G. Unal,45 A. Undrus,36 G. Unel,212 F. C. Ungaro,117 Y. Unno,94 C. Unverdorben,129 J. Urban,190 P. Urquijo,117 P. Urrejola,112 G. Usai,10 L. Vacavant,114 V. Vacek,166 B. Vachon,116 C. Valderanis,129 E. Valdes Santurio,194,195 N. Valencic,137 S. Valentinetti,27,28 A. Valero,218 L. Valery,15 S. Valkar,167 J. A. Valls Ferrer,218 W. Van Den Wollenberg,137 P. C. Van Der Deijl,137 H. van der Graaf,137 N. van Eldik,201 P. van Gemmeren,8 J. Van Nieuwkoop,187 I. van Vulpen,137 M. C. van Woerden,45 M. Vanadia,170,171 W. Vandelli,45 R. Vanguri,153 A. Vaniachine,168 P. Vankov,137 G. Vardanyan,228 R. Vari,170 E. W. Varnes,9 T. Varol,63 D. Varouchas,109 A. Vartapetian,10 K. E. Varvell,199 J. G. Vasquez,227 G. A. Vasquez,48 F. Vazeille,55 T. Vazquez Schroeder,116 J. Veatch,79 V. Veeraraghavan,9 L. M. Veloce,207 F. Veloso,158,160 S. Veneziano,170 A. Ventura,101,102 M. Venturi,220 N. Venturi,207 A. Venturini,31 V. Vercesi,151 M. Verducci,170,171 W. Verkerke,137 J. C. Vermeulen,137 A. Vest,67 M. C. Vetterli,187 O. Viazlo,110 I. Vichou,1,217 T. Vickey,184 O. E. Vickey Boeriu,184 G. H. A. Viehhauser,150 S. Viel,18 L. Vigani,150 M. Villa,27,28 M. Villaplana Perez,120,121 E. Vilucchi,70 M. G. Vincter,44 V. B. Vinogradov,93 C. Vittori,27,28 I. Vivarelli,198 S. Vlachos,12 M. Vlasak,166 M. Vogel,226 P. Vokac,166 G. Volpi,155,156 M. Volpi,117 H. von der Schmitt,130 E. von Toerne,29 V. Vorobel,167 K. Vorobev,127 M. Vos,218 R. Voss,45 J. H. Vossebeld,103 N. Vranjes,16 M. Vranjes Milosavljevic,16 V. Vrba,165 M. Vreeswijk,137 R. Vuillermet,45 I. Vukotic,46 Z. Vykydal,166 P. Wagner,29 W. Wagner,226 H. Wahlberg,99 S. Wahrmund,67 J. Wakabayashi,132 J. Walder,100 R. Walker,129 W. Walkowiak,186 V. Wallangen,194,195 C. Wang,51 C. Wang,52,114 F. Wang,224 H. Wang,18 H. Wang,63 J. Wang,65 J. Wang,199 K. Wang,116 R. Wang,8 S. M. Wang,200 T. Wang,29 T. Wang,56 W. Wang,50 X. Wang,227 C. Wanotayaroj,146 A. Warburton,116 C. P. Ward,43 D. R. Wardrope,107 A. Washbrook,69 P. M. Watkins,21 A. T. Watson,21 M. F. Watson,21 G. Watts,183 S. Watts,113 B. M. Waugh,107 S. Webb,112 M. S. Weber,20 S. W. Weber,225 S. A. Weber,44 J. S. Webster,8 A. R. Weidberg,150 B. Weinert,89 J. Weingarten,79 C. Weiser,71 H. Weits,137 P. S. Wells,45 T. Wenaus,36 T. Wengler,45 S. Wenig,45 N. Wermes,29 M. Werner,71 M. D. Werner,92 P. Werner,45 M. Wessels,82 J. Wetter,211 K. Whalen,146 N. L. Whallon,183 A. M. Wharton,100 A. White,10 M. J. White,1 R. White,48 D. Whiteson,212 F. J. Wickens,169 W. Wiedenmann,224 M. Wielers,169 C. Wiglesworth,57 L. A. M. Wiik-Fuchs,29 A. Wildauer,130 F. Wilk,113 H. G. Wilkens,45 H. H. Williams,153 S. Williams,137 C. Willis,119 S. Willocq,115 J. A. Wilson,21 I. Wingerter-Seez,7 F. Winklmeier,146 O. J. Winston,198 B. T. Winter,29 M. Wittgen,188 J. Wittkowski,129 T. M. H. Wolf,137 M. W. Wolter,62 H. Wolters,158,160 S. D. Worm,169 B. K. Wosiek,62 J. Wotschack,45 M. J. Woudstra,113 K. W. Wozniak,62 M. Wu,80 M. Wu,46 S. L. Wu,224 X. Wu,72 Y. Wu,118 T. R. Wyatt,113 B. M. Wynne,69 S. Xella,57 D. Xu,49 L. Xu,36 B. Yabsley,199 S. Yacoob,191 D. Yamaguchi,206 Y. Yamaguchi,148 A. Yamamoto,94 S. Yamamoto,204 T. Yamanaka,204 K. Yamauchi,132 Y. Yamazaki,95 Z. Yan,30 H. Yang,53 H. Yang,224 Y. Yang,200 Z. Yang,17 W -M. Yao,18 Y. C. Yap,109 Y. Yasu,94 E. Yatsenko,7 K. H. Yau Wong,29 J. Ye,63 S. Ye,36 I. Yeletskikh,93 A. L. Yen,81 E. Yildirim,112 K. Yorita,222 R. Yoshida,8 K. Yoshihara,153 C. Young,188 C. J. S. Young,45 S. Youssef,30 D. R. Yu,18 J. Yu,10 J. M. Yu,118 J. Yu,92 L. Yuan,95 S. P. Y. Yuen,29 I. Yusuff,43 B. Zabinski,62 R. Zaidan,91 A. M. Zaitsev,168 N. Zakharchuk,65 J. Zalieckas,17 A. Zaman,197 S. Zambito,81 L. Zanello,170,171 D. Zanzi,117 C. Zeitnitz,226 M. Zeman,166 A. Zemla,60 J. C. Zeng,217 Q. Zeng,188 K. Zengel,31 O. Zenin,168 T. Ženiš,189 D. Zerwas,147 D. Zhang,118 F. Zhang,224 G. Zhang,50 H. Zhang,51 J. Zhang,8 L. Zhang,71 R. Zhang,29 R. Zhang,50 X. Zhang,52 Z. Zhang,147 X. Zhao,63 Y. Zhao,52 Z. Zhao,50 A. Zhemchugov,93 J. Zhong,150 B. Zhou,118 C. Zhou,224 L. Zhou,56 L. Zhou,63 M. Zhou,197 N. Zhou,54 C. G. Zhu,52 H. Zhu,49 J. Zhu,118 Y. Zhu,50 X. Zhuang,49 K. Zhukov,125 A. Zibell,225 D. Zieminska,89 N. I. Zimine,93 C. Zimmermann,112 S. Zimmermann,71 Z. Zinonos,79 M. Zinser,112 M. Ziolkowski,186 L. Živković,16 G. Zobernig,224 A. Zoccoli,27,28 M. zur Nedden,19 L. Zwalinski,45 and ATLAS Collaboration37,40,164,177,230

Abstract

A search for neutral Higgs bosons of the minimal supersymmetric standard model (MSSM) and for a heavneutral Z boson is performed using a data sample corresponding to an integrated luminosity of 3.2 fb-1 from proton–proton collisions at s=13  TeV recorded by the ATLAS detector at the LHC. The heavy resonance is assumed to decay to a τ+τ- pair with at least one τ lepton decaying to final states with hadrons and a neutrino. The search is performed in the mass range of 0.2–1.2  TeV for the MSSM neutral Higgs bosons and 0.5–2.5  TeV for the heavy neutral Z boson. The data are in good agreement with the background predicted by the Standard Model. The results are interpreted in MSSM and Z benchmark scenarios. The most stringent constraints on the MSSM mAtanβ space exclude at 95 % confidence level (CL) tanβ > 7.6 for mA = 200 GeV in the mhmod+ MSSM scenario. For the Sequential Standard Model, a ZSSM mass up to 1.90  TeV is excluded at 95 % CL and masses up to 1.82–2.17  TeV are excluded for a ZSFM of the strong flavour model.

Introduction

The discovery of a scalar particle at the LHC [1, 2] has provided important insight into the mechanism of electroweak symmetry breaking. Experimental studies of the new particle [37] demonstrate consistency with the standard model (SM) Higgs boson [813]. However, it remains possible that the discovered particle is part of an extended scalar sector, a scenario that is favoured by a number of theoretical arguments [14, 15].

The minimal supersymmetric standard model (MSSM) [1620] is the simplest extension of the SM that includes supersymmetry. The MSSM requires two Higgs doublets of opposite hypercharge. Assuming that CP symmetry is conserved, this results in one CP-odd (A) and two CP-even (h, H) neutral Higgs bosons and two charged Higgs bosons (H±). At tree level, the properties of the Higgs sector in the MSSM depend on only two non-SM parameters, which can be chosen to be the mass of the CP-odd Higgs boson, mA, and the ratio of the vacuum expectation values of the two doublets, tanβ. Beyond tree level, additional parameters affect the Higgs sector, the choice of which defines various MSSM benchmark scenarios. In some scenarios, such as mhmod+ [21], the top-squark mixing parameter is chosen such that the mass of the lightest CP-even Higgs boson, mh, is close to the measured mass of the Higgs boson that was discovered at the LHC. A different approach is employed in the hMSSM scenario [22, 23] in which the value of mh can be used, with certain assumptions, to predict the remaining masses and couplings of the MSSM Higgs bosons without explicit reference to the soft supersymmetry-breaking parameters. The couplings of the MSSM heavy Higgs bosons to down-type fermions are enhanced with respect to the SM for large tanβ values, resulting in increased branching fractions to τ leptons and b-quarks,1 as well as a higher cross section for Higgs boson production in association with b-quarks. This has motivated a variety of searches for a scalar boson in ττ and bb final states at LEP [24], the Tevatron [2527] and the LHC [2832].

Heavy Z gauge bosons appear in several models [3337] and are a common extension of the SM [38]. Such Z bosons can appear in theories extending the electroweak gauge group, where lepton universality is typically conserved. A frequently used benchmark is the sequential standard model (SSM) [39], which contains a single additional Z boson with the same couplings as the SM Z boson. Some models offering an explanation for the high mass of the top-quark, predict instead that such bosons couple preferentially to third-generation fermions [4043]. A model predicting additional weak gauge bosons Z and W coupling preferentially to third-generation fermions is the strong flavour model (SFM) [41, 43].

Direct searches for high-mass resonances decaying to ττ have been performed by the ATLAS [44] and CMS [45] collaborations using 5 fb-1 of integrated luminosity at s=7TeV. ATLAS [46] updated the search with 20 fb-1 of integrated luminosity at s=8TeV. Indirect limits on Z bosons with non-universal flavour couplings have been set based on measurements from LEP [47].

This paper presents the results of a search for neutral MSSM Higgs bosons as well as high-mass Z resonances in the ττ decay mode using 3.2 fb-1 of proton–proton collision data collected with the ATLAS detector [48] in 2015 at a centre-of-mass energy of 13  TeV. The search is performed for the τlepτhad and τhadτhad decay modes, where τlep represents the decay of a τ lepton to an electron or a muon and neutrinos and τhad represents the decay to one or more hadrons and a neutrino. The search considers narrow resonances in the mass range of 0.2–1.2  TeV and tanβ range of 1–60 for the MSSM Higgs bosons. For the Z boson search, the mass range of 0.5–2.5  TeV is considered. Higgs boson production through gluon–gluon fusion and in association with b-quarks is considered (Fig. 1a–1c), with the latter mode dominating for high tanβ values. Hence both the τlepτhad and τhadτhad channels are split into b-tag and b-veto categories, based on the presence or absence of jets originating from b-quarks in the final state. Since a Z boson is expected to be predominantly produced via a Drell–Yan process (Fig. 1d), there is little gain in splitting the data into b-tag and b-veto categories. Hence, the Z analysis uses an inclusive selection instead.

Fig. 1
Lowest-order Feynman diagrams for a gluon–gluon fusion and b-associated production in the b four-flavour and c five-flavour schemes of a neutral MSSM Higgs boson. Feynman diagram for Drell–Yan production of a Z boson at lowest order ( ...

Data sample and Monte Carlo simulation

The ATLAS detector [48] at the LHC consists of an inner tracking detector with a coverage in pseudorapidity2 up to |η| =  2.5 surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field, electromagnetic and hadronic calorimeters extending up to |η| =  4.9 and a muon spectrometer covering |η|  <  2.7. A new innermost layer was added to the pixel tracking detector after the end Run-1 at a radial distance of 3.3 cm from the beam line [49, 50]. The ATLAS trigger system consists of a hardware-based first level trigger, followed by a software-based high-level trigger (HLT). The integrated luminosity used in this search, considering the data-taking periods of 2015 in which all relevant detector subsystems were operational, is 3.2 fb-1. The luminosity measurement and its uncertainty are derived following a methodology similar to that detailed in Ref. [51], from a calibration of the luminosity scale using xy beam-separation scans performed in August 2015.

Simulated events with a heavy neutral MSSM Higgs boson produced via gluon–gluon fusion and in association with b-quarks are generated with the POWHEG-BOX v2 [5254] and MADGRAPH5_aMC@NLO 2.1.2 [55, 56] programs, respectively. The CT10 [57] and CT10nlo_nf4 [58] sets of parton distribution functions (PDFs) are used, respectively. PYTHIA 8.210 [59] with the AZNLO [60] (A14 [61]) set of tuned parameters, or “tune”, is used for the parton shower, underlying event and hadronization in the gluon–gluon fusion (b-associated) production. The production cross sections for the various MSSM scenarios are calculated using SusHi [62] for gluon fusion production [6375] and b-associated production in the five-flavour scheme [76]; b-associated production in the four-flavour scheme is calculated according to Refs. [77, 78]. The final b-associated production cross section is obtained by using the method in Ref. [79] to match the four-flavour and five-flavour scheme cross sections. The masses and the couplings of the Higgs bosons are computed with FeynHiggs [8084], whereas the branching fraction calculation follows the procedure described in Ref. [85]. In the case of the hMSSM scenario, the procedure described in Ref. [23] is followed for the production cross sections and HDECAY [86] is used for the branching fraction calculation.

The Z signals are simulated by reweighting a leading-order (LO) Z/γ → ττ sample using the TauSpinner algorithm [8789] to account for spin effects in the τ decays. The Z/γ → ττ sample, enriched with high invariant mass events, is generated with PYTHIA 8.165 [90] using the NNPDF2.3LO PDF set [91] and the A14 tune for the underlying event. Interference between the Z signals and the SM Z/γ production is not included.

The simulated backgrounds consist of the production of Z+jets, W+jets, tt¯ pairs, single top quarks and electroweak dibosons (WW / WZ / ZZ). These are modelled with several event generators as described below, while contributions from multi-jet production are estimated with data as described in Sect. 5.

Simulated samples of Z+jets events for the τlepτhad and τhadτhad channels and W+jets events for the τlepτhad channel are produced using POWHEG-BOX v2 interfaced to PYTHIA 8.186 with the AZNLO tune. In this sample, PHOTOS++ v3.52 [92, 93] is used for final-state QED radiation. A dedicated W+jets sample binned in pTW, produced using the SHERPA 2.1.1 generator [94], is used in the τhadτhad channel in order to enhance the number of events with high invariant mass. For this sample, matrix elements are calculated for up to two partons at next-to-leading order (NLO) and four partons at LO, merged with the SHERPA parton shower model using the ME+PS@NLO prescription [95]. Spin correlation effects between the W boson and its decay products are simulated with the TauSpinner program. All W/Z+jets samples use the CT10 PDF set and are normalized to the next-to-next-to-leading-order (NNLO) cross sections calculated using FEWZ [9698].

The POWHEG-BOX v2 program with the CT10 PDF set is used for the generation of tt¯ pairs and single top quarks in the Wt- and s-channels. Samples of t-channel single-top-quark events are produced with the POWHEG-BOX v1 generator employing the four-flavour scheme for the NLO matrix element calculations together with the fixed four-flavour scheme PDF set CT10f4; the top-quark decay is simulated with MadSpin [99]. For all samples of top-quark production, the spin correlations are preserved and the parton shower, fragmentation and underlying event are simulated using PYTHIA 6.428 [100] with the CTQ6L1 PDF set and the corresponding Perugia 2012 tune [101]. Final-state QED radiation is simulated using PHOTOS++ v3.52. The top-quark mass is set to 172.5 GeV. The tt¯ production sample is normalized to the NNLO cross section, including soft-gluon resummation to next-to-next-to-leading-logarithm accuracy (Ref. [102] and references therein). The normalization of the single-top-quark event samples uses an approximate NNLO calculation from Refs. [103105].

Finally, diboson processes are simulated using the SHERPA 2.1.1 program with the CT10 PDF. They are calculated for up to one additional parton at NLO, depending on the process, and up to three additional partons at LO. The diboson samples use the NLO cross sections SHERPA calculates.

The simulation of b- and c-hadron decays for all samples, excluding those generated with SHERPA, uses EvtGen v1.2.0 [106]. All simulated samples include the effect of multiple proton-proton interactions in the same and neighbouring bunch crossings (“pile-up”) by overlaying simulated minimum-bias events on each generated signal or background event. These minimum-bias events are generated with PYTHIA 8.186 [90, 100], using the A2 tune [107] and the MSTW2008LO PDF [108]. Each sample is simulated using the full GEANT4 [109, 110] simulation of the ATLAS detector, with the exception of the b-associated MSSM Higgs boson signal, for which the ATLFAST-II [110, 111] fast simulation framework is used. Finally, the Monte Carlo (MC) samples are processed through the same reconstruction software as for the data.

Object reconstruction and identification

The primary vertex of each event is chosen as the proton?proton vertex candidate with the highest sum of the squared transverse momenta of all associated tracks. Electron candidates are reconstructed from energy deposits in the electromagnetic calorimeter associated with a charged-particle track measured in the inner detector. The final electron candidates are required to pass the “loose” likelihood-based identification selection [112, 113], to have a transverse energy ET > 15 GeV and to be in the fiducial volume of the inner detector, |η| < 2.47. The transition region between the barrel and end-cap calorimeters (1.37 < |η| < 1.52) is excluded.

Muon candidates are reconstructed from track segments in the muon spectrometer, matched with tracks found in the inner detector within |η| < 2.5. The tracks of the final muon candidates are refit using the complete track information from both detector systems and are required to have a transverse momentum pT > 15 GeV and to pass the “loose” muon identification requirements [114].

Both the electrons and muons are required to pass a pT-dependent isolation selection, which utilizes both calorimetric and tracking information, with an efficiency of 90 % (99 %) for transverse momentum of pT = 25 (60) GeV. The isolation provides an efficiency that grows as a function of lepton pT, since the background from jets faking leptons becomes less important as the lepton pT increases. The contributions from pile-up and the underlying event activity are corrected on an event-by-event basis using the ambient energy density technique [115].

Jets are reconstructed from topological clusters [116] in the calorimeter using the anti-kt algorithm [117], with a radius parameter value R = 0.4. To reduce the effect of pile-up, a jet vertex tagger algorithm is used for jets with pT < 50 GeV and |η| < 2.4. It employs a multivariate technique based on jet energy, vertexing and tracking variables to determine the likelihood that the jet originates from pile-up [118]. In order to identify jets containing b-hadrons (b-jets), a multivariate algorithm is used  [119, 120]. A working point that corresponds to an average efficiency of 70 % for b-jets in tt¯ simulated events is chosen. The misidentification rates for c-jets, τ-jets and jets initiated by light quarks or gluons for the same working point and in the same sample of simulated tt¯ events are approximately 10, 4 and 0.2 % respectively.

Hadronic decays of τ leptons are predominantly characterized by the presence of one or three charged particles, accompanied by a neutrino and possibly neutral pions. The reconstruction of the visible decay products, hereafter referred to as τhad-vis, starts with jets with pT > 10 GeV. The τhad-vis candidate must have energy deposits in the calorimeters in the range |η| < 2.5, with the transition region between the barrel and end-cap calorimeters excluded. Additionally, they must have pT > 20 GeV, one or three associated tracks and an electric charge of ±1. A multivariate boosted decision tree (BDT) identification, based on calorimetric shower shape and track multiplicity of the τhad-vis candidates, is used to reject backgrounds from jets. In this analysis, two τhad-vis identification criteria are used: “loose” and “medium” with efficiencies measured in Z → ττ decays of about 60 % (50 %) and 55 % (40 %) for one-track (three-track) τhad-vis candidates, respectively [121]. An additional dedicated likelihood-based veto is used to reduce the number of electrons misidentified as τhad-vis.

Signals in the detector can be used in more than one reconstructed object. Objects that have a geometric overlap are removed according to the following priorities:

  • Jets within a ΔR = 0.2 cone around a selected τhad-vis are excluded.
  • Jets within a ΔR = 0.4 cone around an electron or muon are excluded.
  • Any τhad-vis within a ΔR = 0.2 cone around an electron or muon is excluded.
  • Electrons within a ΔR = 0.2 cone around a muon are excluded.

The missing transverse momentum (ETmiss) is calculated as the modulus of the negative vectorial sum of the pT of all fully reconstructed and calibrated jets and leptons [122]. This procedure includes a “soft term”, which is calculated based on the inner-detector tracks originating from the primary vertex that are not associated to reconstructed objects.

Search channels

τlepτhad channel

Events in the τlepτhad channel are recorded using single-muon triggers and a logical-OR combination of single-electron triggers. Single-electron triggers with pT thresholds of 24 GeV, 60 GeV and 120 GeV are used for the τeτhad channel. For the τμτhad channel, a single-muon trigger with a pT threshold of 50 GeV is used if the muon pT is larger than 55 GeV and a single-muon trigger with a pT threshold of 20 GeV is used otherwise. The triggers impose electron and muon quality requirements which are tighter for the triggers with lower pT thresholds.

Events must have at least one identified τhad-vis candidate and either one electron or one muon candidate which is geometrically matched to the HLT object that triggered the event. Events with more than one electron or muon fulfilling the criteria described in Sect. 3 are rejected in order to reduce the backgrounds from Z/γ →  production, where e, μ. The selected lepton must have a transverse momentum pT > 30 GeV and pass the “medium” identification requirement.

The τhad-vis candidate is required to have pT > 25 GeV, pass the “medium” BDT-based identification requirement and lie in the range |η| < 2.3. The latter requirement is motivated by a larger rate of electrons misidentified as τhad-vis candidates at higher |η| values: the rate is above 10 % for |η| > 2.3, while it ranges from 0.5 to 3 % for lower |η| values. If there is more than one τhad-vis candidate, the candidate with the highest pT is selected and the others are treated as jets. Finally, the identified lepton and the τhad-vis are required to have opposite electric charge.

Subsequently, the following selection requirements are applied:

  • Δϕ(τhad-vis) > 2.4.
  • mT(,ETmiss)2pT()ETmiss[1-cosΔϕ(,ETmiss)]<40GeV.
  • For the τeτhad channel, events are vetoed if the invariant mass of the electron and the visible τ lepton decay products is in the range 80 < mvis(eτhad-vis) < 110 GeV.

The requirement on Δϕ(τhad-vis) gives an overall reduction of SM backgrounds with little signal loss. The requirement on mT(,ETmiss), the distribution of which is shown in Fig. 2a, serves to remove events that originate from processes containing a W boson: in signal events, the missing transverse momentum is usually in the same direction as the τlep, resulting in a low value of mT(,ETmiss). The requirement on mvis(eτhad-vis) reduces the contribution of Z → ee decays, where an electron is misidentified as a τhad-vis candidate. These selection criteria define the inclusive τlepτhad selection.

Fig. 2
The distributions of a mT(,ETmiss) in the τlepτhad channel and b Δϕ(τhad-vis,1τhad-vis,2) for the τhadτhad channel for the inclusive selection with the criterion for the variable displayed removed. The label “Others” in b refers ...

τhadτhad channel

Events in the τhadτhad channel are selected by a trigger that requires a single τhad-vis satisfying the “medium” τhad-vis identification criterion with pT > 80 GeV. The leading τhad-vis candidate in pT must geometrically match the HLT object. A pT requirement is applied to the leading τhad-vis candidate, pT > 110 GeV, and to the sub-leading τhad-vis candidate, pT > 55 GeV. Furthermore, the leading (sub-leading) τhad-vis candidate has to satisfy the “medium” (“loose”) τhad-vis identification criterion. Events with electrons or muons fulfilling the loose selection criteria described in Sect. 3 (with the exception of the isolation requirement) are vetoed to reduce electroweak background processes and guarantee orthogonality with the τlepτhad channel.

The leading and sub-leading τhad-vis candidates must have opposite electric charge and have a back-to-back topology in the transverse plane, Δϕ(τhad-vis,1τhad-vis,2) > 2.7. The distribution of Δϕ(τhad-vis,1τhad-vis,2) before this requirement is shown in Fig. 2b. This selection defines the inclusive τhadτhad selection.

Event categories

In the search for Z bosons, the event selections described in Sects. 4.1 and 4.2 result in a signal selection efficiency3 varying between 0.8 % (2.0 %) at mZ = 500 GeV and 3.4 % (3.8 %) at mZ = 2.5 TeV for the τlepτhad (τhadτhad) channel. In the search for the H / A bosons, events satisfying the inclusive selection are categorized to exploit the two different signal production modes as follows:

  • b-veto: no b-tag jets in the event,
  • b-tag: at least one b-tag jet in the event.

In the b-veto category, the H / A signal selection efficiency varies between 2 % at mA = 200 GeV and 7 % at mA = 1.2 TeV for the gluon–gluon fusion production mode in the τlepτhad channel, and from 0.1 to 15 % in the τhadτhad channel for the same mass range. In the b-tagging category, the signal selection efficiency varies from 0.5 % at mA = 200 GeV to  2% at mA = 1.2 TeV for the b-associated production mode in the τlepτhad channel, and from 0.1 to 6 % in the τhadτhad channel.

Di-tau mass reconstruction

The di-tau mass reconstruction is critical in achieving good separation between signal and background. However, its reconstruction is challenging due to the presence of neutrinos from the τ lepton decays. The mass reconstruction used for both the τhadτhad and τlepτhad channels is the total transverse mass, defined as

mTtot=mT2(ETmiss,τ1)+mT2(ETmiss,τ2)+mT2(τ1,τ2),
1

where mT(ab) is defined as

mT(a,b)=2pT(a)pT(b)[1-cosΔϕ(a,b)]
2

and τ refers to the visible decay of the τ lepton ( or τhad-vis). More complex mass reconstruction techniques were investigated, but they did not improve the expected sensitivity.

Background estimation

The background processes can be categorized according to whether the electron/muon and/or the τhad-vis are correctly identified. Backgrounds from processes with correctly identified τhad-vis, electrons and muons, or where the τhad-vis is due to a misidentified electron/muon in the τlepτhad channel, are estimated from simulation. Data-driven techniques are used for processes where the τhad-vis, or both the lepton and τhad-vis are misidentified. The background contributions originating from processes where only the lepton is misidentified are found to be negligible.

τlepτhad background estimate

The main backgrounds in the τlepτhad channel arise from Z → ττ production, followed by processes with a misidentified τhad-vis in the b-veto category and tt¯ production, with either a true τ lepton or a jet misidentified as a τhad-vis, in the b-tag category.

Background processes where the τhad candidate, or both the lepton and τhad candidates, arise from misidentified jets are dominated by W+jets (tt¯) and multi-jet processes, for the b-veto (b-tag) category. A data-driven “fake factor” (FF) technique is used to estimate the contribution of these processes to the signal region. The fake factors are derived separately for the b-veto and b-tag categories using fake factor control regions (see Table 1) dominated by a particular background process (Pr), and are defined as:

FF(Pr)=N(nominalτhad-visID,Pr)N(anti-τhad-visID,Pr),
3

where N(nominal τhad-vis ID, Pr) is the number of τhad-vis candidates in data satisfying the “medium” τhad-vis identification criterion and N(anti- τhad-vis ID, Pr) is the number of τhad-vis candidates failing this criterion but meeting a loose requirement on the BDT score. The latter requirement defines the “anti-τhad” sub-region, which selects the same kind of objects mimicking τhad-vis candidates as those fulfilling the identification criteria. The true τhad contamination in the fake factor control regions is subtracted using simulation. In all the control regions, the fake factors are parameterized as a function of the transverse momentum and number of tracks of the reconstructed τhad-vis object.

Table 1
Description of the control regions used in the τlepτhad and τhadτhad channels

The fake factor for W+jets and tt¯ backgrounds, FF(W+jets/tt¯), is measured in a fake factor control region that is identical to the signal region, except that the mT(,ETmiss) selection criterion is reversed to mT(,ETmiss)>60(70)GeV for the τμτhad (τeτhad) channel. The purity of the W+jets background in the b-veto category of the control region is about 95%, while in the b-tag category both the W+jets and tt¯ processes contribute. The fake factor value for the b-tag category was found to be compatible with the value corresponding to the b-veto category. To improve the statistical precision, the fake factor measured in a control region without requirements on the number of b-tags is used for the b-tag category. The same fake factor is used in the search for the Z boson. For multi-jet events (MJ), the fake factor FF(MJ) is measured in a fake factor control region defined by inverting the isolation requirement on the electron or muon. The purity of multi-jet events in this control region exceeds 99 %. The fake factors are derived separately for the b-veto and b-tag categories by requiring no b-tag and at least one b-tag, respectively. For the Z analysis, no b-tag requirement is considered.

The shapes and normalization of background contributions in the signal region are then estimated by applying these fake factors to events that pass the anti-τhad region selection but otherwise satisfy all signal region requirements. In this analysis, the fake factors are combined and weighted by the predicted contribution of each background process to the anti-τhad region:

FF(comb)=FF(W+jets/tt¯)×rW/tt¯+FF(MJ)×rMJ,
4

where rMJ denotes the fraction of multi-jet events in the anti-τhad region and rW/tt¯=1-rMJ. This neglects the differences between the fake factors for W+jets/tt¯ and other processes, such as Z production. The parameter rMJ is estimated, separately for the b-veto and b-tag categories, in two steps using a data-driven method. First, the rates at which jets are misidentified as electrons or muons are measured from the ratio of leptons passing and failing the lepton isolation requirement in a region enriched in multi-jet events. This multi-jet control region is defined in Table 1. The predicted multi-jet rate is then applied to events in the anti-τhad sub-region that also fail the lepton isolation, in order to calculate rMJ as a function of τhad-vis pT separately for the τeτhad and τμτhad channels. When the fake factor is applied to the anti-τhad sub-region events, the contributions from correctly identified τhad-vis and from electrons and muons misidentified as τhad-vis candidates are subtracted using the default MC simulation described in Sect. 2.

Background processes where the electron or the muon is identified as a τhad-vis object are modelled using simulation. The main source of such backgrounds is Z( → ee)+jets events in the τeτhad channel, which are reduced using the mvis(eτhad) mass-window veto described in Sect. 4.1. To account for mismodelling of electrons misidentified as τhad-vis objects in Z → ee+jets events, the simulation is corrected as a function of the lepton η using data control regions defined by reversing the mass-window criterion, as listed in Table 1. The correction amounts to 15 % for three-track τhad-vis, while for the one-track τhad-vis objects the correction varies from 20 % in the barrel region to up to 200 % in the end-cap region.

The mTtot distributions in the τlepτhad channel are shown in Fig. 3a, b for the W+jets control region and the tt¯ validation region, respectively. The latter is identical to the b-tag category definition, except for the mT(,ETmiss) requirement, which is reversed to mT(,ETmiss)>100GeV.

Fig. 3
The distributions of mTtot in a the τlepτhad channel W+jets control region, b the tt¯ validation region of the τlepτhad channel, c the τhadτhad channel b-veto same-sign validation region and d the τhadτhad channel b-tag same-sign validation region. ...

τhadτhad background estimate

The dominant background process for the τhadτhad channel is multi-jet production, the cross section of which is several orders of magnitude higher than that of the signal processes. Despite the large suppression of this background thanks to the event selection, a sizeable contribution of events with two jets misidentified as τhad-vis candidates remains. A fake factor technique is used to normalize and model this background. Fake factors parameterized as a function of pT(τhad-vis) and the number of tracks are derived from a control region enriched with multi-jet events, described in Table 1. The factors are derived independently for the b-tag and b-veto categories in the search for H / A bosons, and inclusively in the search for Z bosons. They are then applied to data events where the leading τhad-vis has passed the τhad-vis identification requirement in the signal region, while the sub-leading τhad-vis candidate has passed only a loose requirement on the BDT score. The contributions from non-multi-jet production processes are subtracted using simulation.

For tt¯ and W+jets events, along with other simulated background processes, the probability of a jet being misidentified as a τhad-vis is modelled with a “fake-rate” technique. The rates of jets being misidentified as a τhad-vis are measured from data as a function of the transverse momentum and number of tracks of the reconstructed τhad-vis. The fake-rate control regions are described in Table 1 and are enriched in W( → μν)+jets for the b-veto category and tt¯ events for the b-tag category,

The fake rate is then applied to the simulated events as a weight for each of the reconstructed τhad-vis that does not match geometrically a true τ lepton. Fake rates derived in the fake-rate control region of the b-tag category are used for simulated tt¯ and single top quark events, while fake rates obtained in the b-veto control region are applied to the remaining processes. An additional weight is applied to W → τν+jets events as a function of mTtot, to improve the modelling of the kinematics of the W+jets simulated events. The reweighting function is derived by fitting the ratio of the data to the simulation for the W( → μν) + jets process in an additional W → μν control region, defined in analogy with the inclusive signal selection and described in Table 1.

A same-sign validation region, enriched with events where at least one jet is misidentified as a τhad-vis, is obtained by inverting the opposite-sign requirement of the two τhad-vis candidates. Distributions of mTtot in the τhadτhad channel same-sign validation region are shown in Fig. 3c, d. The good performance multi-jet background estimation method is demonstrated by the agreement of the data with the background prediction.

Systematic uncertainties

The signal efficiency and the background estimates are affected by uncertainties associated with the detector simulation, the signal modelling and the data-driven background determination.

The integrated luminosity measurement has an uncertainty of 5 % and is used for all MC samples. Uncertainties related to the detector are included for all signal and backgrounds that are estimated using simulated samples. These uncertainties are also taken into account for simulated samples that are used in the derivation of data-driven background estimates. All instrumental systematic uncertainties arising from the reconstruction, identification and energy scale of τhad-vis candidates, electrons, muons, (b-)jets and the soft term of the ETmiss measurement are considered. The effect of the energy scale uncertainties on the objects is propagated to the ETmiss determination. The electron, muon, jet and ETmiss systematic uncertainties described above are found to have a very small effect.

Systematic uncertainties resulting from the data-driven background estimates are derived as follows. In the τlepτhad channel, the combined fake-factor method includes uncertainties in the W+jets/tt¯ fake factors, the multi-jet fake factors, and the rMJ estimation. For the W+jets fake factors the main uncertainties arise from the dependence on Δϕ(τhad-vis,ETmiss), from the difference between the relative contributions of quark- and gluon-initiated jets faking τhad-vis in the control region and the signal region, and from the contamination by backgrounds other than W+jets in the control region, which are estimated using simulation. The uncertainty is parameterized as a function of the anti-τhad-vis pT and amounts approximately to 17 % for jets misidentified as one-track τ candidates and varies between 16 and 34 % for jets misidentified as three-track τ candidates. Uncertainties related to non-W+jets events were studied and have no significant impact on the fake-factor determination. For the multi-jet fake factors and rMJ, the uncertainty is dominated by the number of data events in the control region and the subtraction of the remaining non-multi-jet backgrounds using simulation. Typical values of the total uncertainties for rMJ are between 7 and 20 % and for the multi-jet fake factors between 10 and 20 %, depending on the channel and the τhad-vis candidate pT. In addition, the effect on the background estimate due to the anti-τhad region definition is examined. The loose τhad-vis identification requirement used in the definition of this region is varied to estimate the corresponding uncertainty, which is 5 and 1 % in the τeτhad and the τμτhad channel, respectively.

In the τhadτhad channel, the uncertainty in the fake-factor measurement used for the multi-jet background estimation is obtained as the sum in quadrature of the statistical uncertainty of the measurement and the difference between the fake factors determined from same-sign and from opposite-sign events. The fake rates for jets misidentified as τhad-vis are determined from data. The main systematic uncertainty arises from the statistical uncertainty of the fake-rate measurement and it ranges from 7 to 30 % as a function of the τhad-vis pT. In the τhadτhad channel, the uncertainty in the parameters of the function used to reweight the W → τν+jets background is propagated to the mTtot distribution, where its effect ranges from 5 to 20 %.

Theoretical cross-section uncertainties are considered for all backgrounds estimated using simulation. For Z+jets and diboson production, uncertainties of 5% and 6% are used, respectively, combining PDFαS and scale variation uncertainties in quadrature. For tt¯ [102] and single top-quark [123, 124] production, a 6% uncertainty is assigned based on scale, PDF and top-quark mass uncertainties. Additional uncertainties related to initial- and final-state radiation modelling, tune and (for tt¯ only) the choice of the hdamp parameter value in POWHEG-BOX v2, which controls the amount of radiation produced by the parton shower, were also taken into account [125]. The uncertainty in the fragmentation model is evaluated by comparing tt¯ events generated with POWHEG-BOX v2 interfaced to either HERWIG++ [126] or PYTHIA6. The POWHEG+HERWIG++ and aMC@NLO+HERWIG++ generators are used to estimate the uncertainty in generating the hard scatter. The variation of the b-tag category acceptance for these uncertainties is from - 10 to + 30 % ( - 33 to + 38 %) in the τlepτhad (τhadτhad) channel.

Uncertainties related to signal modelling are discussed in the following. Uncertainties due to the factorization and renormalization scale choices are estimated from the effect on the signal acceptance of doubling or halving these factors either coherently or oppositely. Uncertainties due to the initial- and final-state radiation, as well as multiple parton interaction for the signal are also taken into account. These uncertainties are estimated from the PYTHIA8 A14 tune [61] for the b-associated production and the AZNLO PYTHIA8 tune [60] for the gluon–gluon fusion production. The envelope of the variations resulting from the use of the alternative PDFs in the PDF4LHC15_nlo_100 [127] set is used in order to estimate the PDF uncertainty for gluon–gluon fusion production. For the b-associated production uncertainty, a comparison among NNPDF30_nlo_as_0118_nf_4 [127], CT14nlo_NF4 [58], MSTW2008nlo68cl_nf4 [128] and CT10_nlo_nf4 [57] PDF sets is employed. Since no statistically significant effect on the shape of the reconstructed mass distribution is observed, each contribution is taken solely as a normalization uncertainty. The total uncertainty ranges between 15 and 25 %.

Results

The parameter of interest is the signal strength, μ. It is defined as the ratio of the observed to the predicted value of the cross section times branching fraction, where the prediction is evaluated for a particular MSSM or Z assumption. Hence, the value μ = 0 corresponds to the absence of a signal, whereas the value μ = 1 indicates the presence of a signal as predicted by the theoretical model under study. To estimate μ, a likelihood function constructed as the product of Poisson probability terms is used. Signal and background predictions depend on systematic uncertainties, which are parameterized as nuisance parameters and are constrained using Gaussian probability distributions. For the MSSM Higgs boson search a binned likelihood function is constructed in bins of the mTtot distributions, chosen to ensure sufficient background statistics in each bin. The search for a Z boson is a counting experiment, summing the number of events above a certain mTtot threshold. The threshold is chosen for each Z mass hypothesis to maximize the expected significance and ranges from 400 GeV at low Z mass to 750 GeV at high Z mass. The asymptotic approximation is used with the test statistic q~μ [129] to test the compatibility of the data with the assumed signal.

The number of observed τlepτhad and τhadτhad data events, along with the predicted event yields from background and signal processes, in the signal regions are shown in Table Table2.2. The observed event yields are compatible with the expected event yield from SM processes, within uncertainties. The mTtot mass distributions are shown in Fig. 4. The results from the τlepτhad and τhadτhad channels are combined to improve the sensitivity to H / A and Z boson production.

Table 2
Observed number of events and background predictions in the b-tag and b-veto categories for the τeτhad, τμτhad and τhadτhad channels. The background predictions and uncertainties are obtained from the statistical procedure discussed in Sect.  ...
Fig. 4
The distribution of mTtot for the b-veto category of the a τlepτhad and b τhadτhad channels, the b-tag category of the c τlepτhad and d τhadτhad channels, and the inclusive category of the e τlepτhad and f τhadτhad channels. The label “Others” ...

The fractional contributions of the most important sources of systematic uncertainty to the total uncertainty in the signal cross-section measurement are shown for two signal assumptions: Table 3(top) represents an MSSM Higgs boson hypothesis (mA = 500 GeV, tanβ = 20) and Table 3(bottom) corresponds to an SSM Z boson hypothesis (mZ = 1.75  TeV). As shown in this table, the sensitivity of the search is limited by statistical uncertainties.

Table 3
Fractional impact of the most important sources of systematic uncertainty on the total uncertainty of the signal strength, for (top) the MSSM signal hypothesis of mA = 500 GeV, tanβ = 20, (bottom) the ZSSM signal hypothesis of mZ = 1.75 ...

The data are found to be in good agreement with the predicted background yields and hence the results are given as exclusion limits. These are set using the modified frequentist method known as CLs [130]. Observed and expected 95 % confidence level (CL) upper limits on the cross section times branching fraction for the production of a single scalar boson H / A decaying to ττ, as a function of the mass of the boson mH/A, are shown in Fig. 5a, b. The limits are calculated for both the gluon–gluon fusion and b-associated production modes, using a combination of the τlepτhad and τhadτhad channels and assuming the natural width of the boson to be negligible compared to the experimental resolution (as expected over the probed MSSM parameter space). The lowest excluded cross section times branching fraction values range from σ × BR = 1.4 pb at mH/A = 200 GeV to σ × BR = 0.025 pb at mH/A = 1.2 TeV for a scalar boson produced via gluon–gluon fusion. Similarly, for the b-associated production mechanism the lowest excluded values range is from σ × BR = 1.6 pb at mH/A = 200 GeV to σ × BR = 0.028 pb at mH/A = 1.2 TeV.

Fig. 5
The observed and expected 95 % CL upper limits on the production cross section times branching fraction of a scalar particle are shown for the combination of the τlepτhad and the τhadτhad channels. The production mechanism of H/A → ττ is assumed ...

The observed and expected 95 % CL limits on tanβ as a function of mA, for the combination of τlepτhad and τhadτhad channels in the MSSM mhmod+ and hMSSM scenarios are shown in Fig. 5c, d. The expected limit in the mhmod+ scenario is compared to the expected limits from the individual τlepτhad and τhadτhad channels. For the mhmod+ figure, lines of constant mh and mH are shown. For the hMSSM scenario, the exclusion arising from the SM Higgs boson coupling measurements of Ref. [131] is also shown, in addition to the ATLAS Run-1 H/A → ττ search result of Ref. [28]. The tanβ constraints in the hMSSM scenario are stronger than those in the mhmod+ scenario. This is due to the presence of low-mass neutralinos in the mhmod+ scenario that reduce the H/A → ττ branching fraction and which are absent in the hMSSM scenario. In the hMSSM scenario, the most stringent constraints on tanβ for the combined search exclude tanβ > 7.1 for mA = 200 GeV and tanβ > 39 for mA = 1 TeV at the 95 % CL. In the MSSM mhmod+ scenario, the 95 % CL upper limits exclude tanβ > 7.6 for mA = 200 GeV and tanβ > 47 for mA = 1 TeV. The feature of the expected limits in the hMSSM scenario exclusion plot at around mA = 350 GeV is due to the behaviour of the branching ratio A → ττ close to the Att¯ kinematic threshold. Some sensitivity of the search is also expected around tanβ ∼ 1, mA ∼ 200 GeV due to the increase of the gluon–gluon fusion cross section induced by the increased coupling to the top quark.

In the search for the Z boson, the observed number of events in the signal regions of the τlepτhad and τhadτhad channels are consistent with the SM predictions. The resulting 95% CL upper limits are set on the cross section times branching fraction as a function of the mass and shown in Fig. 6a. These results are interpreted in the context of the SSM and SFM in Fig. 6a, b, respectively. The resulting observed (expected) lower limit on the mass of the ZSSM boson is 1.90 (1.84)  TeV. In the search for the ZSFM boson, results are presented as a function of sin2ϕ, where ϕ is the mixing angle between the two SU(2) gauge eigenstates of the model. Masses below 1.82–2.17  TeV are excluded in the range 0.1 < sin2ϕ < 0.5, assuming no μτ mixing. For the value of sin2ϕ = 0.03, the lower limit on the mass of a ZSFM boson is 2.12  TeV, extending the limits from previous direct and indirect searches by more than 200 GeV.

Fig. 6
The 95 % CL upper limit on the cross section times branching fraction for a Z → ττ in a the Sequential Standard Model and 95% CL exclusion on b the SFM parameter space, overlaid with indirect limits at 95 % CL from fits to electroweak ...

Conclusions

A search for neutral Higgs bosons of the minimal supersymmetric standard model (MSSM) and for a Z gauge boson decaying to a pair of τ leptons is performed using a data sample corresponding to an integrated luminosity of 3.2 fb-1 from proton–proton collisions at s=13  TeV recorded by the ATLAS detector at the LHC. The search finds no indication of an excess over the expected background in the channels considered. Limits are set at the 95 % CL, which provide constraints in the MSSM parameter space. Model-independent upper limits on the production cross section times the ττ branching fraction of a scalar boson versus its mass, in both the gluon–gluon fusion and b-associated production modes, are presented. The upper limits on the cross section times branching fraction range from 1.4 (1.6) pb at mH/A = 200 GeV to 0.025 (0.028) pb at mH/A = 1.2 TeV for a scalar boson produced via gluon–gluon fusion (b-associated production). In the context of the MSSM mhmod+ scenario, the most stringent 95 % CL upper limit on tanβ for the combined search is tanβ < 7.6 for mA = 200 GeV. This analysis extends the limits of the previous searches for the mass range mA > 500 GeV. The search for a Z boson is interpreted in the context of the sequential standard model (SSM) and the strong flavour model (SFM). Upper limits at the 95 % CL are set on the cross section times branching fraction as a function of the Z mass. The observed lower limit on the Z mass is 1.90  TeV for a ZSSM and ranges from 1.82 to 2.17  TeV as a function of the sin2ϕ parameter for a ZSFM.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [135].

Footnotes

1Throughout this paper the inclusion of charge-conjugate decay modes is implied.

2ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (rϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η =  - lntan(θ/2). Angular distance is measured in units of ΔR(Δη)2+(Δϕ)2.

3The term “signal selection efficiency” refers to the fraction of signal events decaying to τlepτhad or τhadτhad that are subsequently reconstructed within the detector acceptance and pass the selection requirements.

References

1. ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1 (2012). arXiv:1207.7214 [hep-ex]
2. CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30 (2012). arXiv:1207.7235 [hep-ex]
3. ATLAS Collaboration, Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector. Eur. Phys. J. C 75, 476 (2015). arXiv:1506.05669 [hep-ex] [PMC free article] [PubMed]
4. ATLAS Collaboration, Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at s=7 and 8 TeV in the ATLAS experiment. Eur. Phys. J. C 76, 6 (2016). arXiv:1507.04548 [hep-ex]
5. Collaboration CMS. Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV. Eur. Phys. J. C. 2015;75:212. doi: 10.1140/epjc/s10052-015-3351-7. [PMC free article] [PubMed] [Cross Ref]
6. Collaboration CMS. Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV. Phys. Rev. D. 2015;92:012004. doi: 10.1103/PhysRevD.92.012004. [Cross Ref]
7. ATLAS and CMS Collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at s=7 and 8 TeV (2015). http://cdsweb.cern.ch/record/2052552
8. Englert F, Brout R. Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 1964;13:321. doi: 10.1103/PhysRevLett.13.321. [Cross Ref]
9. Higgs PW. Broken symmetries, massless particles and gauge fields. Phys. Lett. 1964;12:132. doi: 10.1016/0031-9163(64)91136-9. [Cross Ref]
10. Higgs PW. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 1964;13:508. doi: 10.1103/PhysRevLett.13.508. [Cross Ref]
11. Higgs PW. Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 1966;145:1156. doi: 10.1103/PhysRev.145.1156. [Cross Ref]
12. Guralnik G, Hagen C, Kibble T. Global conservation laws and massless particles. Phys. Rev. Lett. 1964;13:585. doi: 10.1103/PhysRevLett.13.585. [Cross Ref]
13. Kibble T. Symmetry breaking in non-Abelian gauge theories. Phys. Rev. 1967;155:1554. doi: 10.1103/PhysRev.155.1554. [Cross Ref]
14. A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model. Phys. Rept. 459, 1 (2008). arXiv:hep-ph/0503173
15. Branco GC, et al. Theory and phenomenology of two-Higgs-doublet models. Phys. Rept. 2012;516:1. doi: 10.1016/j.physrep.2012.02.002. [Cross Ref]
16. Fayet P. Supersymmetry and weak, electromagnetic and strong interactions. Phys. Lett. B. 1976;64:159. doi: 10.1016/0370-2693(76)90319-1. [Cross Ref]
17. Fayet P. Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions. Phys. Lett. B. 1977;69:489. doi: 10.1016/0370-2693(77)90852-8. [Cross Ref]
18. Farrar GR, Fayet P. Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry. Phys. Lett. B. 1978;76:575. doi: 10.1016/0370-2693(78)90858-4. [Cross Ref]
19. Fayet P. Relations between the masses of the superpartners of leptons and quarks, the goldstino couplings and the neutral currents. Phys. Lett. B. 1979;84:416. doi: 10.1016/0370-2693(79)91229-2. [Cross Ref]
20. Dimopoulos S, Georgi H. Softly broken supersymmetry and SU(5) Nucl. Phys. B. 1981;193:150. doi: 10.1016/0550-3213(81)90522-8. [Cross Ref]
21. Carena M, et al. MSSM Higgs Boson searches at the LHC: benchmark scenarios after the discovery of a Higgs-like particle. Eur. Phys. J. C. 2013;73:2552. doi: 10.1140/epjc/s10052-013-2552-1. [Cross Ref]
22. Djouadi A, et al. The post-Higgs MSSM scenario: Habemus MSSM? Eur. Phys. J. C. 2013;73:2650. doi: 10.1140/epjc/s10052-013-2650-0. [PMC free article] [PubMed] [Cross Ref]
23. E. Bagnaschi et al., Benchmark scenarios for low tan ββ in the MSSM. LHCHXSWG-2015-002 (2015). http://cdsweb.cern.ch/record/2039911
24. ALEPH, DELPHI, L3, and OPAL Collaborations, G. Abbiendi et al., Search for neutral MSSM Higgs bosons at LEP. Eur. Phys. J. C 47, 547 (2006). arXiv:hep-ex/0602042 [hep-ex]
25. Tevatron New Phenomena & Higgs Working Group Collaboration, B. Doug et al., Combined CDF and D0 upper limits on MSSM Higgs boson production in ττττ final states with up to 2.2fb12.2fb1 (2010). arXiv:1003.3363 [hep-ex]
26. CDF Collaboration, T. Aaltonen et al., Search for Higgs bosons predicted in two-Higgs-doublet models via decays to ττ l epton pairs in 1.96 TeV proton-antiproton collisions. Phys. Rev. Lett. 103, 201801 (2009). arXiv:0906.1014 [hep-ex] [PubMed]
27. D0 Collaboration, V.M. Abazov et al., Search for Higgs bosons decaying to ττ pairs in pp¯ collisions with the D0 detector. Phys. Rev. Lett. 101, 071804 (2008). arXiv:0805.2491 [hep-ex]
28. ATLAS Collaboration, Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at s=8 TeV with the ATLAS detector. JHEP 11, 056 (2014). arXiv:1409.6064 [hep-ex]
29. ATLAS Collaboration, Search for the neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at s=7 TeV with the ATLAS detector. JHEP 02, 095 (2013). arXiv:1211.6956 [hep-ex]
30. CMS Collaboration, Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions. JHEP 10, 160 (2014). arXiv:1408.3316 [hep-ex]
31. Collaboration CMS. Search for neutral MSSM Higgs Bosons decaying into a pair of bottom quarks. JHEP. 2015;11:071.
32. LHCb Collaboration, R. Aaij et al., Limits on neutral Higgs boson production in the forward region in pp collisions at s=7TeV. JHEP 05, 132 (2013). arXiv:1304.2591 [hep-ex]
33. J.L. Hewett, T.G. Rizzo, Low-energy phenomenology of superstring-inspired E6 models. Phys. Rept. 183, 193–381 (1989)
34. M. Cvetic, Godfrey S., Discovery and identification of extra gauge bosons (1995). arXiv:hep-ph/9504216
35. A. Leike, The Phenomenology of extra neutral gauge bosons. Phys. Rept. 317, 143–250 (1999). arXiv:hep-ph/9805494
36. T.G. Rizzo, ‘ZZ’ phenomenology and the LHC’. arXiv:hep-ph/0610104 [hep-ph]
37. Diener R, Godfrey S, Martin TA. Unravelling an extra neutral Gauge Boson at the LHC using third generation fermions. Phys. Rev. D. 2011;83:115008. doi: 10.1103/PhysRevD.83.115008. [Cross Ref]
38. P. Langacker, The Physics of Heavy Z’ Gauge Bosons. Rev. Mod. Phys. 81, 1199-1228 (2009). arXiv:0801.1345 [hep-ph]
39. G. Altarelli, B. Mele, M. Ruiz-Altaba, Searching for New Heavy Vector Bosons in pp¯Colliders. Z. Phys. C45, 109 (1989). [Erratum: Z. Phys.C47,676(1990)]
40. Lynch KR, et al. Finding ZZ bosons coupled preferentially to the third family at LEP and the Tevatron. Phys. Rev. D. 2001;63:035006. doi: 10.1103/PhysRevD.63.035006. [Cross Ref]
41. E. Malkawi, T. Tait, C.-P. Yuan, A model of strong flavor dynamics for the top quark. Phys. Lett. B 385, 304–310 (1996). arXiv:hep-ph/9603349
42. Hsieh K, et al. Global analysis of general SU(2) × SU(2) × U(1)SU(2)×SU(2)×U(1) models with precision data. Phys. Rev. D. 2010;82:035011. doi: 10.1103/PhysRevD.82.035011. [Cross Ref]
43. D. J. Muller, S. Nandi, Top flavor: a separate SU(2) for the third family. Phys. Lett. B 383, 345–350 (1996). arXiv:hep-ph/9602390
44. ATLAS Collaboration, A search for high-mass resonances decaying to τ+τ-τ+τ- in pp collisions at s=7TeV with the ATLAS detector. Phys. Lett. B 719, 242–260 (2013). arXiv:1210.6604 [hep-ex]
45. CMS Collaboration, Search for high-mass resonances decaying into tau-lepton pairs in pp collisions at s=7TeV, Phys. Lett. B 716, 82–102 (2012). arXiv:1206.1725 [hep-ex]
46. ATLAS Collaboration, A search for high-mass resonances decaying to τ+τ-τ+τ- in pp collisions at s=8TeV with the ATLAS detector. JHEP 07, 157 (2015). arXiv:1502.07177 [hep-ex]
47. Chivukula RS, Simmons EH. Electroweak limits on nonuniversal ZZ bosons. Phys. Rev. D. 2002;66:015006. doi: 10.1103/PhysRevD.66.015006. [Cross Ref]
48. ATLAS Collaboration, The ATLAS experiment at the CERN Large Hadron Collider. JINST 3, S08003 (2008)
49. ATLAS Collaboration, ATLAS Insertable B-Layer Technical Design Report. ATLAS-TDR-19 (2010) http://cds.cern.ch/record/1291633
50. ATLAS Collaboration, ATLAS Insertable B-Layer Technical Design Report Addendum. ATLAS-TDR-19-ADD-1 (2012) http://cds.cern.ch/record/1451888
51. ATLAS Collaboration, Improved luminosity determination in pp collisions at s=7TeV using the ATLAS detector at the LHC. Eur. Phys. J. C 73, 2518 (2013). arXiv:1302.4393 [hep-ex]
52. Nason P. A New method for combining NLO QCD with shower Monte Carlo algorithms. JHEP. 2004;11:040. doi: 10.1088/1126-6708/2004/11/040. [Cross Ref]
53. Frixione S, Nason P, Oleari C. Matching NLO QCD computations with Parton Shower simulations: the POWHEG method. JHEP. 2007;11:070. doi: 10.1088/1126-6708/2007/11/070. [Cross Ref]
54. Alioli S, et al. A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP. 2010;06:043. doi: 10.1007/JHEP06(2010)043. [Cross Ref]
55. Alwall J, et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP. 2014;07:079. doi: 10.1007/JHEP07(2014)079. [Cross Ref]
56. Wiesemann M, et al. Higgs production in association with bottom quarks. JHEP. 2015;02:132. doi: 10.1007/JHEP02(2015)132. [Cross Ref]
57. Lai H-L, et al. New parton distributions for collider physics. Phys. Rev. D. 2010;82:074024. doi: 10.1103/PhysRevD.82.074024. [Cross Ref]
58. Dulat S, et al. New parton distribution functions from a global analysis of quantum chromodynamics. Phys. Rev. D. 2016;93:033006. doi: 10.1103/PhysRevD.93.033006. [Cross Ref]
59. T. Sjöstrand et al., An Introduction to PYTHIA 8.2. Comput. Phys. Commun. 191, 159 (2015). arXiv:1410.3012 [hep-ph]
60. ATLAS Collaboration, Measurement of the Z/γZ/γ boson transverse momentum distribution in pp collisions at s=7TeV with the ATLAS detector. JHEP 09, 55 (2014). arXiv:1406.3660 [hep-ex]
61. booklet ATLAS Collaboration, ATLAS Run 1 Pythia8 tunes. ATL-PHYS-PUB-2014-021 (2014) http://cdsweb.cern.ch/record/1966419
62. Harlander RV, Liebler S, Mantler H. SusHi: a program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM. Comp. Phys. Commun. 2013;184:1605. doi: 10.1016/j.cpc.2013.02.006. [Cross Ref]
63. Harlander RV, Kilgore WB. Next-to-next-to-leading order Higgs production at Hadron colliders. Phys. Rev. Lett. 2002;88:201801. doi: 10.1103/PhysRevLett.88.201801. [PubMed] [Cross Ref]
64. Spira M, et al. Higgs boson production at the LHC. Nucl. Phys. B. 1995;453:17. doi: 10.1016/0550-3213(95)00379-7. [Cross Ref]
65. Anastasiou C, Melnikov K. Higgs boson production at hadron colliders in NNLO QCD. Nucl. Phys. B. 2002;646:220. doi: 10.1016/S0550-3213(02)00837-4. [Cross Ref]
66. Ravindran V, Smith J, van Neerven WL. NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions. Nucl. Phys. B. 2003;665:325. doi: 10.1016/S0550-3213(03)00457-7. [Cross Ref]
67. Harlander RV, Kilgore WB. Production of a pseudoscalar Higgs boson at hadron colliders at next-to-next-to leading order. JHEP. 2002;10:017. doi: 10.1088/1126-6708/2002/10/017. [Cross Ref]
68. Anastasiou C, Melnikov K. Pseudoscalar Higgs boson production at hadron colliders in NNLO QCD. Phys. Rev. D. 2003;67:037501. doi: 10.1103/PhysRevD.67.037501. [Cross Ref]
69. Aglietti U, et al. Two loop light fermion contribution to Higgs production and decays. Phys. Lett. B. 2004;595:432. doi: 10.1016/j.physletb.2004.06.063. [Cross Ref]
70. Bonciani R, Degrassi G, Vicini A. On the generalized harmonic polylogarithms of one complex variable. Comput. Phys. Commun. 2011;182:1253. doi: 10.1016/j.cpc.2011.02.011. [Cross Ref]
71. Harlander RV, Steinhauser M. Supersymmetric Higgs production in gluon fusion at next-to-leading order. JHEP. 2004;09:066. doi: 10.1088/1126-6708/2004/09/066. [Cross Ref]
72. Harlander R, Kant P. Higgs production and decay: analytic results at next-to-leading order QCD. JHEP. 2005;12:015. doi: 10.1088/1126-6708/2005/12/015. [Cross Ref]
73. Degrassi G, Slavich P. NLO QCD bottom corrections to Higgs boson production in the MSSM. JHEP. 2010;11:044. doi: 10.1007/JHEP11(2010)044. [Cross Ref]
74. Degrassi G, Di Vita S, Slavich P. NLO QCD corrections to pseudoscalar Higgs production in the MSSM. JHEP. 2011;08:128. doi: 10.1007/JHEP08(2011)128. [Cross Ref]
75. Degrassi G, Di Vita S, Slavich P. On the NLO QCD corrections to the production of the heaviest neutral Higgs scalar in the MSSM. Eur. Phys. J. C. 2012;72:2032. doi: 10.1140/epjc/s10052-012-2032-z. [Cross Ref]
76. Harlander R, Kilgore WB. Higgs boson production in bottom quark fusion at next-to-next-to-leading order. Phys. Rev. D. 2003;68:013001. doi: 10.1103/PhysRevD.68.013001. [Cross Ref]
77. Dittmaier S, Krämer M, Spira M. Higgs radiation off bottom quarks at the tevatron and the LHC. Phys. Rev. D. 2004;70:074010. doi: 10.1103/PhysRevD.70.074010. [Cross Ref]
78. Dawson S, Jackson CB, Reina L, Wackeroth D. Exclusive Higgs boson production with bottom quarks at hadron colliders. Phys. Rev. D. 2004;69:074027. doi: 10.1103/PhysRevD.69.074027. [PubMed] [Cross Ref]
79. R. Harlander, M. Krämer, M. Schumacher, Bottom-quark associated Higgs-boson production: reconciling the four- and five-flavour scheme approach (2011). arXiv:1112.3478 [hep-ph]
80. Heinemeyer S, Hollik W, Weiglein G. FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM. Comput. Phys. Commun. 2000;124:76. doi: 10.1016/S0010-4655(99)00364-1. [Cross Ref]
81. Heinemeyer S, Hollik W, Weiglein G. The masses of the neutral CP - even Higgs bosons in the MSSM: accurate analysis at the two loop level. Eur. Phys. J. C. 1999;9:343.
82. Frank M, et al. The Higgs Boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach. JHEP. 2007;02:047. doi: 10.1088/1126-6708/2007/02/047. [Cross Ref]
83. Degrassi G, et al. Towards high precision predictions for the MSSM Higgs sector. Eur. Phys. J. C. 2003;28:133. doi: 10.1140/epjc/s2003-01152-2. [Cross Ref]
84. Hahn T, et al. High-precision predictions for the light CP -even Higgs Boson mass of the minimal supersymmetric Standard model. Phys. Rev. Lett. 2014;112:141801. doi: 10.1103/PhysRevLett.112.141801. [PubMed] [Cross Ref]
85. LHC Higgs Cross Section Working Group, Handbook of LHC Higgs Cross Sections: 3. Higgs Properties. CERN-2013-004 (CERN, Geneva, 2013). arXiv:1307.1347 [hep-ph]
86. Djouadi A, Kalinowski J, Spira M. HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension. Comput. Phys. Commun. 1998;108:56. doi: 10.1016/S0010-4655(97)00123-9. [Cross Ref]
87. Czyczula Z, Przedzinski T, Was Z. TauSpinner program for studies on spin effect in tau production at the LHC. Eur. Phys. J. C. 2012;72:1988. doi: 10.1140/epjc/s10052-012-1988-z. [Cross Ref]
88. Kaczmarska A, et al. Application of TauSpinner for studies on ττ -Lepton polarization and spin correlations in Z, W and H decays at the LHC. Acta Phys. Polon. B. 2014;45:1921. doi: 10.5506/APhysPolB.45.1921. [Cross Ref]
89. Banerjee S, et al. Ascertaining the spin for new resonances decaying into τ+τ-τ+τ- at Hadron Colliders. Eur. Phys. J. C. 2013;73:2313. doi: 10.1140/epjc/s10052-013-2313-1. [Cross Ref]
90. T. Sjöstrand, S. Mrenna, P. Skands, A Brief Introduction to PYTHIA 8.1. Comput. Phys. Commun. 178, 852 (2008). arXiv:0710.3820 [hep-ph]
91. R. D. Ball et al., Parton distributions with LHC data. Nucl. Phys. B 867, 244–289 (2013). arXiv:1207.1303 [hep-ph]
92. Barberio E, Eijk BV, Was Z. PHOTOS - a universal Monte Carlo for QED radiative corrections in decays. Comput. Phys. Commun. 1991;66:115. doi: 10.1016/0010-4655(91)90012-A. [Cross Ref]
93. N. Davidson, T. Przedzinski, Z. Was, PHOTOS Interface in C++: Technical and Physics Documentation. Comput. Phys. Commun. 199, 86–101 (2016). arXiv:1011.0937 [hep-ph]
94. T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02, 007 (2009). arXiv:0811.4622 [hep-ph]
95. S. Höche et al., QCD matrix elements + parton showers: the NLO case, JHEP 04, 027 (2013). arXiv:1207.5030 [hep-ph]
96. Anastasiou C, et al. High precision QCD at hadron colliders: electroweak gauge boson rapidity distributions at NNLO. Phys. Rev. D. 2004;69:094008. doi: 10.1103/PhysRevD.69.094008. [Cross Ref]
97. Melnikov K, Petriello F. Electroweak gauge boson production at hadron colliders through O(alpha(s)**2) Phys. Rev. D. 2006;74:114017. doi: 10.1103/PhysRevD.74.114017. [Cross Ref]
98. Gavin R, et al. FEWZ 2.0: a code for hadronic Z production at next-to-next-to-leading order. Comput. Phys. Commun. 2011;182:2388. doi: 10.1016/j.cpc.2011.06.008. [Cross Ref]
99. Artoisenet P, et al. Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations. JHEP. 2013;03:015. doi: 10.1007/JHEP03(2013)015. [Cross Ref]
100. T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006). arXiv:hep-ph/0603175
101. Skands P. Tuning Monte Carlo generators: the perugia tunes. Phys. Rev. D. 2010;82:074018. doi: 10.1103/PhysRevD.82.074018. [Cross Ref]
102. Czakon M, Mitov A. Top++: a program for the calculation of the top-pair cross-section at Hadron colliders. Comput. Phys. Commun. 2014;185:2930. doi: 10.1016/j.cpc.2014.06.021. [Cross Ref]
103. Kidonakis N. Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production. Phys. Rev. D. 2011;83:091503. doi: 10.1103/PhysRevD.83.091503. [Cross Ref]
104. Kidonakis N. NNLL resummation for s-channel single top quark production. Phys. Rev. D. 2010;81:054028. doi: 10.1103/PhysRevD.81.054028. [Cross Ref]
105. Kidonakis N. Two-loop soft anomalous dimensions for single top quark associated production with a W- or H- Phys. Rev. D. 2010;82:054018. doi: 10.1103/PhysRevD.82.054018. [Cross Ref]
106. Lange DJ. The EvtGen particle decay simulation package. Nucl. Instrum. Meth. A. 2001;462:152. doi: 10.1016/S0168-9002(01)00089-4. [Cross Ref]
107. ATLAS Collaboration, Summary of ATLAS Pythia 8 tunes. ATL-PHYS-PUB-2012-003 (2012). http://cdsweb.cern.ch/record/1474107
108. Martin AD, et al. Parton distributions for the LHC. Eur. Phys. J. C. 2009;63:189. doi: 10.1140/epjc/s10052-009-1072-5. [Cross Ref]
109. Agostinelli S, et al. GEANT4 Collaboration, GEANT4 - a simulation toolkit. Nucl. Instrum. Meth. A. 2003;506:250. doi: 10.1016/S0168-9002(03)01368-8. [Cross Ref]
110. ATLAS Collaboration, The ATLAS simulation infrastructure. Eur. Phys. J. C 70, 823 (2010). arXiv:1005.4568 [physics.ins-det]
111. ATLAS Collaboration, The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim. ATL-PHYS-PUB-2010-013 (2010). http://cdsweb.cern.ch/record/1300517
112. ATLAS Collaboration, Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data. Eur. Phys. J. C 74, 3071 (2014). arXiv:1407.5063 [hep-ex]
113. ATLAS Collaboration, Electron effciency measurements with the ATLAS detector using the 2015 LHC proton-proton collision data. ATLAS-CONF-2016-024 (2016). http://cdsweb.cern.ch/record/2157687
114. ATLAS Collaboration, Muon reconstruction performance of the ATLAS detector in proton-proton collision data at s=13TeV. Eur. Phys. J. C 76, 292 (2016). arXiv:1603.05598 [hep-ex]
115. Cacciari M, Salam GP. Pileup subtraction using jet areas. Phys. Lett. B. 2008;659:119. doi: 10.1016/j.physletb.2007.09.077. [Cross Ref]
116. ATLAS Collaboration, Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1 (2016). arXiv:1603.02934 [hep-ex]
117. Cacciari M, Salam GP, Soyez G. The anti-ktkt jet clustering algorithm. JHEP. 2008;04:063. doi: 10.1088/1126-6708/2008/04/063. [Cross Ref]
118. ATLAS collaboration, Tagging and suppression of pileup jets with the ATLAS detector. ATLAS-CONF-2014-018 (2014). http://cdsweb.cern.ch/record/1700870
119. ATLAS Collaboration, Expected performance of the ATLAS b-tagging algorithms in Run-2. ATL-PHYS-PUB-2015-022 (2015) http://cdsweb.cern.ch/record/2037697
120. ATLAS Collaboration, Commissioning of the ATLAS b-tagging algorithms using tt¯ events in early Run-2 data. ATL-PHYS-PUB-2015-039 (2015). http://cdsweb.cern.ch/record/2047871
121. ATLAS Collaboration, Reconstruction, energy calibration, and identification of hadronically decaying Tau leptons in the ATLAS experiment for Run-2 of the LHC. ATL-PHYS-PUB-2015-045 (2015). http://cdsweb.cern.ch/record/2064383
122. ATLAS Collaboration, Performance of missing transverse momentum reconstruction for the ATLAS detector in the first proton-proton collisions at s=13TeV. ATL-PHYS-PUB-2015-027 (2015) http://cdsweb.cern.ch/record/2037904
123. Aliev M, et al. HatHor: HAdronic top and heavy quarks crOss section calculatoR. Comput. Phys. Commun. 2011;182:1034. doi: 10.1016/j.cpc.2010.12.040. [Cross Ref]
124. Kant P, et al. HatHor for single top-quark production: updated predictions and uncertainty estimates for single top-quark production in hadronic collisions. Comput. Phys. Commun. 2015;191:74. doi: 10.1016/j.cpc.2015.02.001. [Cross Ref]
125. ATLAS Collaboration, Simulation of top-quark production for the ATLAS experiment at s=13TeV. ATL-PHYS-PUB-2016-004 (2016). http://cdsweb.cern.ch/record/2120417
126. M. Bahr et al., Herwig++ Physics and Manual. Eur. Phys. J. C 58, 639–707 (2008). arXiv:0803.0883 [hep-ph]
127. Ball RD, et al. Parton distributions for the LHC Run II. JHEP. 2015;04:040. doi: 10.1007/JHEP04(2015)040. [Cross Ref]
128. Martin AD, et al. Heavy-quark mass dependence in global PDF analyses and 3- and 4-flavour parton distributions. Eur. Phys. J. C. 2010;70:51. doi: 10.1140/epjc/s10052-010-1462-8. [Cross Ref]
129. G. Cowan et al., Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C 71, 1554 (2011). arXiv:1007.1727 [physics.data-an] [Erratum: Eur. Phys. J. C 73 (2013) 2501]
130. Read AL. Presentation of search results: the CLs technique. J. Phys. G. 2002;28:2693. doi: 10.1088/0954-3899/28/10/313. [Cross Ref]
131. ATLAS Collaboration, Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector. JHEP 11, 206 (2015). arXiv:1509.00672 [hep-ex]
132. Cao Q-H, et al. Discovery and identification of W’ and Z’ in SU(2)1 ⊗ SU(2)2 ⊗ U(1)XSU(2)1SU(2)2U(1)X models at the LHC. Phys. Rev. D. 2012;86:095010. doi: 10.1103/PhysRevD.86.095010. [Cross Ref]
133. Lee KY. Lepton flavor violation in a nonuniversal gauge interaction model. Phys. Rev. D. 2010;82:097701. doi: 10.1103/PhysRevD.82.097701. [Cross Ref]
134. Lee KY. Unitarity violation of the CKM matrix in a nonuniversal gauge interaction model. Phys. Rev. D. 2005;71:115008. doi: 10.1103/PhysRevD.71.115008. [Cross Ref]
135. ATLAS Collaboration, ATLAS Computing Acknowledgements 2016-2017. ATL-GEN-PUB-2016-002 (2016). http://cdsweb.cern.ch/record/2202407

Articles from Springer Open Choice are provided here courtesy of Springer