Search tips
Search criteria 


Logo of aghpsycbiomed central web sitesearch.manuscript submission.see also annals of general psychiatry journal in pmc.registration.reference to the article.journal front page.
Ann Gen Hosp Psychiatry. 2004; 3: 14.
Published online Aug 12, 2004. doi:  10.1186/1475-2832-3-14
PMCID: PMC514898
Electroconvulsive therapy and determination of cerebral dominance
Milan Dragovic,1 Lindsay Allet,2 and Aleksandar Jancacorresponding author2,3
1Centre for Clinical Research in Neuropsychiatry, Graylands Hospital, Perth, Australia
2Inner City Mental Health Service, Royal Perth Hospital, Perth, Australia
3School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, Australia
corresponding authorCorresponding author.
Milan Dragovic: milan/at/; Lindsay Allet: Jean.Allet/at/; Aleksandar Janca: ajanca/at/
Received June 30, 2004; Accepted August 12, 2004.
Electroconvulsive therapy (ECT) often results in a number of short- and long-time side effects including memory impairment for past and current events, which can last for several months after ECT treatment. It has been suggested that unilateral ECT (uECT) with electrodes placed over the non-dominant (typically right) hemisphere significantly reduces side effects, especially memory disturbances. It is important to note that cerebral dominance equates to speech dominance and avoiding this area of the brain also reduces speech dysfunction after ECT. Traditionally, the routine clinical determination of cerebral dominance has been through the assessment of hand, foot and eye dominance, which is an easy and inexpensive approach that, however, does not ensure accuracy. This review of literature on different methods and techniques for determination of cerebral dominance and provides evidence that functional transcranial Doppler sonography (fTCD) represents a valid and safe alternative to invasive techniques for identifying speech lateralisation. It can be concluded that fTCD, notwithstanding its costs, could be used as a standard procedure prior to uECT treatment to determine cerebral dominance, thereby further reducing cognitive side-effects of ECT and possibly making it more acceptable to both patients and clinicians.
Electroconvulsive therapy (ECT) is often regarded by the general public as a controversial procedure for the treatment of mental disorders. This is despite evidence of its safety and efficacy [1], and its benefit over anti-depressants in patients resistant to conventional medications and those with life threatening conditions such as catatonia and depressive stupor. The evidence suggests that in unipolar depression ECT has better efficacy when compared with older tricyclic antidepressants and monoamine oxidase inhibitors, as well as newer drugs such as paroxetine [2]. Notwithstanding the efficacy of ECT, its use is declining in some countries [3], while in a few others, including Italy – where ECT was first introduced in 1938 by Cerletti and Bini – it is prohibited. Aside from political reasons and public pressure, the declining trend in ECT use could be the result of the introduction of more effective antidepressants.
A further possible explanation for the reduction in ECT use may relate to the concern over adverse effects of the procedure. There are a number of short-term side effects including headache, nausea and, sometimes, brief confusion. However, the main side effect of concern is memory impairment for past events (retrograde amnesia) and for current events (anterograde amnesia) that can last for several months after a course of ECT treatment. Some of these side effects are substantially reduced by advances in safety and the introduction of controlled-current ECT machines. The utilisation of muscle relaxants, anaesthetics and resuscitation equipment, and electroencephalographic monitoring during the application of ECT are considered now considered routine. In addition, ECT guidelines issued by the UK National Institute for Clinical Excellence [4] restrict the use of ECT only to patients with severe symptoms to which "an adequate trial of other treatment options has proven ineffective" (p. 5). The risk associated with ECT has also been reduced with the introduction of refined ECT procedures, such as "maintenance ECT" or "unilateral ECT" (uECT) [5].
It has been suggested that unilateral treatment significantly reduces side effects, especially memory disturbances [6,7]. Despite the well-documented efficacy of unilateral over bilateral ECT, current practice still favours bilateral treatments [8,9]. Unilateral treatment, for the majority of patients, entails that electrodes are placed over the non-dominant, right hemisphere. Given that memory impairment could be reduced by unilateral electrode placement and the fact that placement of electrodes to the dominant hemisphere may cause a greater disturbance in memory compared to non-dominant uECT, determination of cerebral dominance appears to be critical [10]. It is important to note that cerebral dominance here equates to speech dominance, including a lateralised capacity of the cortex to be the locus of language-specific memory traces [11]. Avoiding the stimulation of the speech area will therefore reduce speech dysfunction after ECT. Traditionally, the routine clinical determination of cerebral dominance has been through the assessment of hand, foot and eye dominance. It certainly is an easy and inexpensive approach, but it does not ensure accuracy.
The practice of determining cerebral dominance from handedness appears to mirror Broca's view that a person's handedness is opposite to hemispheric language specialisation. This, however, is incorrect, since there is no "mirror-image" cortical language organisation in left-handers. Several attempts to improve cerebral dominance assessment by introducing additional clues such as handwriting posture (i.e. inverted or hooked style versus non-inverted) and familial sinistrality have not substantially improved the prediction as to determination of cerebral dominance [12,13]. For example, the use of hand writing posture to determine speech dominance has been shown to be completely invalid [14-16].
A great majority of left-handers have also an ipsilateral functional specialisation for language (i.e. left hemispheric, as in the majority of right-handers). Although right-handers are more clearly lateralised than left-handers in this regard, a certain proportion of right-handers have language localised in the right-hemisphere. This has been confirmed by various techniques, ranging from the old and invasive procedures such as the intracarotid sodium amytal test and ECT, to the new and more sophisticated techniques such as functional magnetic resonance imaging (fMRI) and functional transcranial Doppler sonography (fTCD). The pooling of empirical data from a number of studies [17-27] which used both old and new, non-invasive techniques to determine cerebral dominance for language is shown in Table Table11.
Table 1
Table 1
Percentages of right- and left-handers with speech localised predominantly in the left, right hemisphere, or bilaterally, according to different studies and techniques
From Table Table11 one can see that if the hemisphere for uECT treatment were solely ascertained from handedness assessment, then a small proportion of right-handers and a much larger proportion of left-handers would have treatment administered to the dominant hemisphere. One could also see from it that about 3% of right-handers and 25% of left-handers have speech localised in the right hemisphere. This represents the error rate percentage in both groups if uECT was administered to all patients on the right side of the cranium. However, the overall error rate is lower since the incidence of left-handedness is low, and is likely to be in the range of 6.4% to 12.5% [28]. A strict application of the "mirror-image" cortical organisation (i.e. considering left-handers as right-hemisphere dominant and therefore performing left-sided uECT) is even more destructive, illogical, and would increase the error rate. For example, in the survey of the use of ECT by psychiatrists in New Zealand [9], 20% of respondents reported using uECT depending on handedness. Adverse effects caused by determining speech dominance on the basis of handedness would be lower if right-sided ECT was always administered, thus making handedness assessment unnecessary. Given the additional risk of uECT treatment on the dominant hemisphere, which is even more disruptive than bilateral ECT [29], correct identification of cerebral dominance appears to be crucial. The importance of identification of cerebral dominance prior to electrode placement has been highlighted by a number of authors [6,10,28], but routine ECT practice has remained unchanged.
Until recently, an accurate determination of speech dominance prior to a course of ECT treatment was possible only through invasive procedures such as intracarotid sodium amytal test [30], also known as the Wada tests, and through the administration of ECT itself – the ECT Test [10]. Lateralisation of language capacity using the Wada test is based on the temporary anaesthesia of one half of the brain. The subject in the study receives sodium amytal – a short-acting anaesthetic – into (usually) the left carotid artery. This causes the left hemisphere to be temporarily rendered dysfunctional. As a result, if this were the patient's dominant hemisphere, the subject's language capacity – primarily speech production – is affected. Conversely, injecting sodium amytal into the right carotid artery leaves this language capacity intact. By using this technique it is possible to identify precisely which hemisphere hosts language, which is considered necessary for patients who are to go through neurosurgical procedures. Although accurate, the use of Wada procedure in a normal healthy population is generally considered as unsuitable. Using ECT for the determination of cerebral dominance is, as mentioned previously, associated with adverse effects and therefore may not be entirely appropriate, although Weiner [31] suggests giving left and right side ECT alternately followed by the administration of a simple verbal performance test and then continuing treatment with the side associated with the better result.
The advent of sophisticated and non-invasive technologies during the 1980s and 1990s has enabled a non-invasive approach to the assessment of speech dominance. One of the most elegant, mobile, and cost effective methods for determining cerebral dominance for speech is functional transcranial Doppler sonography (fTCD). fTCD is increasingly used in both clinical and research settings and is a new and robust technique based on the same principles as fMRI. Subjects in studies using this method are asked to generate as many possible words within 5-second periods after a letter presented on the computer screen cues for word generation. Basically, fTCD measures cerebral blood flow velocity which corresponds to brain activity. The physical foundation for this technique is quite old and is based on the work of the Austrian mathematician and physicist, Christian Doppler (1803–1853), who discovered that the change in pitch results from a shift in the frequency of the sound waves. This means that the speed of a physical object (i.e. blood) can be estimated by measuring the rate of change of pitch. To complete the fTCD procedure, the additional sound produced through the arteries is required.
Recently, it has been argued that fTCD can reliably replace the Wada procedure in patients undergoing brain surgery [32]. The validity of fTCD has been established by comparing fTCD with the Wada test, which is considered as the ultimate (gold standard) test of cerebral lateralisation for speech. Several independent studies [33-35] have found highly significant correlations between these two methods. A high agreement between fTCD and fMRI has also been identified [36] for the assessment of cerebral speech lateralisation.
This review of the literature on ECT and cerebral dominance provides evidence that fTCD represents a valid and safe alternative to invasive techniques for identifying speech lateralisation. It seems therefore, that fTCD, notwithstanding costs, could be used as a standard procedure prior to uECT treatment to determine cerebral dominance, thereby further reducing cognitive side-effects of ECT and possibly making it more acceptable to both patients and clinicians.
Competing interests
none declared.
  • American Psychiatric Association The practice of electroconvulsive therapy: Recommendations for treatment, training, and privileging: A task force report of the American Psychiatric Association. Washington DC: American Psychiatric Association. 1990.
  • Folkerts HW, Michael N, Tolle R. Electroconvulsive therapy vs paroxetine in treatment resistant depression – a randomised study. Acta Psychiatr Scand. 1977;96:334–342. [PubMed]
  • Savithasri VE, McLoughlin DM. Electroconvulsive therapy – state of the art. Brit J Psychiat. 2003;182:8–9. doi: 10.1192/bjp.182.1.8. [PubMed] [Cross Ref]
  • National Institute for Clinical Excellence Guidance on the use of electroconvulsive therapy. London: National Institute for Clinical Excellence. 2003.
  • Wijeratne C, Halliday GS, Lyndon RW. The present status of electroconvulsive therapy: A systematic review. Med J Australia. 1999;171:250–254. [PubMed]
  • Zamora EN, Kaelbling R. Memory and electroconvulsive therapy. Am J Psychiatry. 1965;122:546–554. [PubMed]
  • Fleminger JJ, Horne DJ, Nair NPV, Nott PN. Differential effect of unilateral and bilateral ECT. Am J Psychiatry. 1970;127:430–436. [PubMed]
  • Sackeim HA, Prudic J, Devanand DP, et al. A prospective, randomized, double-blind comparison of bilateral and unilateral electroconvulsive therapy at different stimulus intensities. Arch Gen Psychiat. 2000;57:425–434. doi: 10.1001/archpsyc.57.5.425. [PubMed] [Cross Ref]
  • Strachan JA. Electroconvulsive therapy – attitudes and practice in New Zealand. Psychiatric Bulletin. 2001;25:467–470. doi: 10.1192/pb.25.12.467. [Cross Ref]
  • Pratt RTC, Warrington EK, Halliday AM. Unilateral ECT as a test for cerebral dominance, with a strategy for treating left-handers. Brit J Psychiat. 1971;119:79–83. [PubMed]
  • Näätänen R, Lehtokoski A, Lennes M, Chenour M, Huotllainen M, Ilmoniemi RJ, Luuk A, Allik J, Sinkkonen J, Alho K. Language specific phoneme representations revealed by electric and magnetic brain responses. Nature. 1997;385:432–434. doi: 10.1038/385432a0. [PubMed] [Cross Ref]
  • Freeman CPL. Electroconvulsive therapy: Its current clinical use. Brit J Hosp Med. 1979;21:281–292.
  • Allen GS. Letter: Language lateralisation and unilateral ECT. Brit J Psychiat. 1980;136:316. [PubMed]
  • Warrington EK, Pratt RT. The significance of laterality effects. J Neurol Neurosurg Psychiatry. 1981;44:193–196. [PMC free article] [PubMed]
  • McKeveer WF, Van Deventer AD. Inverted handwriting position, language laterality, and the Levy-Nagylaki model of handedness and cerebral organisation. Neuropsychologia. 1980;18:99–102. doi: 10.1016/0028-3932(80)90090-1. [PubMed] [Cross Ref]
  • Beaumont JG, McCarthy R. Dichotic ear asymmetry and writing posture. Neuropsychologia. 1981;19:469–472. doi: 10.1016/0028-3932(81)90078-6. [PubMed] [Cross Ref]
  • Milner B. Psychological aspects of focal epilepsy and its neurosurgical managament. In: Purpura DP, Penry JK, Walters RD, editor. Advances in Neurology. Vol. 8. New York: Raven; 1975.
  • Rossi GF, Rosadini G. Experimental analysis of cerebral dominance in men. In: Millikan CH, Darley FL, editor. Brain mechanisms underlying speech and language. New York: Grune;
  • Pratt RTC, Warrington EK. The assessment of cerebral dominance with unilateral ECT. Brit J Psychiat. 1972;121:327–328. [PubMed]
  • Warrington EK, Pratt RT. Language laterality in left handers assessed by unilateral ECT. Neuropsychologia. 1973;11:423–428. doi: 10.1016/0028-3932(73)90029-8. [PubMed] [Cross Ref]
  • Geffen G, Traub E, Stierman I. Language laterality assessed by unilateral ECT and dichotic monitoring. J Neurol Neurosurg Psychiatry. 1978;41:354–360. [PMC free article] [PubMed]
  • Geffen G, Traub E. Preferred hand and familial sinistrality in dichotic monitoring. Neuropsychologia. 1979;17:527–532. doi: 10.1016/0028-3932(79)90061-7. [PubMed] [Cross Ref]
  • Springer JA, Binder JR, Hammeke TA, Swanson SJ, Frost JA, Bellgowan PS, Brewer CC, Perry HM, Morris GL, Mueller WM. Language dominance in neurologically normal and epilepsy subjects: A functional MRI study. Brain. 1999;122:2033–2045. doi: 10.1093/brain/122.11.2033. [PubMed] [Cross Ref]
  • Pujol JDJ, Losilla J, Capdevila A. Cerebral lateralization of language in normal left-handed people studied by functional MRI. Neurology. 1999;52:1038–1043. [PubMed]
  • Szaflarski JP, Binder JR, Possing ET, McKiernan KA, Ward BD, Hammeke TA. Language lateralization in left-handed and ambidextrous people: fMRI data. Neurology. 2002;59:238–244. [PubMed]
  • Hund-Georgiadis M, Lex U, Friederici AD, von Cramon DY. Non-invasive regime for language lateralization in right- and left-handers by means of functional MRI and dichotic listening. Exp Brain Res. 2002;145:166–176. doi: 10.1007/s00221-002-1090-0. [PubMed] [Cross Ref]
  • Knecht SDB, Deppe M, Bobe L, Lohmann H, Flöel A, Ringelstein EB, Henningsen H. Handedness and hemispheric language dominance in healthy humans. Brain. 2000;123:2512–2518. doi: 10.1093/brain/123.12.2512. [PubMed] [Cross Ref]
  • Kopelman MD. Speech dominance, handedness and electro-convulsions. Psychol Med. 1982;12:667–670. [PubMed]
  • Halliday AM, Davison K, Browne MW, Kreeger LC. A comparison of the effects on depression and memory of bilateral ECT and unilateral ECT to the dominant and non-dominant hemispheres. Brit J Psychiat. 1968;114:997–1012. [PubMed]
  • Wada J, Rasmussen T. Intracarotid injection of sodium amytal for the lateralisation of sebrebral speech dominance. J Neurosurg. 1960;17:266–282.
  • Weiner RD. The psychiatric use of electrically induced seizures. Am J Psychiatry. 1978;136:1507–1517. [PubMed]
  • Deppe M, Ringelstein EB, Knecht S. The investigation of functional brain lateralization by transcranial Doppler sonography. Neuroimage. 2004;21:1124–1146. doi: 10.1016/j.neuroimage.2003.10.016. [PubMed] [Cross Ref]
  • Knecht S, Deppe M, Ebner A, Henningsen H, Huber T, Jokeit H, Ringelstein EB. Noninvasive determination of language lateralization by functional transcranial Doppler Sonography: A comparison with the Wada test. Stroke. 1998;29:82–86. [PubMed]
  • Rihs F, Sturzenegger M, Gutbrod K, Schroth G, Mattle HP. Determination of language dominance: Wada test confirms functional transcranial Doppler sonography. Neurology. 1999;52:1591–1596. [PubMed]
  • Knake S, Haag A, Hamer HM, Dittmer C, Bien S, Oertel WH, Rosenow F. Language lateralisation in patients with temporal lobe epilepsy: A comparison of functional transcranial Doppler sonography and the Wada test. Neuroimage. 2003;19:1228–1232. doi: 10.1016/S1053-8119(03)00174-5. [PubMed] [Cross Ref]
  • Deppe M, Knecht S, Papke K, Lohmann H, Fleischer H, Heindel W, Ringelstein EB, Henningsen H. Functional MRI measurement of language lateralisation in Wada- tested patients. J Cereb Blood Flow Metab. 2000;20:263–268. doi: 10.1097/00004647-200002000-00006. [PubMed] [Cross Ref]
Articles from Annals of General Hospital Psychiatry are provided here courtesy of
BioMed Central