Search tips
Search criteria 


Logo of jcinvestThe Journal of Clinical InvestigationCurrent IssueArchiveSubscriptionAbout the Journal
J Clin Invest. 1998 March 1; 101(5): 1142–1147.
PMCID: PMC508666

Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis.


Methylglyoxal (MG), a dicarbonyl compound produced by the fragmentation of triose phosphates, forms advanced glycation endproducts (AGEs) in vitro. Glyoxalase-I catalyzes the conversion of MG to S-D-lactoylglutathione, which in turn is converted to D-lactate by glyoxalase-II. To evaluate directly the effect of glyoxalase-I activity on intracellular AGE formation, GM7373 endothelial cells that stably express human glyoxalase-I were generated. Glyoxalase-I activity in these cells was increased 28-fold compared to neo-transfected control cells (21.80+/-0.1 vs. 0. 76+/-0.02 micromol/min/mg protein, n = 3, P < 0.001). In neo-transfected cells, 30 mM glucose incubation increased MG and D-lactate concentration approximately twofold above 5 MM (35.5+/-5.8 vs. 19.6+/-1.6, P < 0.02, n = 3, and 21.0+/-1.3 vs. 10.0+/-1.2 pmol/ 10(6) cells, n = 3, P < 0.001, respectively). In contrast, in glyoxalase-I-transfected cells, 30 mM glucose incubation did not increase MG concentration at all, while increasing the enzymatic product D-lactate by > 10-fold (18.9+/-3.2 vs. 18.4+/- 5.8, n = 3, P = NS, and 107.1+/-9.0 vs. 9.4+/-0 pmol/10(6) cells, n = 3, P < 0.001, respectively). After exposure to 30 mM glucose, intracellular AGE formation in neo cells was increased 13.6-fold (2.58+/-0.15 vs. 0.19+/-0.03 total absorbance units, n = 3, P < 0.001). Concomitant with increased intracellular AGEs, macromolecular endocytosis by these cells was increased 2.2-fold. Overexpression of glyoxalase-I completely prevented both hyperglycemia-induced AGE formation and increased macromolecular endocytosis.

Full Text

The Full Text of this article is available as a PDF (191K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Jensen-Urstad KJ, Reichard PG, Rosfors JS, Lindblad LE, Jensen-Urstad MT. Early atherosclerosis is retarded by improved long-term blood glucose control in patients with IDDM. Diabetes. 1996 Sep;45(9):1253–1258. [PubMed]
  • Greene DA, Lattimer SA, Sima AA. Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic complications. N Engl J Med. 1987 Mar 5;316(10):599–606. [PubMed]
  • Williamson JR, Chang K, Frangos M, Hasan KS, Ido Y, Kawamura T, Nyengaard JR, van den Enden M, Kilo C, Tilton RG. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes. 1993 Jun;42(6):801–813. [PubMed]
  • King GL, Shiba T, Oliver J, Inoguchi T, Bursell SE. Cellular and molecular abnormalities in the vascular endothelium of diabetes mellitus. Annu Rev Med. 1994;45:179–188. [PubMed]
  • Graier WF, Simecek S, Kukovetz WR, Kostner GM. High D-glucose-induced changes in endothelial Ca2+/EDRF signaling are due to generation of superoxide anions. Diabetes. 1996 Oct;45(10):1386–1395. [PubMed]
  • Vlassara H, Bucala R, Striker L. Pathogenic effects of advanced glycosylation: biochemical, biologic, and clinical implications for diabetes and aging. Lab Invest. 1994 Feb;70(2):138–151. [PubMed]
  • Brownlee M. Advanced protein glycosylation in diabetes and aging. Annu Rev Med. 1995;46:223–234. [PubMed]
  • Giardino I, Edelstein D, Brownlee M. Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes. J Clin Invest. 1994 Jul;94(1):110–117. [PMC free article] [PubMed]
  • Wells-Knecht KJ, Zyzak DV, Litchfield JE, Thorpe SR, Baynes JW. Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry. 1995 Mar 21;34(11):3702–3709. [PubMed]
  • Wells-Knecht MC, Thorpe SR, Baynes JW. Pathways of formation of glycoxidation products during glycation of collagen. Biochemistry. 1995 Nov 21;34(46):15134–15141. [PubMed]
  • Thornalley PJ. The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J. 1990 Jul 1;269(1):1–11. [PubMed]
  • Thornalley PJ. Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification--a role in pathogenesis and antiproliferative chemotherapy. Gen Pharmacol. 1996 Jun;27(4):565–573. [PubMed]
  • Vander Jagt DL, Robinson B, Taylor KK, Hunsaker LA. Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal, and diabetic complications. J Biol Chem. 1992 Mar 5;267(7):4364–4369. [PubMed]
  • Stitt AW, Chakravarthy U, Archer DB, Gardiner TA. Increased endocytosis in retinal vascular endothelial cells grown in high glucose medium is modulated by inhibitors of nonenzymatic glycosylation. Diabetologia. 1995 Nov;38(11):1271–1275. [PubMed]
  • Presta M, Maier JA, Rusnati M, Ragnotti G. Basic fibroblast growth factor is released from endothelial extracellular matrix in a biologically active form. J Cell Physiol. 1989 Jul;140(1):68–74. [PubMed]
  • Murthy NS, Bakeris T, Kavarana MJ, Hamilton DS, Lan Y, Creighton DJ. S-(N-aryl-N-hydroxycarbamoyl)glutathione derivatives are tight-binding inhibitors of glyoxalase I and slow substrates for glyoxalase II. J Med Chem. 1994 Jul 8;37(14):2161–2166. [PubMed]
  • Bischoff J, Lodish HF. Two asialoglycoprotein receptor polypeptides in human hepatoma cells. J Biol Chem. 1987 Aug 25;262(24):11825–11832. [PubMed]
  • Oray B, Norton SJ. Glyoxalase I from mouse liver. Methods Enzymol. 1982;90(Pt E):542–546. [PubMed]
  • Ikeda K, Higashi T, Sano H, Jinnouchi Y, Yoshida M, Araki T, Ueda S, Horiuchi S. N (epsilon)-(carboxymethyl)lysine protein adduct is a major immunological epitope in proteins modified with advanced glycation end products of the Maillard reaction. Biochemistry. 1996 Jun 18;35(24):8075–8083. [PubMed]
  • Giardino I, Edelstein D, Brownlee M. BCL-2 expression or antioxidants prevent hyperglycemia-induced formation of intracellular advanced glycation endproducts in bovine endothelial cells. J Clin Invest. 1996 Mar 15;97(6):1422–1428. [PMC free article] [PubMed]
  • Westwood ME, McLellan AC, Thornalley PJ. Receptor-mediated endocytic uptake of methylglyoxal-modified serum albumin. Competition with advanced glycation end product-modified serum albumin at the advanced glycation end product receptor. J Biol Chem. 1994 Dec 23;269(51):32293–32298. [PubMed]
  • Fu MX, Requena JR, Jenkins AJ, Lyons TJ, Baynes JW, Thorpe SR. The advanced glycation end product, Nepsilon-(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions. J Biol Chem. 1996 Apr 26;271(17):9982–9986. [PubMed]
  • Ahmed MU, Brinkmann Frye E, Degenhardt TP, Thorpe SR, Baynes JW. N-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem J. 1997 Jun 1;324(Pt 2):565–570. [PubMed]
  • Ranganathan S, Walsh ES, Godwin AK, Tew KD. Cloning and characterization of human colon glyoxalase-I. J Biol Chem. 1993 Mar 15;268(8):5661–5667. [PubMed]
  • Geller AI, Freese A. Infection of cultured central nervous system neurons with a defective herpes simplex virus 1 vector results in stable expression of Escherichia coli beta-galactosidase. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1149–1153. [PubMed]
  • Federoff HJ, Geschwind MD, Geller AI, Kessler JA. Expression of nerve growth factor in vivo from a defective herpes simplex virus 1 vector prevents effects of axotomy on sympathetic ganglia. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1636–1640. [PubMed]
  • Bergold PJ, Casaccia-Bonnefil P, Zeng XL, Federoff HJ. Transsynaptic neuronal loss induced in hippocampal slice cultures by a herpes simplex virus vector expressing the GluR6 subunit of the kainate receptor. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6165–6169. [PubMed]
  • Starr RG, Lu B, Federoff HJ. Functional characterization of the rat GAP-43 promoter. Brain Res. 1994 Feb 28;638(1-2):211–220. [PubMed]
  • Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7413–7417. [PubMed]
  • Southern PJ, Berg P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet. 1982;1(4):327–341. [PubMed]
  • McLellan AC, Phillips SA, Thornalley PJ. The assay of methylglyoxal in biological systems by derivatization with 1,2-diamino-4,5-dimethoxybenzene. Anal Biochem. 1992 Oct;206(1):17–23. [PubMed]
  • Thornalley PJ, McLellan AC, Lo TW, Benn J, Sönksen PH. Negative association between erythrocyte reduced glutathione concentration and diabetic complications. Clin Sci (Lond) 1996 Nov;91(5):575–582. [PubMed]
  • Chaplen FW, Fahl WE, Cameron DC. Method for determination of free intracellular and extracellular methylglyoxal in animal cells grown in culture. Anal Biochem. 1996 Jul 1;238(2):171–178. [PubMed]
  • Ohmori S, Iwamoto T. Sensitive determination of D-lactic acid in biological samples by high-performance liquid chromatography. J Chromatogr. 1988 Oct 14;431(2):239–247. [PubMed]
  • Casazza JP, Fu JL. Measurement of acetol in serum. Anal Biochem. 1985 Aug 1;148(2):344–348. [PubMed]
  • Yamada H, Miyata S, Igaki N, Yatabe H, Miyauchi Y, Ohara T, Sakai M, Shoda H, Oimomi M, Kasuga M. Increase in 3-deoxyglucosone levels in diabetic rat plasma. Specific in vivo determination of intermediate in advanced Maillard reaction. J Biol Chem. 1994 Aug 12;269(32):20275–20280. [PubMed]
  • Wells-Knecht KJ, Lyons TJ, McCance DR, Thorpe SR, Feather MS, Baynes JW. 3-Deoxyfructose concentrations are increased in human plasma and urine in diabetes. Diabetes. 1994 Sep;43(9):1152–1156. [PubMed]
  • Takahashi M, Lu YB, Myint T, Fujii J, Wada Y, Taniguchi N. In vivo glycation of aldehyde reductase, a major 3-deoxyglucosone reducing enzyme: identification of glycation sites. Biochemistry. 1995 Jan 31;34(4):1433–1438. [PubMed]
  • Aronsson AC, Sellin S, Tibbelin G, Mannervik B. Probing the active site of glyoxalase I from human erythrocytes by use of the strong reversible inhibitor S-p-bromobenzylglutathione and metal substitutions. Biochem J. 1981 Jul 1;197(1):67–75. [PubMed]
  • Nacharaju P, Acharya AS. Amadori rearrangement potential of hemoglobin at its glycation sites is dependent on the three-dimensional structure of protein. Biochemistry. 1992 Dec 22;31(50):12673–12679. [PubMed]
  • Westwood ME, Thornalley PJ. Molecular characteristics of methylglyoxal-modified bovine and human serum albumins. Comparison with glucose-derived advanced glycation endproduct-modified serum albumins. J Protein Chem. 1995 Jul;14(5):359–372. [PubMed]
  • McLellan AC, Thornalley PJ, Benn J, Sonksen PH. Glyoxalase system in clinical diabetes mellitus and correlation with diabetic complications. Clin Sci (Lond) 1994 Jul;87(1):21–29. [PubMed]
  • Phillips SA, Mirrlees D, Thornalley PJ. Modification of the glyoxalase system in streptozotocin-induced diabetic rats. Effect of the aldose reductase inhibitor Statil. Biochem Pharmacol. 1993 Sep 1;46(5):805–811. [PubMed]
  • Gardiner TA, Stitt AW, Archer DB. Retinal vascular endothelial cell endocytosis increases in early diabetes. Lab Invest. 1995 Apr;72(4):439–444. [PubMed]

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation