Search tips
Search criteria 


Logo of jcinvestThe Journal of Clinical Investigation
J Clin Invest. 1997 October 15; 100(8): 1907–1918.
PMCID: PMC508379

A p47-phox pseudogene carries the most common mutation causing p47-phox- deficient chronic granulomatous disease.


The predominant genetic defect causing p47-phox-deficient chronic granulomatous disease (A47 degrees CGD) is a GT deletion (DeltaGT) at the beginning of exon 2. No explanation exists to account for the high incidence of this single mutation causing a rare disease in an unrelated, racially diverse population. In each of 34 consecutive unrelated normal individuals, both the normal and mutant DeltaGT sequences were present in genomic DNA, suggesting that a p47-phox related sequence carrying DeltaGT exists in the normal population. Screening of genomic bacteriophage and YAC libraries identified 13 p47-phox bacteriophage and 19 YAC clones. The GT deletion was found in 11 bacteriophage and 15 YAC clones. Only 5 exonic and 33 intronic differences distinguished all DeltaGT clones from all wild-type clones. The most striking differences were a 30-bp deletion in intron 1 and a 20-bp duplication in intron 2. These results provide good evidence for the existence of at least one highly homologous p47-phox pseudogene containing the DeltaGT mutation. The p47-phox gene and pseudogene(s) colocalize to chromosome 7q11.23. This close linkage, together with the presence within each gene of multiple recombination hot spots, suggests that the predominance of the DeltaGT mutation in A47 degrees CGD is caused by recombination events between the wild-type gene and the pseudogene(s).

Full Text

The Full Text of this article is available as a PDF (332K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Babior BM, Kipnes RS, Curnutte JT. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest. 1973 Mar;52(3):741–744. [PMC free article] [PubMed]
  • Cerban FM, Gea S, Menso E, Vottero-Cima E. Chagas' disease: IgG isotypes against Trypanosoma cruzi cytosol acidic antigens in patients with different degrees of heart damage. Clin Immunol Immunopathol. 1993 Apr;67(1):25–30. [PubMed]
  • Segal AW, West I, Wientjes F, Nugent JH, Chavan AJ, Haley B, Garcia RC, Rosen H, Scrace G. Cytochrome b-245 is a flavocytochrome containing FAD and the NADPH-binding site of the microbicidal oxidase of phagocytes. Biochem J. 1992 Jun 15;284(Pt 3):781–788. [PubMed]
  • Rotrosen D, Yeung CL, Leto TL, Malech HL, Kwong CH. Cytochrome b558: the flavin-binding component of the phagocyte NADPH oxidase. Science. 1992 Jun 5;256(5062):1459–1462. [PubMed]
  • Doussiere J, Brandolin G, Derrien V, Vignais PV. Critical assessment of the presence of an NADPH binding site on neutrophil cytochrome b558 by photoaffinity and immunochemical labeling. Biochemistry. 1993 Aug 31;32(34):8880–8887. [PubMed]
  • Clark RA, Volpp BD, Leidal KG, Nauseef WM. Two cytosolic components of the human neutrophil respiratory burst oxidase translocate to the plasma membrane during cell activation. J Clin Invest. 1990 Mar;85(3):714–721. [PMC free article] [PubMed]
  • Heyworth PG, Curnutte JT, Nauseef WM, Volpp BD, Pearson DW, Rosen H, Clark RA. Neutrophil nicotinamide adenine dinucleotide phosphate oxidase assembly. Translocation of p47-phox and p67-phox requires interaction between p47-phox and cytochrome b558. J Clin Invest. 1991 Jan;87(1):352–356. [PMC free article] [PubMed]
  • Cross AR, Curnutte JT. The cytosolic activating factors p47phox and p67phox have distinct roles in the regulation of electron flow in NADPH oxidase. J Biol Chem. 1995 Mar 24;270(12):6543–6548. [PubMed]
  • Leto TL, Adams AG, de Mendez I. Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline-rich targets. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10650–10654. [PubMed]
  • McPhail LC. SH3-dependent assembly of the phagocyte NADPH oxidase. J Exp Med. 1994 Dec 1;180(6):2011–2015. [PMC free article] [PubMed]
  • Knaus UG, Heyworth PG, Evans T, Curnutte JT, Bokoch GM. Regulation of phagocyte oxygen radical production by the GTP-binding protein Rac 2. Science. 1991 Dec 6;254(5037):1512–1515. [PubMed]
  • Abo A, Pick E, Hall A, Totty N, Teahan CG, Segal AW. Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature. 1991 Oct 17;353(6345):668–670. [PubMed]
  • Wientjes FB, Hsuan JJ, Totty NF, Segal AW. p40phox, a third cytosolic component of the activation complex of the NADPH oxidase to contain src homology 3 domains. Biochem J. 1993 Dec 15;296(Pt 3):557–561. [PubMed]
  • Tsunawaki S, Mizunari H, Nagata M, Tatsuzawa O, Kuratsuji T. A novel cytosolic component, p40phox, of respiratory burst oxidase associates with p67phox and is absent in patients with chronic granulomatous disease who lack p67phox. Biochem Biophys Res Commun. 1994 Mar 30;199(3):1378–1387. [PubMed]
  • Parkos CA, Dinauer MC, Walker LE, Allen RA, Jesaitis AJ, Orkin SH. Primary structure and unique expression of the 22-kilodalton light chain of human neutrophil cytochrome b. Proc Natl Acad Sci U S A. 1988 May;85(10):3319–3323. [PubMed]
  • Dinauer MC, Pierce EA, Bruns GA, Curnutte JT, Orkin SH. Human neutrophil cytochrome b light chain (p22-phox). Gene structure, chromosomal location, and mutations in cytochrome-negative autosomal recessive chronic granulomatous disease. J Clin Invest. 1990 Nov;86(5):1729–1737. [PMC free article] [PubMed]
  • Volpp BD, Nauseef WM, Donelson JE, Moser DR, Clark RA. Cloning of the cDNA and functional expression of the 47-kilodalton cytosolic component of human neutrophil respiratory burst oxidase. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7195–7199. [PubMed]
  • Lomax KJ, Leto TL, Nunoi H, Gallin JI, Malech HL. Recombinant 47-kilodalton cytosol factor restores NADPH oxidase in chronic granulomatous disease. Science. 1989 Jul 28;245(4916):409–412. [PubMed]
  • Leto TL, Lomax KJ, Volpp BD, Nunoi H, Sechler JM, Nauseef WM, Clark RA, Gallin JI, Malech HL. Cloning of a 67-kD neutrophil oxidase factor with similarity to a noncatalytic region of p60c-src. Science. 1990 May 11;248(4956):727–730. [PubMed]
  • Royer-Pokora B, Kunkel LM, Monaco AP, Goff SC, Newburger PE, Baehner RL, Cole FS, Curnutte JT, Orkin SH. Cloning the gene for an inherited human disorder--chronic granulomatous disease--on the basis of its chromosomal location. Nature. 1986 Jul 3;322(6074):32–38. [PubMed]
  • Roos D, de Boer M, Kuribayashi F, Meischl C, Weening RS, Segal AW, Ahlin A, Nemet K, Hossle JP, Bernatowska-Matuszkiewicz E, et al. Mutations in the X-linked and autosomal recessive forms of chronic granulomatous disease. Blood. 1996 Mar 1;87(5):1663–1681. [PubMed]
  • Thrasher AJ, Keep NH, Wientjes F, Segal AW. Chronic granulomatous disease. Biochim Biophys Acta. 1994 Oct 21;1227(1-2):1–24. [PubMed]
  • Casimir CM, Bu-Ghanim HN, Rodaway AR, Bentley DL, Rowe P, Segal AW. Autosomal recessive chronic granulomatous disease caused by deletion at a dinucleotide repeat. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2753–2757. [PubMed]
  • Volpp BD, Lin Y. In vitro molecular reconstitution of the respiratory burst in B lymphoblasts from p47-phox-deficient chronic granulomatous disease. J Clin Invest. 1993 Jan;91(1):201–207. [PMC free article] [PubMed]
  • Iwata M, Nunoi H, Yamazaki H, Nakano T, Niwa H, Tsuruta S, Ohga S, Ohmi S, Kanegasaki S, Matsuda I. Homologous dinucleotide (GT or TG) deletion in Japanese patients with chronic granulomatous disease with p47-phox deficiency. Biochem Biophys Res Commun. 1994 Mar 30;199(3):1372–1377. [PubMed]
  • Safaya S, Rieder RF. Dysfunctional alpha-globin gene in hemoglobin H disease in blacks. A dinucleotide deletion produces a frameshift and a termination codon. J Biol Chem. 1988 Mar 25;263(9):4328–4332. [PubMed]
  • Chan EK, Takano S, Andrade LE, Hamel JC, Matera AG. Structure, expression and chromosomal localization of human p80-coilin gene. Nucleic Acids Res. 1994 Oct 25;22(21):4462–4469. [PMC free article] [PubMed]
  • Green ED, Braden VV, Fulton RS, Lim R, Ueltzen MS, Peluso DC, Mohr-Tidwell RM, Idol JR, Smith LM, Chumakov I, et al. A human chromosome 7 yeast artificial chromosome (YAC) resource: construction, characterization, and screening. Genomics. 1995 Jan 1;25(1):170–183. [PubMed]
  • Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. [PMC free article] [PubMed]
  • Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. [PubMed]
  • Breathnach R, Chambon P. Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem. 1981;50:349–383. [PubMed]
  • Rodaway AR, Teahan CG, Casimir CM, Segal AW, Bentley DL. Characterization of the 47-kilodalton autosomal chronic granulomatous disease protein: tissue-specific expression and transcriptional control by retinoic acid. Mol Cell Biol. 1990 Oct;10(10):5388–5396. [PMC free article] [PubMed]
  • Britten RJ, Baron WF, Stout DB, Davidson EH. Sources and evolution of human Alu repeated sequences. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4770–4774. [PubMed]
  • Francke U, Hsieh CL, Foellmer BE, Lomax KJ, Malech HL, Leto TL. Genes for two autosomal recessive forms of chronic granulomatous disease assigned to 1q25 (NCF2) and 7q11.23 (NCF1). Am J Hum Genet. 1990 Sep;47(3):483–492. [PubMed]
  • Jeffreys AJ, Wilson V, Thein SL. Hypervariable 'minisatellite' regions in human DNA. Nature. 1985 Mar 7;314(6006):67–73. [PubMed]
  • Goeddel DV, Leung DW, Dull TJ, Gross M, Lawn RM, McCandliss R, Seeburg PH, Ullrich A, Yelverton E, Gray PW. The structure of eight distinct cloned human leukocyte interferon cDNAs. Nature. 1981 Mar 5;290(5801):20–26. [PubMed]
  • Helmberg A. Twin genes and endocrine disease: CYP21 and CYP11B genes. Acta Endocrinol (Copenh) 1993 Aug;129(2):97–108. [PubMed]
  • Mancuso DJ, Tuley EA, Westfield LA, Lester-Mancuso TL, Le Beau MM, Sorace JM, Sadler JE. Human von Willebrand factor gene and pseudogene: structural analysis and differentiation by polymerase chain reaction. Biochemistry. 1991 Jan 8;30(1):253–269. [PubMed]
  • Horowitz M, Wilder S, Horowitz Z, Reiner O, Gelbart T, Beutler E. The human glucocerebrosidase gene and pseudogene: structure and evolution. Genomics. 1989 Jan;4(1):87–96. [PubMed]
  • Wilde CD. Pseudogenes. CRC Crit Rev Biochem. 1986;19(4):323–352. [PubMed]
  • Maeda N, Smithies O. The evolution of multigene families: human haptoglobin genes. Annu Rev Genet. 1986;20:81–108. [PubMed]
  • Eikenboom JC, Vink T, Briët E, Sixma JJ, Reitsma PH. Multiple substitutions in the von Willebrand factor gene that mimic the pseudogene sequence. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2221–2224. [PubMed]
  • Collier S, Tassabehji M, Sinnott P, Strachan T. A de novo pathological point mutation at the 21-hydroxylase locus: implications for gene conversion in the human genome. Nat Genet. 1993 Mar;3(3):260–265. [PubMed]
  • Metzenberg AB, Wurzer G, Huisman TH, Smithies O. Homology requirements for unequal crossing over in humans. Genetics. 1991 May;128(1):143–161. [PubMed]
  • Liskay RM, Letsou A, Stachelek JL. Homology requirement for efficient gene conversion between duplicated chromosomal sequences in mammalian cells. Genetics. 1987 Jan;115(1):161–167. [PubMed]
  • Lehrman MA, Russell DW, Goldstein JL, Brown MS. Alu-Alu recombination deletes splice acceptor sites and produces secreted low density lipoprotein receptor in a subject with familial hypercholesterolemia. J Biol Chem. 1987 Mar 5;262(7):3354–3361. [PubMed]
  • Amor M, Parker KL, Globerman H, New MI, White PC. Mutation in the CYP21B gene (Ile-172----Asn) causes steroid 21-hydroxylase deficiency. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1600–1604. [PubMed]
  • Urabe K, Kimura A, Harada F, Iwanaga T, Sasazuki T. Gene conversion in steroid 21-hydroxylase genes. Am J Hum Genet. 1990 Jun;46(6):1178–1186. [PubMed]
  • Cheng KC, Smith GR. Cutting of chi-like sequences by the RecBCD enzyme of Escherichia coli. J Mol Biol. 1987 Apr 20;194(4):747–750. [PubMed]
  • Stoppa-Lyonnet D, Carter PE, Meo T, Tosi M. Clusters of intragenic Alu repeats predispose the human C1 inhibitor locus to deleterious rearrangements. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1551–1555. [PubMed]
  • Hirt H, Kimelman J, Birnbaum MJ, Chen EY, Seeburg PH, Eberhardt NL, Barta A. The human growth hormone gene locus: structure, evolution, and allelic variations. DNA. 1987 Feb;6(1):59–70. [PubMed]
  • Krawinkel U, Zoebelein G, Bothwell AL. Palindromic sequences are associated with sites of DNA breakage during gene conversion. Nucleic Acids Res. 1986 May 12;14(9):3871–3882. [PMC free article] [PubMed]
  • Slightom JL, Blechl AE, Smithies O. Human fetal G gamma- and A gamma-globin genes: complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes. Cell. 1980 Oct;21(3):627–638. [PubMed]
  • Higashi Y, Yoshioka H, Yamane M, Gotoh O, Fujii-Kuriyama Y. Complete nucleotide sequence of two steroid 21-hydroxylase genes tandemly arranged in human chromosome: a pseudogene and a genuine gene. Proc Natl Acad Sci U S A. 1986 May;83(9):2841–2845. [PubMed]

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation