PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jcinvestThe Journal of Clinical InvestigationCurrent IssueArchiveSubscriptionAbout the Journal
 
J Clin Invest. 1997 March 1; 99(5): 901–914.
PMCID: PMC507898

Systemic anaphylaxis in the mouse can be mediated largely through IgG1 and Fc gammaRIII. Assessment of the cardiopulmonary changes, mast cell degranulation, and death associated with active or IgE- or IgG1-dependent passive anaphylaxis.

Abstract

We attempted to elicit active anaphylaxis to ovalbumin, or passive IgE- or IgG1-dependent anaphylaxis, in mice lacking either the Fc epsilonRI alpha chain or the FcR gamma chain common to Fc epsilonRI and Fc gammaRI/III, or in mice lacking mast cells (KitW/ KitW-v mice), and compared the responses to those in the corresponding wild-type mice. We found that the FcR gamma chain is required for the death, as well as for most of the pathophysiological changes, associated with active anaphylaxis or IgE- or IgG1-dependent passive anaphylaxis. Moreover, some of the physiological changes associated with either active, or IgG1-dependent passive, anaphylactic responses were significantly greater in Fc epsilonRI alpha chain -/- mice than in the corresponding normal mice. Finally, while both KitW/KitW-v and congenic +/+ mice exhibited fatal active anaphylaxis, mast cell-deficient mice exhibited weaker physiological responses than the corresponding wild-type mice in both active and IgG1-dependent passive systemic anaphylaxis. Our findings strongly suggest that while IgE antibodies and Fc epsilonRI may influence the intensity and/or kinetics of some of the pathophysiological changes associated with active anaphylaxis in the mouse, the mortality associated with this response can be mediated largely by IgG1 antibodies and Fc gammaRIII.

Full Text

The Full Text of this article is available as a PDF (360K).

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation