Search tips
Search criteria 


Logo of jcinvestThe Journal of Clinical Investigation
J Clin Invest. 1996 December 1; 98(11): 2623–2631.
PMCID: PMC507722

Mitogen-activated protein kinase (ERK1/2) activation by shear stress and adhesion in endothelial cells. Essential role for a herbimycin-sensitive kinase.


Fluid shear stress modulates vascular function and structure by stimulating mechanosensitive endothelial cell signal events. Cell adhesion, mediated by integrin-matrix interactions, also regulates intracellular signaling by mechanosensitive events. To gain insight into the role of integrin-matrix interactions, we compared tyrosine phosphorylation and extracellular signal-regulated kinase (ERK1/2) activation in adhesion- and shear stress-stimulated human umbilical vein endothelial cells (HUVEC). Adhesion of HUVEC to fibronectin, but not to poly-L-lysine, rapidly activated ERK1/2. Fluid shear stress (12 dyn/cm2) enhanced ERK1/2 activation stimulated by adhesion, suggesting the presence of a separate pathway. Two differences in signal transduction were identified: focal adhesion kinase phosphorylation was increased rapidly by adhesion but not by shear stress; and ERK1/2 activation in response to adhesion was inhibited to a significantly greater extent when actin filaments were disrupted by cytochalasin D. Two similarities in activation of ERK1/2 were observed: protein kinase C (PKC) activity was necessary as shown by complete inhibition when PKC was downregulated; and an herbimycin-sensitive (genistein- and tyrphostin-insensitive) tyrosine kinase was required. c-Src was identified as a candidate tyrosine kinase as it was activated by both shear stress and adhesion. These findings suggest that adhesion and shear stress activate ERK1/2 via a shared pathway that involves an herbimycin-sensitive tyrosine kinase and PKC. In addition, shear stress activates ERK1/2 through another pathway that is partially independent of cytoskeletal integrity.

Full Text

The Full Text of this article is available as a PDF (499K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev. 1995 Jul;75(3):519–560. [PMC free article] [PubMed]
  • Geiger RV, Berk BC, Alexander RW, Nerem RM. Flow-induced calcium transients in single endothelial cells: spatial and temporal analysis. Am J Physiol. 1992 Jun;262(6 Pt 1):C1411–C1417. [PubMed]
  • Shen J, Luscinskas FW, Connolly A, Dewey CF, Jr, Gimbrone MA., Jr Fluid shear stress modulates cytosolic free calcium in vascular endothelial cells. Am J Physiol. 1992 Feb;262(2 Pt 1):C384–C390. [PubMed]
  • Tseng H, Peterson TE, Berk BC. Fluid shear stress stimulates mitogen-activated protein kinase in endothelial cells. Circ Res. 1995 Nov;77(5):869–878. [PubMed]
  • Smith SC., Jr AHA president's letter. Circulation. 1995 Jul 1;92(1):1–1. [PubMed]
  • Ranjan V, Diamond SL. Fluid shear stress induces synthesis and nuclear localization of c-fos in cultured human endothelial cells. Biochem Biophys Res Commun. 1993 Oct 15;196(1):79–84. [PubMed]
  • Hsieh HJ, Li NQ, Frangos JA. Shear-induced platelet-derived growth factor gene expression in human endothelial cells is mediated by protein kinase C. J Cell Physiol. 1992 Mar;150(3):552–558. [PubMed]
  • Shyy YJ, Hsieh HJ, Usami S, Chien S. Fluid shear stress induces a biphasic response of human monocyte chemotactic protein 1 gene expression in vascular endothelium. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4678–4682. [PubMed]
  • Malek A, Izumo S. Physiological fluid shear stress causes downregulation of endothelin-1 mRNA in bovine aortic endothelium. Am J Physiol. 1992 Aug;263(2 Pt 1):C389–C396. [PubMed]
  • Ray LB, Sturgill TW. Rapid stimulation by insulin of a serine/threonine kinase in 3T3-L1 adipocytes that phosphorylates microtubule-associated protein 2 in vitro. Proc Natl Acad Sci U S A. 1987 Mar;84(6):1502–1506. [PubMed]
  • Chen RH, Sarnecki C, Blenis J. Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol Cell Biol. 1992 Mar;12(3):915–927. [PMC free article] [PubMed]
  • Sturgill TW, Ray LB, Erikson E, Maller JL. Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature. 1988 Aug 25;334(6184):715–718. [PubMed]
  • Gille H, Sharrocks AD, Shaw PE. Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature. 1992 Jul 30;358(6385):414–417. [PubMed]
  • Lange-Carter CA, Pleiman CM, Gardner AM, Blumer KJ, Johnson GL. A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science. 1993 Apr 16;260(5106):315–319. [PubMed]
  • Ishida T, Peterson TE, Kovach NL, Berk BC. MAP kinase activation by flow in endothelial cells. Role of beta 1 integrins and tyrosine kinases. Circ Res. 1996 Aug;79(2):310–316. [PubMed]
  • Yamada KM, Miyamoto S. Integrin transmembrane signaling and cytoskeletal control. Curr Opin Cell Biol. 1995 Oct;7(5):681–689. [PubMed]
  • Ingber DE, Prusty D, Frangioni JV, Cragoe EJ, Jr, Lechene C, Schwartz MA. Control of intracellular pH and growth by fibronectin in capillary endothelial cells. J Cell Biol. 1990 May;110(5):1803–1811. [PMC free article] [PubMed]
  • Schwartz MA, Ingber DE, Lawrence M, Springer TA, Lechene C. Multiple integrins share the ability to induce elevation of intracellular pH. Exp Cell Res. 1991 Aug;195(2):533–535. [PubMed]
  • Schwartz MA. Spreading of human endothelial cells on fibronectin or vitronectin triggers elevation of intracellular free calcium. J Cell Biol. 1993 Feb;120(4):1003–1010. [PMC free article] [PubMed]
  • Burridge K, Turner CE, Romer LH. Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J Cell Biol. 1992 Nov;119(4):893–903. [PMC free article] [PubMed]
  • Hanks SK, Calalb MB, Harper MC, Patel SK. Focal adhesion protein-tyrosine kinase phosphorylated in response to cell attachment to fibronectin. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8487–8491. [PubMed]
  • Nollert MU, Eskin SG, McIntire LV. Shear stress increases inositol trisphosphate levels in human endothelial cells. Biochem Biophys Res Commun. 1990 Jul 16;170(1):281–287. [PubMed]
  • Chen Q, Kinch MS, Lin TH, Burridge K, Juliano RL. Integrin-mediated cell adhesion activates mitogen-activated protein kinases. J Biol Chem. 1994 Oct 28;269(43):26602–26605. [PubMed]
  • Morino N, Mimura T, Hamasaki K, Tobe K, Ueki K, Kikuchi K, Takehara K, Kadowaki T, Yazaki Y, Nojima Y. Matrix/integrin interaction activates the mitogen-activated protein kinase, p44erk-1 and p42erk-2. J Biol Chem. 1995 Jan 6;270(1):269–273. [PubMed]
  • Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science. 1993 May 21;260(5111):1124–1127. [PubMed]
  • Ingber D. Integrins as mechanochemical transducers. Curr Opin Cell Biol. 1991 Oct;3(5):841–848. [PubMed]
  • Davies PF, Tripathi SC. Mechanical stress mechanisms and the cell. An endothelial paradigm. Circ Res. 1993 Feb;72(2):239–245. [PubMed]
  • Davies PF, Robotewskyj A, Griem ML. Endothelial cell adhesion in real time. Measurements in vitro by tandem scanning confocal image analysis. J Clin Invest. 1993 Jun;91(6):2640–2652. [PMC free article] [PubMed]
  • Davies PF, Robotewskyj A, Griem ML. Quantitative studies of endothelial cell adhesion. Directional remodeling of focal adhesion sites in response to flow forces. J Clin Invest. 1994 May;93(5):2031–2038. [PMC free article] [PubMed]
  • Gimbrone MA., Jr Culture of vascular endothelium. Prog Hemost Thromb. 1976;3:1–28. [PubMed]
  • Duff JL, Monia BP, Berk BC. Mitogen-activated protein (MAP) kinase is regulated by the MAP kinase phosphatase (MKP-1) in vascular smooth muscle cells. Effect of actinomycin D and antisense oligonucleotides. J Biol Chem. 1995 Mar 31;270(13):7161–7166. [PubMed]
  • Ishida M, Marrero MB, Schieffer B, Ishida T, Bernstein KE, Berk BC. Angiotensin II activates pp60c-src in vascular smooth muscle cells. Circ Res. 1995 Dec;77(6):1053–1059. [PubMed]
  • Vuori K, Ruoslahti E. Activation of protein kinase C precedes alpha 5 beta 1 integrin-mediated cell spreading on fibronectin. J Biol Chem. 1993 Oct 15;268(29):21459–21462. [PubMed]
  • Guan JL, Trevithick JE, Hynes RO. Fibronectin/integrin interaction induces tyrosine phosphorylation of a 120-kDa protein. Cell Regul. 1991 Nov;2(11):951–964. [PMC free article] [PubMed]
  • Plopper G, Ingber DE. Rapid induction and isolation of focal adhesion complexes. Biochem Biophys Res Commun. 1993 Jun 15;193(2):571–578. [PubMed]
  • Liu M, Qin Y, Liu J, Tanswell AK, Post M. Mechanical strain induces pp60src activation and translocation to cytoskeleton in fetal rat lung cells. J Biol Chem. 1996 Mar 22;271(12):7066–7071. [PubMed]
  • Miyamoto S, Teramoto H, Coso OA, Gutkind JS, Burbelo PD, Akiyama SK, Yamada KM. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J Cell Biol. 1995 Nov;131(3):791–805. [PMC free article] [PubMed]
  • Wilson E, Sudhir K, Ives HE. Mechanical strain of rat vascular smooth muscle cells is sensed by specific extracellular matrix/integrin interactions. J Clin Invest. 1995 Nov;96(5):2364–2372. [PMC free article] [PubMed]
  • Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. [PubMed]
  • Watson PA. Function follows form: generation of intracellular signals by cell deformation. FASEB J. 1991 Apr;5(7):2013–2019. [PubMed]
  • Shyy JY, Lin MC, Han J, Lu Y, Petrime M, Chien S. The cis-acting phorbol ester "12-O-tetradecanoylphorbol 13-acetate"-responsive element is involved in shear stress-induced monocyte chemotactic protein 1 gene expression. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):8069–8073. [PubMed]
  • Pelech SL, Sanghera JS. MAP kinases: charting the regulatory pathways. Science. 1992 Sep 4;257(5075):1355–1356. [PubMed]
  • Schlaepfer DD, Hanks SK, Hunter T, van der Geer P. Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature. 1994 Dec 22;372(6508):786–791. [PubMed]
  • Clark EA, Hynes RO. Ras activation is necessary for integrin-mediated activation of extracellular signal-regulated kinase 2 and cytosolic phospholipase A2 but not for cytoskeletal organization. J Biol Chem. 1996 Jun 21;271(25):14814–14818. [PubMed]
  • Smith SC., Jr AHA president's letter. Circulation. 1995 Jul 1;92(1):1–1. [PubMed]
  • Corey DP, García-Añoveros J. Mechanosensation and the DEG/ENaC ion channels. Science. 1996 Jul 19;273(5273):323–324. [PubMed]

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation