PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jcinvestThe Journal of Clinical InvestigationCurrent IssueArchiveSubscriptionAbout the Journal
 
J Clin Invest. 1996 October 15; 98(8): 1851–1859.
PMCID: PMC507625

Prevention of adoptively transferred diabetes in nonobese diabetic mice with IL-10-transduced islet-specific Th1 lymphocytes. A gene therapy model for autoimmune diabetes.

Abstract

Four pancreatic islet-specific CD4+ helper T (Th) 1 (Th1) clones and two Th1 clones transduced with an SRalpha promoter-linked murine IL-10 (mIL-10) cDNA of 2.0-6.0 x 10(6) cells were adoptively transferred to nonobese diabetic (NOD) mice at age 8 d. Cyclophosphamide (CY) was administered at age 37 d (plus CY), and the incidence of diabetes and the histological grade of insulitis were examined at age 47 d. After the adoptive transfer of IL-10-transduced Th1 cells, polymerase chain reaction (PCR) and reverse-transcription (RT)-PCR detected the neo gene and the retrovirus vector-mediated IL-10 mRNA in situ in recipient islets, respectively. RT-PCR detected the decrease of IFN-gamma mRNA relative to IL-10 mRNA in IL-10-transduced Th1 clones in vitro and also in recipient islets. All four wild type Th1 clones plus CY induced the insulitis grade of 2.75 and diabetes in 66% of recipient NOD mice. IL-10-transduced two Th1 clones plus CY induced periinsulitis with the grade of 1.43 and diabetes in 8.0%. The 1:1 mixture of wild type Th1 cells and IL-10-transduced Th1 cells plus CY induced periinsulitis with the grade of 1.85 and diabetes in 20%. The suppression of diabetes through decreasing IFN-gamma mRNA by the tissue-specific delivery of IL-10 to pancreatic islets with IL-10-transduced Th1 cells affords us the starting basis to develop the gene therapy for autoimmune diabetes.


Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation