Search tips
Search criteria 


Logo of jcinvestThe Journal of Clinical InvestigationCurrent IssueArchiveSubscriptionAbout the Journal
J Clin Invest. 1996 March 15; 97(6): 1398–1408.
PMCID: PMC507198

Passive transfer of immediate hypersensitivity and airway hyperresponsiveness by allergen-specific immunoglobulin (Ig) E and IgG1 in mice.


In a proportion of atopic asthmatics, exposure to a relevant antigen is followed by chronic inflammation in the airways leading to altered airway responsiveness (AR). However, the mechanisms underlying the development of airway hyperresponsiveness still remain unclear. To elucidate the relationship between IgE-mediated reactions and airway hyperresponsiveness, a murine model of passive sensitization and airway challenge with ovalbumin (OVA) was developed using anti-OVA IgE and IgG antibodies from murine B cell hybridomas. Passive sensitization by intravenous injection of anti-OVA IgE resulted in immediate cutaneous hypersensitivity and, after airway challenge with OVA on two consecutive days, increased AR in BALB/c and SJL mice. Increased numbers of eosinophils were observed in bronchoalveolar lavage fluid, in cells extracted from the lungs, and in the peribronchial areas of BALB/c mice passively sensitized with IgE and challenged through the airways compared with nonsensitized mice. Eosinophil peroxidase activity was also elevated in lung tissue from these mice. Passive sensitization with anti-OVA IgG1 but not IgG2a or IgG3 was similarly associated with development of skin test reactivity and increased AR after airway challenge, accompanied by an increase in eosinophils in bronchoalveolar lavage fluid. These data suggest that IgE/IgG1-mediated reactions together with local challenge with antigen can result in allergic inflammation resulting in altered airway function.

Full Text

The Full Text of this article is available as a PDF (267K).

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation