Search tips
Search criteria 


Logo of genannJournal InfoAuthorsPermissionsJournals.ASM.orggenomeA ArticleGenome Announcements
Genome Announc. 2016 May-Jun; 4(3): e00617-16.
Published online 2016 June 23. doi:  10.1128/genomeA.00617-16
PMCID: PMC4919416

Draft Genome Sequences of Methanobrevibacter curvatus DSM11111, Methanobrevibacter cuticularis DSM11139, Methanobrevibacter filiformis DSM11501, and Methanobrevibacter oralis DSM7256


Here, the draft genome sequences of four different Methanobrevibacter species are presented. Three of the Methanobrevibacter species (M. curvatus, M. cuticularis, and M. filiformis) have been isolated from the termite hindgut, while M. oralis was isolated from human subgingival plaque.


Methanobacteriales, in particular members of the genera Methanobrevibacter, have been shown to be some of the most abundant methanogenic archaea in various intestinal environments, including the human gut (1), the termite hindgut (2), and the ovine and bovine rumen (3). Recent studies have indicated that Methanobrevibacter species may not only be contributing to greenhouse gas emissions from farm animals (4, 5), but may also have effects on human physiology and health (6, 7). It is therefore of great interest to gain a better understanding of how different Methanobrevibacter species have adapted to specific host environments at the molecular level. Genome sequences of Methanobrevibacter species have been obtained so far for strains from the human intestinal tract and the rumen (8,12), but not from any insect guts or the human oral cavity. Methanobrevibacter oralis DSM7256, isolated from the human subgingival plaque (13), is also the first sequenced representative of all human oral methanogens.

Genomic DNA was ordered by the DSMZ (Braunschweig) or was isolated using the MasterPure complete DNA purification kit (Epicentre, Madison, WI, USA). The extracted DNA was used to generate Illumina-shotgun libraries according to the manufacturer’s protocol (Illumina, San Diego, CA, USA). Sequencing was conducted using a MiSeq and MiSeq reagent kit v3 (2 × 300 bp paired end) as recommended by the manufacturer (Illumina). Sequencing resulted in 1,934,710 (M. filiformis), 1,983,778 (M. oralis), 3,298,762 (M. curvatus), and 3,533,158 paired end reads (M. cuticularis), respectively. Trimmomatic 0.32 (14) was used to filter low-quality reads and for clipping of adapter contaminations. The assembly was performed with the SPAdes genome assembler software 3.6.2 (15). Coverages were determined using QualiMap version 2.1 (15, 16) and automatic annotation was performed using the software tool PROKKA (17). General genome features are listed in Table 1.

Genome features and GenBank accession numbers of sequenced strains

Sequencing the genomes of the four different Methanobrevibacter genomes provides reference sequences for comparative analyses with other Methanobrevibacter genomes and may reveal adaptive traits of Methanobrevibacter species to different environments. Some characteristic features and differences between Methanobrevibacter species are already apparent from formal description of the type strains, e.g., presence of catalase activity in the three Methanobrevibacter species from the termite hindgut (18, 19). The genome sequences allow the identification of the potential molecular basis of this enzyme activity: A monofunctional heme-depended catalase similar to the enzyme purified from M. arboriphilus (20). The gene encoding this enzyme is present in each of the genomes of the three Methanobrevibacter species isolated from the termite hindgut, but appears to be absent from the genome of M. oralis.

Nucleotide sequence accession numbers.

These whole-genome shotgun projects have been deposited at DDBJ/EMBL/GenBank under the accession numbers listed in Table 1. The versions described here are the first versions.


We thank Kathleen Gollnow for technical support.


Citation Poehlein A, Seedorf H. 2016. Draft genome sequences of Methanobrevibacter curvatus DSM11111, Methanobrevibacter cuticularis DSM11139, Methanobrevibacter filiformis DSM11501, and Methanobrevibacter oralis DSM7256. Genome Announc 4(3):e00617-16. doi:10.1128/genomeA.00617-16.


1. Dridi B, Henry M, El Khéchine A, Raoult D, Drancourt M 2009. High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol. PLoS One 4:e7063. doi:.10.1371/journal.pone.0007063 [PMC free article] [PubMed] [Cross Ref]
2. Ohkuma M, Noda S, Kudo T 1999. Phylogenetic relationships of symbiotic methanogens in diverse termites. FEMS Microbiol Lett 171:147–153. doi:.10.1111/j.1574-6968.1999.tb13425.x [PubMed] [Cross Ref]
3. Janssen PH, Kirs M 2008. Structure of the archaeal community of the rumen. Appl Environ Microbiol 74:3619–3625. doi:.10.1128/AEM.02812-07 [PMC free article] [PubMed] [Cross Ref]
4. Seedorf H, Kittelmann S, Henderson G, Janssen PH 2014. Rim-DB: a taxonomic framework for community structure analysis of methanogenic archaea from the rumen and other intestinal environments. PeerJ 2:e494. doi:.10.7717/peerj.494 [PMC free article] [PubMed] [Cross Ref]
5. Shi W, Moon CD, Leahy SC, Kang D, Froula J, Kittelmann S, Fan C, Deutsch S, Gagic D, Seedorf H, Kelly WJ, Atua R, Sang C, Soni P, Li D, Pinares-Patiño CS, McEwan JC, Janssen PH, Chen F, Visel A, Wang Z, Attwood GT, Rubin EM 2014. Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome. Genome Res 24:1517–1525. doi:.10.1101/gr.168245.113 [PubMed] [Cross Ref]
6. Lepp PW, Brinig MM, Ouverney CC, Palm K, Armitage GC, Relman DA 2004. Methanogenic Archaea and human periodontal disease. Proc Natl Acad Sci USA 101:6176–6181. doi:.10.1073/pnas.0308766101 [PubMed] [Cross Ref]
7. Million M, Maraninchi M, Henry M, Armougom F, Richet H, Carrieri P, Valero R, Raccah D, Vialettes B, Raoult D 2012. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int J Obes 36:817–825. doi:.10.1038/ijo.2011.153 [PMC free article] [PubMed] [Cross Ref]
8. Leahy SC, Kelly WJ, Altermann E, Ronimus RS, Yeoman CJ, Pacheco DM, Li D, Kong Z, McTavish S, Sang C, Lambie SC, Janssen PH, Dey D, Attwood GT 2010. The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS One 5:e8926. doi:.10.1371/journal.pone.0008926 [PMC free article] [PubMed] [Cross Ref]
9. Hansen EE, Lozupone CA, Rey FE, Wu M, Guruge JL, Narra A, Goodfellow J, Zaneveld JR, McDonald DT, Goodrich JA, Heath AC, Knight R, Gordon JI 2011. Pan-genome of the dominant human gut-associated archaeon, Methanobrevibacter smithii, studied in twins. Proc Natl Acad Sci USA 108:4599–4606. doi:.10.1073/pnas.1000071108 [PubMed] [Cross Ref]
10. Leahy SC, Kelly WJ, Li D, Li Y, Altermann E, Lambie SC, Cox F, Attwood GT 2013. The complete genome sequence of Methanobrevibacter sp. AbM4. Stand Genomic Sci 8:215–227. doi:.10.4056/sigs.3977691 [PMC free article] [PubMed] [Cross Ref]
11. Lee J-H, Rhee M-S, Kumar S, Lee G-H, Chang D-H, Kim D-S, Choi S-H, Lee D-W, Yoon M-H, Kim B-C 2013. Genome sequence of Methanobrevibacter sp. strain JH1, isolated from rumen of Korean native cattle. Genome Announc 1(1):e00002-13. doi:.10.1128/genomeA.00002-13 [PMC free article] [PubMed] [Cross Ref]
12. Kelly WJ, Li D, Lambie SC, Cox F, Attwood GT, Altermann E, Leahy SC 2016. Draft genome sequence of the rumen methanogen Methanobrevibacter olleyae YLM1. Genome Announc 4(2):e00232-00216. doi:.10.1128/genomeA.00232-16 [PMC free article] [PubMed] [Cross Ref]
13. Ferrari A, Brusa T, Rutili A, Canzi E, Biavati B 1994. Isolation and characterization of Methanobrevibacter oralis sp. nov. Curr Microbiol 29:7–12. doi:.10.1007/BF01570184 [Cross Ref]
14. Bolger AM, Lohse M, Usadel B 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi:.10.1093/bioinformatics/btu170 [PMC free article] [PubMed] [Cross Ref]
15. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. doi:.10.1089/cmb.2012.0021 [PMC free article] [PubMed] [Cross Ref]
16. García-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Götz S, Tarazona S, Dopazo J, Meyer TF, Conesa A 2012. Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics 28:2678–2679. doi:.10.1093/bioinformatics/bts503 [PubMed] [Cross Ref]
17. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. doi:.10.1093/bioinformatics/btu153 [PubMed] [Cross Ref]
18. Leadbetter JR, Breznak JA 1996. Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62:3620–3631. [PMC free article] [PubMed]
19. Leadbetter JR, Crosby LD, Breznak JA 1998. Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts. Arch Microbiol 169:287–292. doi:.10.1007/s002030050574 [PubMed] [Cross Ref]
20. Shima S, Sordel-Klippert M, Brioukhanov A, Netrusov A, Linder D, Thauer RK 2001. Characterization of a heme-dependent catalase from Methanobrevibacter arboriphilus. Appl Environ Microbiol 67:3041–3045. doi:.10.1128/AEM.67.7.3041-3045.2001 [PMC free article] [PubMed] [Cross Ref]

Articles from Genome Announcements are provided here courtesy of American Society for Microbiology (ASM)