PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actae2this articlesearchopen accesssubmitActa Crystallographica Section E: Crystallographic CommunicationsActa Crystallographica Section E: Crystallographic Communications
 
Acta Crystallogr E Crystallogr Commun. 2016 April 1; 72(Pt 4): 456–459.
Published online 2016 March 4. doi:  10.1107/S205698901600356X
PMCID: PMC4910319

Crystal structure of trans-diammine(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4 N)chromium(III) tetra­chlorido­zincate chloride monohydrate from synchrotron data

Abstract

The asymmetric unit of the title complex salt, [Cr(C10H24N4)(NH3)2][ZnCl4]Cl·H2O, is comprised of four halves of the CrIII complex cations (the counterparts being generated by application of inversion symmetry), two tetra­chlorido­zincate anions, two chloride anions and two water mol­ecules. Each CrIII ion is coordinated by the four N atoms of the cyclam (1,4,8,11-tetra­aza­cyclo­tetra­deca­ne) ligand in the equatorial plane and by two N atoms of ammine ligands in axial positions, displaying an overall distorted octa­hedral coordination environment. The Cr—N(cyclam) bond lengths range from 2.0501 (15) to 2.0615 (15) Å, while the Cr—(NH3) bond lengths range from 2.0976 (13) to 2.1062 (13) Å. The macrocyclic cyclam moieties adopt the trans-III conformation with six- and five-membered chelate rings in chair and gauche conformations. The [ZnCl4]2− anions have a slightly distorted tetra­hedral shape. In the crystal, the Cl anions link the complex cations, as well as the solvent water mol­ecules, through N—H(...)Cl and O—H(...)Cl hydrogen-bonding inter­actions. The supra­molecular set-up also includes N—H(...)Cl, C—H(...)Cl, N—H(...)O and O—H(...)Cl hydrogen bonding between N—H or C—H groups of cyclam, ammine N—H and water O—H donor groups, and O atoms of the water mol­ecules, Cl anions or Cl atoms of the [ZnCl4]2− anions as acceptors, leading to a three-dimensional network structure.

Keywords: crystal structure, cyclam, ammine ligand, tetra­chlorido­zincate chloride double salt, trans-III conformation, chromium(III) complex

Chemical context  

The cyclam macrocycle (1,4,8,11-tetra­aza­cyclo­tetra­decane, C10H24N4) can adopt both planar (trans) and folded (cis) configurations (Poon & Pun, 1980  ). There are five conformational trans isomers for the macrocycle, which differ in the chirality of the sec-NH groups (Choi, 2009  ). The trans-I, trans-II and trans-V conformations can fold to form cis-I, cis-II and cis-V isomers, respectively (Subhan et al., 2011  ). Recently, it has been reported that cyclam derivatives and their metal complexes exhibit anti-HIV activity (Ronconi & Sadler, 2007  ; De Clercq, 2010  ; Ross et al., 2012  ) whereby the strength of binding to the CXCR4 receptor correlates with the anti-HIV activity. The conformation of the macrocyclic ligand and the orientations of the N—H bonds are very important factors for co-receptor recognition. Therefore, a deeper knowledge of the conformation and crystal packing of metal complexes containing the cyclam ligand has become important in the development of new highly effective anti-HIV drugs that specifially target alternative events in the HIV replicative cycle (De Clercq, 2010  ). In addition, counter-anionic species play an important role in chemistry, pharmacy and biology (Flores-Velez et al., 1991  ; Fabbrizzi & Poggi, 2013  ). As part of a study on the structural and supra­molecular features of chromium(III) complex cations with a macrocyclic ligand and with different anions, we report here the structural characterization of trans-[Cr(NH3)2(cyclam)][ZnCl4]Cl·H2O, (I).

An external file that holds a picture, illustration, etc.
Object name is e-72-00456-scheme1.jpg

Structural commentary  

Compound (I) is another example containing a trans-[Cr(NH3)2(cyclam)]3+ moiety but with a different double counter-anion (Derwahl et al., 1999  ). The asymmetric unit of (I) comprises four halves of the CrIII complex cations, two tetra­chlorido­zincate anions, two chloride anions and two water mol­ecules. The four Cr atoms are located on crystallographic centers of symmetry. Since the complex cations have mol­ecular Ci symmetry, the cyclam ligand has a trans-III conformation (Fig. 1  ). In each of the complex cations, the CrIII ion is coordinated by the nitro­gen atoms of the cyclam ligand occupying the equatorial sites. Two ammine ligands complete the distorted trans-configured octa­hedral coordination sphere at the axial positions. The Cr—N bond lengths including the donor atoms of the cyclam ligand range from 2.0501 (15) to 2.0615 (15) Å, comparable to those determined for trans-[CrCl2(cyclam)]2[ZnCl4] (Flores-Velez et al., 1991  ), trans-[Cr(nic-O)2(cyclam)]ClO4 (nic-O = O-coordinating nicotinate; Choi, 2009  ), trans-[CrF2(2,2,3-tet)]ClO4 (2,2,3-tet = 1,4,7,11-tetra­aza­undecane; Choi & Moon, 2014  ), [Cr(ox)(cyclam)]ClO4 (ox = oxalate; Choi et al., 2004  ) or [Cr(acac)(cyclam)](ClO4)2·0.5H2O (acac = acetyl­acetonate; Subhan et al., 2011  ). However, the Cr—N bond lengths of the secondary amine group of the cyclam ligands are slightly shorter than those of the primary amine group as determined for trans-[CrCl2(Me2tn)2]2ZnCl4 (Me2tn = 2,2-di­methyl­propane-1,3-di­amine; Choi et al., 2011  ), trans-[Cr(N3)2(Me2tn)2]ClO4·2H2O (Moon & Choi, 2015  ), or trans-[Cr(NCS)2(Me2tn)2]SCN·0.5H2O (Choi & Lee, 2009  ). The Cr—(NH3) bond lengths range from 2.0976 (13) to 2.1062 (13) Å, similar to the average value of 2.095 (3) Å found in trans-[Cr(NH3)2(cyclam)](ClO4)Cl2 (Derwahl et al., 1999  ). The five-membered chelate rings of the cyclam ligands adopt gauche and six-membered ring chair conformations. The tetra­hedral [ZnCl4]2− anion is distorted due to its involvement in hydrogen-bonding inter­actions. It exhibits Zn—Cl bond lengths ranging from 2.2238 (10) to 2.3232 (8) Å and Cl—Zn—Cl angles from 105.67 (3) to 115.38 (3)°.

Figure 1
The mol­ecular structures (drawn with displacement ellipsoids at the 50% probability level) of one independent chromium(III) complex cation, one tetra­chlorido­zincate anion, one chloride anion and one water mol­ecule in ...

Supra­molecular features  

In the crystal, the complex cations are stacked parallel to the a-axis direction. A series of N—H(...)Cl and C—H(...)Cl hydrogen bonds link the cations to neighboring anions. An extensive array of additional N—H(...)O and O—H(...)Cl contacts including the lattice water mol­ecule generates a three-dimensional network (Table 1  , Fig. 2  ).

Figure 2
The crystal packing in compound (I), viewed perpendicular to the bc plane. Dashed lines represent hydrogen bonding inter­actions N—H(...)Cl (cyan), N—H(...)O (red) and O—H(...)Cl (purple), respectively. H atoms ...
Table 1
Hydrogen-bond geometry (Å, °)

Database survey  

A search in the Cambridge Structural Database (Version 5.36, last update May 2015; Groom & Allen, 2014  ) gave just one hit for a [Cr(NH3)2(cyclam)]3+ unit, viz. the crystal structure of trans-[Cr(NH3)2(cyclam)](ClO4)Cl2 (Derwahl et al., 1999  ). This dichloride perchlorate double salt and the title compound show the same trans-III conformation of the cyclam ligand, however with different hydrogen-bonding and crystal packing networks. The crystal structure of cis-[Cr(NH3)2(cyclam)]I3·H2O was also found (Kukina et al., 1991  ), but no structure of any double salt of trans-[Cr(NH3)2(cyclam)]3+ with an additional [ZnCl4]2− anion.

Synthesis and crystallization  

Cyclam and CrCl3(THF)3 were purchased from Stream Chemicals and used as provided. All chemicals were reagent grade materials and used without further purification. The starting material, trans-[Cr(NH3)2(cyclam)](PF6)(NO3)·0.5H2O, was prepared according to a previously described procedure (Kane-Maguire et al., 1985  ). The hexa­fluorido­phosphate nitrate double salt (0.042 g) was dissolved in 5 ml of 0.01 M HCl and added to 2 ml of 1 M HCl containing 0.12 g of solid ZnCl2. The resulting solution was filtered and allowed to stand at room temperature for five days to give block-like yellow crystals of (I) suitable for X-ray structural analysis.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2  . All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.98 Å and N—H = 0.90–0.99 Å and with U iso(H) values of 1.2 or 1.5 U eq of the parent atoms. The hydrogen atoms of water mol­ecules were located in difference maps and restrained with O—H = 0.84 Å using DFIX and DANG commands (Sheldrick, 2015b  ).

Table 2
Experimental details

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901600356X/wm5272sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901600356X/wm5272Isup2.hkl

CCDC reference: 1456673

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a grant from 2016 Research Funds of Andong National University. The X-ray crystallography experiment at the PLS-II BL2D-SMC beamline was supported in part by MSIP and POSTECH.

supplementary crystallographic information

Crystal data

[Cr(C10H24N4)(NH3)2][ZnCl4]Cl·H2OZ = 4
Mr = 547F(000) = 1124
Triclinic, P1Dx = 1.640 Mg m3
a = 9.3980 (19) ÅSynchrotron radiation, λ = 0.620 Å
b = 14.876 (3) ÅCell parameters from 76389 reflections
c = 17.981 (4) Åθ = 0.4–33.6°
α = 66.03 (3)°µ = 1.50 mm1
β = 76.03 (3)°T = 243 K
γ = 78.74 (3)°Block, yellow
V = 2215.6 (10) Å30.11 × 0.08 × 0.04 mm

Data collection

ADSC Q210 CCD area-detector diffractometer11123 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.029
ω scanθmax = 26.0°, θmin = 1.1°
Absorption correction: empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)h = −13→13
Tmin = 0.850, Tmax = 0.938k = −21→21
23883 measured reflectionsl = −25→25
12905 independent reflections

Refinement

Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084w = 1/[σ2(Fo2) + (0.0513P)2 + 0.1347P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
12905 reflectionsΔρmax = 0.66 e Å3
455 parametersΔρmin = −0.76 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cr1A0.00000.50001.00000.00997 (6)
N1A−0.05398 (13)0.36162 (9)1.01590 (7)0.0164 (2)
H1NA0.02930.32051.01250.025*
H2NA−0.10310.36950.97610.025*
H3NA−0.11110.33581.06580.025*
N2A0.17264 (13)0.42870 (9)1.06157 (7)0.0167 (2)
H1A0.17900.35821.06950.020*
N3A0.12143 (13)0.51146 (9)0.88534 (7)0.0157 (2)
H2A0.12190.44740.88060.019*
C1A0.12606 (17)0.43212 (12)1.14593 (9)0.0227 (3)
H1A10.13850.49711.14380.027*
H1A20.18700.38151.18380.027*
C2A0.32146 (16)0.46018 (12)1.01888 (10)0.0238 (3)
H2A10.39460.41811.05280.029*
H2A20.32300.52861.01270.029*
C3A0.36314 (16)0.45343 (13)0.93376 (11)0.0273 (3)
H3A10.46860.46050.91360.033*
H3A20.34830.38710.94000.033*
C4A0.27855 (16)0.52922 (12)0.86811 (9)0.0238 (3)
H4A10.28320.59560.86560.029*
H4A20.32570.52670.81400.029*
C5A0.03428 (17)0.58654 (12)0.82368 (8)0.0218 (3)
H5A10.06930.58100.76960.026*
H5A20.04570.65330.81770.026*
Cr2B0.50000.50000.50000.01185 (6)
N1B0.30918 (13)0.57334 (9)0.54783 (7)0.0188 (2)
H1NB0.24100.53070.57610.028*
H2NB0.27310.62390.50600.028*
H3NB0.33150.59690.58200.028*
N2B0.44033 (14)0.36582 (9)0.58615 (8)0.0204 (2)
H1B0.52530.31620.58120.024*
N3B0.62099 (14)0.51975 (10)0.57270 (8)0.0218 (2)
H2B0.71780.48030.56660.026*
C1B0.3178 (2)0.34242 (13)0.55956 (12)0.0317 (4)
H1B10.22420.37730.57680.038*
H1B20.30950.27120.58560.038*
C2B0.40555 (19)0.35503 (13)0.67422 (10)0.0299 (4)
H2B10.38510.28690.70920.036*
H2B20.31630.39900.68280.036*
C3B0.5303 (2)0.37936 (14)0.70072 (10)0.0318 (4)
H3B10.62060.33890.68730.038*
H3B20.50790.35910.76100.038*
C4B0.5622 (2)0.48701 (14)0.66301 (10)0.0300 (4)
H4B10.47120.52910.67250.036*
H4B20.63410.49500.69070.036*
C5B0.6501 (2)0.62542 (13)0.53436 (12)0.0315 (4)
H5B10.73470.63350.55310.038*
H5B20.56400.66670.55110.038*
Cr3C0.50001.00000.00000.01576 (6)
N1C0.54753 (15)0.84509 (9)0.04233 (8)0.0240 (3)
H1NC0.46280.81700.05950.036*
H2NC0.59660.82400.08470.036*
H3NC0.60360.82800.00090.036*
N2C0.63796 (15)1.01044 (11)0.06889 (8)0.0256 (3)
H1C0.62181.08010.06450.031*
N3C0.31688 (15)0.98526 (10)0.09225 (8)0.0243 (3)
H2C0.27941.05270.09130.029*
C1C0.79153 (19)0.99551 (16)0.02512 (12)0.0362 (4)
H1C10.82240.92460.03880.043*
H1C20.85901.02220.04290.043*
C2C0.6153 (2)0.94799 (15)0.15942 (11)0.0342 (4)
H2C10.67990.96570.18560.041*
H2C20.64320.87830.16690.041*
C3C0.4561 (2)0.96092 (15)0.20207 (10)0.0352 (4)
H3C10.45200.92710.26190.042*
H3C20.42781.03160.19080.042*
C4C0.3413 (2)0.92345 (13)0.17816 (10)0.0323 (4)
H4C10.37380.85500.18270.039*
H4C20.24790.92380.21680.039*
C5C0.20231 (19)0.95212 (15)0.06752 (12)0.0338 (4)
H5C10.10450.96760.09700.041*
H5C20.21980.88030.08220.041*
Cr4D0.00000.00000.50000.00919 (6)
N1D0.22787 (12)−0.04570 (9)0.48598 (7)0.0160 (2)
H1ND0.2753−0.00020.44100.024*
H2ND0.2450−0.10420.47980.024*
H3ND0.2609−0.05230.53110.024*
N2D0.02941 (13)0.09509 (9)0.55052 (8)0.0177 (2)
H1D−0.06670.13560.55580.021*
N3D0.02438 (12)0.10266 (9)0.38037 (7)0.0155 (2)
H2D−0.07270.14230.37380.019*
C1D0.05317 (18)0.03371 (13)0.63680 (10)0.0255 (3)
H1D10.03370.07520.66950.031*
H1D20.15550.00310.63630.031*
C2D0.13974 (19)0.16666 (12)0.50160 (11)0.0284 (3)
H2D10.23850.13050.49780.034*
H2D20.13820.21080.53010.034*
C3D0.1080 (2)0.22836 (12)0.41438 (12)0.0320 (4)
H3D10.00480.25730.41930.038*
H3D20.16940.28320.38930.038*
C4D0.13418 (17)0.17441 (12)0.35548 (10)0.0264 (3)
H4D10.12810.22290.29940.032*
H4D20.23370.13900.35450.032*
C5D0.05122 (17)0.04541 (12)0.32576 (9)0.0238 (3)
H5D10.15360.01490.32130.029*
H5D20.03400.08960.27020.029*
Zn1E0.61151 (2)0.20650 (2)0.29082 (2)0.02403 (5)
Cl1E0.53804 (5)0.05903 (4)0.38072 (3)0.04285 (12)
Cl2E0.72540 (4)0.26657 (3)0.35901 (2)0.02630 (8)
Cl3E0.79024 (5)0.18205 (4)0.18756 (3)0.03439 (9)
Cl4E0.43263 (5)0.32125 (4)0.23927 (3)0.04760 (14)
Zn2F0.01806 (2)0.67654 (2)0.21094 (2)0.02221 (5)
Cl1F−0.02844 (7)0.79302 (4)0.26421 (3)0.04689 (13)
Cl2F0.00187 (5)0.52354 (3)0.31592 (2)0.02954 (8)
Cl3F−0.16681 (4)0.70070 (3)0.13702 (2)0.02651 (8)
Cl4F0.23650 (5)0.67718 (4)0.12345 (3)0.03785 (10)
Cl1W0.72406 (5)0.20867 (3)0.60004 (2)0.02949 (9)
Cl2W0.20883 (5)0.19663 (3)0.10707 (3)0.03019 (9)
O1W0.09042 (18)0.60251 (13)0.43830 (10)0.0463 (4)
H1O10.103 (3)0.6621 (9)0.4071 (13)0.056*
H2O10.055 (3)0.5784 (17)0.4128 (14)0.056*
O2W0.55603 (19)0.20704 (13)0.07745 (10)0.0473 (4)
H1O20.6248 (18)0.211 (2)0.0971 (15)0.057*
H2O20.4729 (15)0.215 (2)0.1061 (14)0.057*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cr1A0.00887 (12)0.00962 (12)0.00992 (12)−0.00051 (9)−0.00151 (9)−0.00252 (10)
N1A0.0176 (5)0.0146 (5)0.0162 (5)−0.0023 (4)−0.0015 (4)−0.0056 (4)
N2A0.0132 (5)0.0156 (5)0.0202 (5)0.0000 (4)−0.0071 (4)−0.0043 (5)
N3A0.0147 (5)0.0159 (5)0.0150 (5)−0.0033 (4)0.0015 (4)−0.0061 (4)
C1A0.0261 (7)0.0253 (7)0.0168 (6)−0.0044 (6)−0.0111 (5)−0.0031 (6)
C2A0.0131 (6)0.0249 (7)0.0320 (8)−0.0014 (5)−0.0076 (5)−0.0078 (6)
C3A0.0127 (6)0.0316 (8)0.0361 (8)0.0008 (6)0.0006 (6)−0.0155 (7)
C4A0.0163 (6)0.0289 (8)0.0241 (7)−0.0065 (5)0.0062 (5)−0.0117 (6)
C5A0.0280 (7)0.0240 (7)0.0113 (6)−0.0066 (6)−0.0044 (5)−0.0021 (5)
Cr2B0.01081 (12)0.01190 (13)0.01273 (13)−0.00091 (10)0.00002 (10)−0.00589 (11)
N1B0.0173 (5)0.0188 (6)0.0183 (5)0.0006 (4)0.0005 (4)−0.0081 (5)
N2B0.0189 (6)0.0160 (6)0.0209 (6)−0.0024 (4)0.0027 (4)−0.0048 (5)
N3B0.0206 (6)0.0259 (6)0.0243 (6)−0.0011 (5)−0.0058 (5)−0.0147 (5)
C1B0.0276 (8)0.0266 (8)0.0400 (9)−0.0135 (6)0.0015 (7)−0.0115 (7)
C2B0.0306 (8)0.0269 (8)0.0184 (7)0.0007 (6)0.0054 (6)−0.0018 (6)
C3B0.0370 (9)0.0351 (9)0.0174 (7)0.0065 (7)−0.0056 (6)−0.0081 (7)
C4B0.0353 (9)0.0363 (9)0.0230 (7)0.0062 (7)−0.0104 (6)−0.0175 (7)
C5B0.0338 (9)0.0286 (8)0.0420 (10)−0.0100 (7)−0.0075 (7)−0.0199 (8)
Cr3C0.01463 (14)0.01256 (14)0.01522 (14)0.00175 (11)−0.00218 (11)−0.00211 (11)
N1C0.0272 (6)0.0172 (6)0.0221 (6)0.0031 (5)−0.0050 (5)−0.0042 (5)
N2C0.0237 (6)0.0261 (7)0.0250 (6)−0.0005 (5)−0.0076 (5)−0.0069 (6)
N3C0.0221 (6)0.0203 (6)0.0228 (6)0.0000 (5)0.0018 (5)−0.0048 (5)
C1C0.0201 (7)0.0428 (11)0.0411 (10)0.0004 (7)−0.0091 (7)−0.0111 (9)
C2C0.0407 (10)0.0337 (9)0.0252 (8)0.0004 (8)−0.0146 (7)−0.0051 (7)
C3C0.0482 (11)0.0321 (9)0.0191 (7)−0.0011 (8)−0.0037 (7)−0.0061 (7)
C4C0.0388 (9)0.0270 (8)0.0192 (7)−0.0024 (7)0.0040 (6)−0.0024 (6)
C5C0.0198 (7)0.0373 (10)0.0372 (9)−0.0077 (7)0.0014 (6)−0.0087 (8)
Cr4D0.00721 (11)0.00831 (12)0.01150 (12)−0.00106 (9)−0.00070 (9)−0.00365 (10)
N1D0.0103 (5)0.0159 (5)0.0192 (5)−0.0007 (4)−0.0014 (4)−0.0050 (4)
N2D0.0163 (5)0.0159 (5)0.0249 (6)−0.0011 (4)−0.0047 (4)−0.0116 (5)
N3D0.0123 (5)0.0140 (5)0.0156 (5)−0.0012 (4)−0.0018 (4)−0.0015 (4)
C1D0.0275 (7)0.0327 (8)0.0244 (7)0.0014 (6)−0.0093 (6)−0.0183 (7)
C2D0.0268 (8)0.0224 (7)0.0427 (9)−0.0117 (6)−0.0071 (7)−0.0145 (7)
C3D0.0342 (9)0.0152 (7)0.0440 (10)−0.0122 (6)−0.0086 (7)−0.0037 (7)
C4D0.0209 (7)0.0220 (7)0.0255 (7)−0.0094 (6)−0.0011 (6)0.0032 (6)
C5D0.0231 (7)0.0316 (8)0.0140 (6)0.0018 (6)−0.0018 (5)−0.0090 (6)
Zn1E0.01617 (8)0.02918 (10)0.01970 (9)−0.00577 (7)−0.00537 (6)0.00052 (7)
Cl1E0.02366 (19)0.0392 (2)0.0439 (3)−0.01488 (18)−0.00507 (17)0.0108 (2)
Cl2E0.02669 (18)0.02502 (18)0.02753 (18)0.00389 (14)−0.01067 (14)−0.01004 (15)
Cl3E0.0306 (2)0.0393 (2)0.02640 (19)−0.00741 (17)0.00146 (15)−0.00763 (18)
Cl4E0.02096 (19)0.0463 (3)0.0538 (3)−0.00297 (18)−0.01940 (19)0.0098 (2)
Zn2F0.02487 (9)0.02355 (9)0.02018 (9)−0.00586 (7)0.00014 (6)−0.01115 (7)
Cl1F0.0642 (3)0.0419 (3)0.0483 (3)−0.0180 (2)0.0050 (2)−0.0338 (2)
Cl2F0.0346 (2)0.02632 (19)0.02337 (17)−0.00454 (15)−0.00178 (15)−0.00646 (15)
Cl3F0.02952 (18)0.02757 (18)0.02467 (17)0.00596 (14)−0.00829 (14)−0.01429 (15)
Cl4F0.0297 (2)0.0382 (2)0.0430 (2)−0.01085 (17)0.01168 (17)−0.0196 (2)
Cl1W0.0332 (2)0.02203 (17)0.02665 (18)0.01129 (15)−0.00334 (15)−0.01016 (15)
Cl2W0.0311 (2)0.01957 (17)0.0317 (2)0.00488 (14)−0.00070 (15)−0.00768 (15)
O1W0.0420 (8)0.0565 (10)0.0491 (9)0.0026 (7)−0.0231 (7)−0.0239 (8)
O2W0.0468 (9)0.0571 (10)0.0496 (9)−0.0097 (8)−0.0099 (7)−0.0294 (8)

Geometric parameters (Å, º)

Cr1A—N2Ai2.0553 (13)N1C—H1NC0.9000
Cr1A—N2A2.0553 (13)N1C—H2NC0.9000
Cr1A—N3Ai2.0582 (13)N1C—H3NC0.9000
Cr1A—N3A2.0582 (13)N2C—C1C1.490 (2)
Cr1A—N1A2.1062 (13)N2C—C2C1.496 (2)
Cr1A—N1Ai2.1062 (13)N2C—H1C0.9900
N1A—H1NA0.9000N3C—C5C1.489 (2)
N1A—H2NA0.9000N3C—C4C1.490 (2)
N1A—H3NA0.9000N3C—H2C0.9900
N2A—C2A1.4866 (19)C1C—C5Ciii1.517 (3)
N2A—C1A1.4928 (19)C1C—H1C10.9800
N2A—H1A0.9900C1C—H1C20.9800
N3A—C4A1.4869 (19)C2C—C3C1.522 (3)
N3A—C5A1.491 (2)C2C—H2C10.9800
N3A—H2A0.9900C2C—H2C20.9800
C1A—C5Ai1.513 (2)C3C—C4C1.521 (3)
C1A—H1A10.9800C3C—H3C10.9800
C1A—H1A20.9800C3C—H3C20.9800
C2A—C3A1.525 (2)C4C—H4C10.9800
C2A—H2A10.9800C4C—H4C20.9800
C2A—H2A20.9800C5C—C1Ciii1.517 (3)
C3A—C4A1.523 (2)C5C—H5C10.9800
C3A—H3A10.9800C5C—H5C20.9800
C3A—H3A20.9800Cr4D—N2Div2.0544 (12)
C4A—H4A10.9800Cr4D—N2D2.0544 (12)
C4A—H4A20.9800Cr4D—N3D2.0593 (14)
C5A—C1Ai1.513 (2)Cr4D—N3Div2.0593 (14)
C5A—H5A10.9800Cr4D—N1Div2.1029 (12)
C5A—H5A20.9800Cr4D—N1D2.1029 (12)
Cr2B—N2Bii2.0501 (15)N1D—H1ND0.9000
Cr2B—N2B2.0502 (15)N1D—H2ND0.9000
Cr2B—N3B2.0611 (13)N1D—H3ND0.9000
Cr2B—N3Bii2.0611 (13)N2D—C2D1.487 (2)
Cr2B—N1B2.0976 (13)N2D—C1D1.492 (2)
Cr2B—N1Bii2.0977 (13)N2D—H1D0.9900
N1B—H1NB0.9000N3D—C4D1.491 (2)
N1B—H2NB0.9000N3D—C5D1.4932 (19)
N1B—H3NB0.9000N3D—H2D0.9900
N2B—C2B1.485 (2)C1D—C5Div1.513 (2)
N2B—C1B1.494 (2)C1D—H1D10.9800
N2B—H1B0.9900C1D—H1D20.9800
N3B—C4B1.486 (2)C2D—C3D1.530 (3)
N3B—C5B1.489 (2)C2D—H2D10.9800
N3B—H2B0.9900C2D—H2D20.9800
C1B—C5Bii1.525 (3)C3D—C4D1.521 (3)
C1B—H1B10.9800C3D—H3D10.9800
C1B—H1B20.9800C3D—H3D20.9800
C2B—C3B1.519 (3)C4D—H4D10.9800
C2B—H2B10.9800C4D—H4D20.9800
C2B—H2B20.9800C5D—C1Div1.513 (2)
C3B—C4B1.524 (3)C5D—H5D10.9800
C3B—H3B10.9800C5D—H5D20.9800
C3B—H3B20.9800Zn1E—Cl4E2.2238 (10)
C4B—H4B10.9800Zn1E—Cl1E2.2523 (11)
C4B—H4B20.9800Zn1E—Cl3E2.2817 (9)
C5B—C1Bii1.525 (3)Zn1E—Cl2E2.3118 (7)
C5B—H5B10.9800Zn2F—Cl1F2.2275 (7)
C5B—H5B20.9800Zn2F—Cl4F2.2640 (9)
Cr3C—N3Ciii2.0579 (15)Zn2F—Cl2F2.2960 (11)
Cr3C—N3C2.0579 (15)Zn2F—Cl3F2.3232 (8)
Cr3C—N2Ciii2.0615 (15)O1W—H1O10.848 (9)
Cr3C—N2C2.0615 (15)O1W—H2O10.836 (9)
Cr3C—N1C2.1039 (14)O2W—H1O20.832 (9)
Cr3C—N1Ciii2.1039 (14)O2W—H2O20.843 (9)
N2Ai—Cr1A—N2A180.0N3C—Cr3C—N1C90.06 (6)
N2Ai—Cr1A—N3Ai94.49 (5)N2Ciii—Cr3C—N1C88.08 (6)
N2A—Cr1A—N3Ai85.51 (5)N2C—Cr3C—N1C91.92 (6)
N2Ai—Cr1A—N3A85.51 (5)N3Ciii—Cr3C—N1Ciii90.05 (6)
N2A—Cr1A—N3A94.49 (5)N3C—Cr3C—N1Ciii89.94 (6)
N3Ai—Cr1A—N3A180.00 (4)N2Ciii—Cr3C—N1Ciii91.92 (6)
N2Ai—Cr1A—N1A90.76 (5)N2C—Cr3C—N1Ciii88.08 (6)
N2A—Cr1A—N1A89.24 (5)N1C—Cr3C—N1Ciii180.00 (8)
N3Ai—Cr1A—N1A91.07 (6)Cr3C—N1C—H1NC109.5
N3A—Cr1A—N1A88.93 (6)Cr3C—N1C—H2NC109.5
N2Ai—Cr1A—N1Ai89.24 (5)H1NC—N1C—H2NC109.5
N2A—Cr1A—N1Ai90.76 (5)Cr3C—N1C—H3NC109.5
N3Ai—Cr1A—N1Ai88.93 (6)H1NC—N1C—H3NC109.5
N3A—Cr1A—N1Ai91.07 (6)H2NC—N1C—H3NC109.5
N1A—Cr1A—N1Ai180.00 (6)C1C—N2C—C2C113.16 (14)
Cr1A—N1A—H1NA109.5C1C—N2C—Cr3C106.52 (11)
Cr1A—N1A—H2NA109.5C2C—N2C—Cr3C117.72 (12)
H1NA—N1A—H2NA109.5C1C—N2C—H1C106.2
Cr1A—N1A—H3NA109.5C2C—N2C—H1C106.2
H1NA—N1A—H3NA109.5Cr3C—N2C—H1C106.2
H2NA—N1A—H3NA109.5C5C—N3C—C4C113.35 (14)
C2A—N2A—C1A114.29 (12)C5C—N3C—Cr3C107.00 (10)
C2A—N2A—Cr1A117.18 (9)C4C—N3C—Cr3C116.36 (11)
C1A—N2A—Cr1A106.44 (9)C5C—N3C—H2C106.5
C2A—N2A—H1A106.0C4C—N3C—H2C106.5
C1A—N2A—H1A106.0Cr3C—N3C—H2C106.5
Cr1A—N2A—H1A106.0N2C—C1C—C5Ciii109.33 (14)
C4A—N3A—C5A113.52 (12)N2C—C1C—H1C1109.8
C4A—N3A—Cr1A117.51 (9)C5Ciii—C1C—H1C1109.8
C5A—N3A—Cr1A106.14 (9)N2C—C1C—H1C2109.8
C4A—N3A—H2A106.3C5Ciii—C1C—H1C2109.8
C5A—N3A—H2A106.3H1C1—C1C—H1C2108.3
Cr1A—N3A—H2A106.3N2C—C2C—C3C112.24 (15)
N2A—C1A—C5Ai108.42 (12)N2C—C2C—H2C1109.2
N2A—C1A—H1A1110.0C3C—C2C—H2C1109.2
C5Ai—C1A—H1A1110.0N2C—C2C—H2C2109.2
N2A—C1A—H1A2110.0C3C—C2C—H2C2109.2
C5Ai—C1A—H1A2110.0H2C1—C2C—H2C2107.9
H1A1—C1A—H1A2108.4C4C—C3C—C2C116.90 (15)
N2A—C2A—C3A111.60 (13)C4C—C3C—H3C1108.1
N2A—C2A—H2A1109.3C2C—C3C—H3C1108.1
C3A—C2A—H2A1109.3C4C—C3C—H3C2108.1
N2A—C2A—H2A2109.3C2C—C3C—H3C2108.1
C3A—C2A—H2A2109.3H3C1—C3C—H3C2107.3
H2A1—C2A—H2A2108.0N3C—C4C—C3C111.92 (15)
C4A—C3A—C2A115.86 (13)N3C—C4C—H4C1109.2
C4A—C3A—H3A1108.3C3C—C4C—H4C1109.2
C2A—C3A—H3A1108.3N3C—C4C—H4C2109.2
C4A—C3A—H3A2108.3C3C—C4C—H4C2109.2
C2A—C3A—H3A2108.3H4C1—C4C—H4C2107.9
H3A1—C3A—H3A2107.4N3C—C5C—C1Ciii109.26 (15)
N3A—C4A—C3A112.23 (13)N3C—C5C—H5C1109.8
N3A—C4A—H4A1109.2C1Ciii—C5C—H5C1109.8
C3A—C4A—H4A1109.2N3C—C5C—H5C2109.8
N3A—C4A—H4A2109.2C1Ciii—C5C—H5C2109.8
C3A—C4A—H4A2109.2H5C1—C5C—H5C2108.3
H4A1—C4A—H4A2107.9N2Div—Cr4D—N2D180.0
N3A—C5A—C1Ai108.15 (12)N2Div—Cr4D—N3D85.25 (5)
N3A—C5A—H5A1110.1N2D—Cr4D—N3D94.75 (5)
C1Ai—C5A—H5A1110.1N2Div—Cr4D—N3Div94.76 (5)
N3A—C5A—H5A2110.1N2D—Cr4D—N3Div85.24 (5)
C1Ai—C5A—H5A2110.1N3D—Cr4D—N3Div180.0
H5A1—C5A—H5A2108.4N2Div—Cr4D—N1Div89.83 (5)
N2Bii—Cr2B—N2B180.0N2D—Cr4D—N1Div90.17 (5)
N2Bii—Cr2B—N3B85.91 (6)N3D—Cr4D—N1Div88.87 (6)
N2B—Cr2B—N3B94.09 (6)N3Div—Cr4D—N1Div91.13 (6)
N2Bii—Cr2B—N3Bii94.09 (6)N2Div—Cr4D—N1D90.17 (5)
N2B—Cr2B—N3Bii85.91 (6)N2D—Cr4D—N1D89.83 (5)
N3B—Cr2B—N3Bii180.00 (7)N3D—Cr4D—N1D91.13 (6)
N2Bii—Cr2B—N1B89.22 (6)N3Div—Cr4D—N1D88.87 (6)
N2B—Cr2B—N1B90.78 (6)N1Div—Cr4D—N1D180.0
N3B—Cr2B—N1B91.36 (5)Cr4D—N1D—H1ND109.5
N3Bii—Cr2B—N1B88.64 (5)Cr4D—N1D—H2ND109.5
N2Bii—Cr2B—N1Bii90.78 (6)H1ND—N1D—H2ND109.5
N2B—Cr2B—N1Bii89.22 (6)Cr4D—N1D—H3ND109.5
N3B—Cr2B—N1Bii88.64 (5)H1ND—N1D—H3ND109.5
N3Bii—Cr2B—N1Bii91.36 (5)H2ND—N1D—H3ND109.5
N1B—Cr2B—N1Bii180.00 (6)C2D—N2D—C1D114.07 (12)
Cr2B—N1B—H1NB109.5C2D—N2D—Cr4D117.13 (10)
Cr2B—N1B—H2NB109.5C1D—N2D—Cr4D107.05 (9)
H1NB—N1B—H2NB109.5C2D—N2D—H1D105.9
Cr2B—N1B—H3NB109.5C1D—N2D—H1D105.9
H1NB—N1B—H3NB109.5Cr4D—N2D—H1D105.9
H2NB—N1B—H3NB109.5C4D—N3D—C5D113.03 (12)
C2B—N2B—C1B112.86 (13)C4D—N3D—Cr4D117.41 (10)
C2B—N2B—Cr2B116.96 (11)C5D—N3D—Cr4D106.16 (9)
C1B—N2B—Cr2B106.88 (10)C4D—N3D—H2D106.5
C2B—N2B—H1B106.5C5D—N3D—H2D106.5
C1B—N2B—H1B106.5Cr4D—N3D—H2D106.5
Cr2B—N2B—H1B106.5N2D—C1D—C5Div108.07 (12)
C4B—N3B—C5B112.83 (13)N2D—C1D—H1D1110.1
C4B—N3B—Cr2B117.59 (11)C5Div—C1D—H1D1110.1
C5B—N3B—Cr2B106.77 (10)N2D—C1D—H1D2110.1
C4B—N3B—H2B106.3C5Div—C1D—H1D2110.1
C5B—N3B—H2B106.3H1D1—C1D—H1D2108.4
Cr2B—N3B—H2B106.3N2D—C2D—C3D111.55 (13)
N2B—C1B—C5Bii109.12 (14)N2D—C2D—H2D1109.3
N2B—C1B—H1B1109.9C3D—C2D—H2D1109.3
C5Bii—C1B—H1B1109.9N2D—C2D—H2D2109.3
N2B—C1B—H1B2109.9C3D—C2D—H2D2109.3
C5Bii—C1B—H1B2109.9H2D1—C2D—H2D2108.0
H1B1—C1B—H1B2108.3C4D—C3D—C2D116.59 (14)
N2B—C2B—C3B112.58 (14)C4D—C3D—H3D1108.1
N2B—C2B—H2B1109.1C2D—C3D—H3D1108.1
C3B—C2B—H2B1109.1C4D—C3D—H3D2108.1
N2B—C2B—H2B2109.1C2D—C3D—H3D2108.1
C3B—C2B—H2B2109.1H3D1—C3D—H3D2107.3
H2B1—C2B—H2B2107.8N3D—C4D—C3D111.82 (13)
C2B—C3B—C4B116.95 (15)N3D—C4D—H4D1109.3
C2B—C3B—H3B1108.1C3D—C4D—H4D1109.3
C4B—C3B—H3B1108.1N3D—C4D—H4D2109.3
C2B—C3B—H3B2108.1C3D—C4D—H4D2109.3
C4B—C3B—H3B2108.1H4D1—C4D—H4D2107.9
H3B1—C3B—H3B2107.3N3D—C5D—C1Div108.31 (12)
N3B—C4B—C3B112.03 (13)N3D—C5D—H5D1110.0
N3B—C4B—H4B1109.2C1Div—C5D—H5D1110.0
C3B—C4B—H4B1109.2N3D—C5D—H5D2110.0
N3B—C4B—H4B2109.2C1Div—C5D—H5D2110.0
C3B—C4B—H4B2109.2H5D1—C5D—H5D2108.4
H4B1—C4B—H4B2107.9Cl4E—Zn1E—Cl1E115.38 (3)
N3B—C5B—C1Bii109.08 (13)Cl4E—Zn1E—Cl3E110.99 (3)
N3B—C5B—H5B1109.9Cl1E—Zn1E—Cl3E108.75 (4)
C1Bii—C5B—H5B1109.9Cl4E—Zn1E—Cl2E107.79 (3)
N3B—C5B—H5B2109.9Cl1E—Zn1E—Cl2E107.77 (3)
C1Bii—C5B—H5B2109.9Cl3E—Zn1E—Cl2E105.67 (3)
H5B1—C5B—H5B2108.3Cl1F—Zn2F—Cl4F115.32 (3)
N3Ciii—Cr3C—N3C180.00 (6)Cl1F—Zn2F—Cl2F109.63 (3)
N3Ciii—Cr3C—N2Ciii94.32 (6)Cl4F—Zn2F—Cl2F109.79 (4)
N3C—Cr3C—N2Ciii85.68 (6)Cl1F—Zn2F—Cl3F107.62 (3)
N3Ciii—Cr3C—N2C85.68 (6)Cl4F—Zn2F—Cl3F107.31 (2)
N3C—Cr3C—N2C94.32 (6)Cl2F—Zn2F—Cl3F106.77 (4)
N2Ciii—Cr3C—N2C180.0H1O1—O1W—H2O1107.9 (19)
N3Ciii—Cr3C—N1C89.94 (6)H1O2—O2W—H2O2112.1 (19)
C2A—N2A—C1A—C5Ai171.57 (12)C2C—N2C—C1C—C5Ciii170.49 (16)
Cr1A—N2A—C1A—C5Ai40.59 (14)Cr3C—N2C—C1C—C5Ciii39.61 (18)
C1A—N2A—C2A—C3A179.11 (12)C1C—N2C—C2C—C3C−177.36 (16)
Cr1A—N2A—C2A—C3A−55.38 (15)Cr3C—N2C—C2C—C3C−52.33 (19)
N2A—C2A—C3A—C4A70.45 (18)N2C—C2C—C3C—C4C67.1 (2)
C5A—N3A—C4A—C3A178.01 (12)C5C—N3C—C4C—C3C−178.55 (14)
Cr1A—N3A—C4A—C3A53.37 (15)Cr3C—N3C—C4C—C3C56.74 (17)
C2A—C3A—C4A—N3A−69.39 (18)C2C—C3C—C4C—N3C−69.9 (2)
C4A—N3A—C5A—C1Ai−172.82 (12)C4C—N3C—C5C—C1Ciii−167.98 (14)
Cr1A—N3A—C5A—C1Ai−42.24 (13)Cr3C—N3C—C5C—C1Ciii−38.36 (16)
C2B—N2B—C1B—C5Bii169.01 (14)C2D—N2D—C1D—C5Div−171.39 (12)
Cr2B—N2B—C1B—C5Bii39.06 (15)Cr4D—N2D—C1D—C5Div−40.14 (13)
C1B—N2B—C2B—C3B−179.75 (14)C1D—N2D—C2D—C3D−179.09 (13)
Cr2B—N2B—C2B—C3B−55.15 (16)Cr4D—N2D—C2D—C3D54.77 (16)
N2B—C2B—C3B—C4B68.20 (19)N2D—C2D—C3D—C4D−70.12 (19)
C5B—N3B—C4B—C3B178.83 (14)C5D—N3D—C4D—C3D−177.52 (13)
Cr2B—N3B—C4B—C3B53.86 (17)Cr4D—N3D—C4D—C3D−53.38 (16)
C2B—C3B—C4B—N3B−67.16 (19)C2D—C3D—C4D—N3D69.25 (19)
C4B—N3B—C5B—C1Bii−169.58 (14)C4D—N3D—C5D—C1Div172.59 (12)
Cr2B—N3B—C5B—C1Bii−38.92 (16)Cr4D—N3D—C5D—C1Div42.50 (13)

Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+2, −z; (iv) −x, −y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···AD—HH···AD···AD—H···A
N1A—H1NA···Cl3Fv0.902.803.3602 (16)121
N1A—H1NA···Cl2Wvi0.902.603.3363 (18)140
N1A—H3NA···Cl3Evii0.902.583.384 (2)149
N2A—H1A···Cl2Wvi0.992.203.1754 (15)170
N3A—H2A···Cl3Fv0.992.303.2752 (14)170
C1A—H1A2···Cl4Evi0.982.593.4739 (19)150
N1B—H2NB···Cl1Wii0.902.453.2683 (19)152
N1B—H2NB···O1W0.902.463.034 (2)122
N1B—H3NB···Cl2Eii0.902.573.3556 (15)147
N2B—H1B···Cl1W0.992.203.1704 (17)165
N3B—H2B···O1Wii0.991.982.968 (2)177
N1C—H2NC···Cl3Fviii0.902.683.4211 (19)140
N1C—H3NC···Cl2Wix0.902.383.2673 (17)167
N1C—H3NC···O2Wix0.902.542.975 (2)111
N2C—H1C···O2Wx0.991.962.932 (2)167
N3C—H2C···Cl2Wx0.992.233.2082 (16)171
C5C—H5C2···Cl4F0.982.793.761 (2)174
N1D—H2ND···Cl1Wxi0.902.453.2796 (15)154
N1D—H3ND···Cl1Exi0.902.713.5516 (16)156
N2D—H1D···Cl1Wxii0.992.193.1589 (16)166
N3D—H2D···Cl2Exii0.992.363.3276 (17)166
C1D—H1D1···Cl1Fv0.982.663.6278 (17)168
C1D—H1D2···Cl1Exi0.982.833.803 (2)172
O1W—H1O1···Cl1Wii0.85 (1)2.70 (2)3.341 (2)134 (2)
O1W—H2O1···Cl2F0.84 (1)2.39 (1)3.2066 (17)167 (2)
O2W—H1O2···Cl3E0.83 (1)2.37 (1)3.1763 (19)162 (2)
O2W—H2O2···Cl2W0.84 (1)2.55 (2)3.2009 (19)135 (2)

Symmetry codes: (ii) −x+1, −y+1, −z+1; (v) −x, −y+1, −z+1; (vi) x, y, z+1; (vii) x−1, y, z+1; (viii) x+1, y, z; (ix) −x+1, −y+1, −z; (x) x, y+1, z; (xi) −x+1, −y, −z+1; (xii) x−1, y, z.

References

  • Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231–4236.
  • Choi, J.-H., Joshi, T. & Spiccia, L. (2011). Z. Anorg. Allg. Chem. 637, 1194–1198.
  • Choi, J.-H. & Lee, S. H. (2009). J. Mol. Struct. 932, 84–89.
  • Choi, J.-H. & Moon, D. (2014). J. Mol. Struct. 1059, 325–331.
  • Choi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004). J. Mol. Struct. 694, 39–44.
  • De Clercq, E. (2010). J. Med. Chem. 53, 1438–1450. [PubMed]
  • Derwahl, A., Wasgestian, F., House, D. A. & Edwards, R. A. (1999). Inorg. Chim. Acta, 285, 313–317.
  • Fabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681–1699. [PubMed]
  • Flores-Velez, L. M., Sosa-Rivadeneyra, J., Sosa-Torres, M. E., Rosales-Hoz, M. J. & Toscano, R. A. (1991). J. Chem. Soc. Dalton Trans. pp. 3243–3247.
  • Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [PubMed]
  • Kane-Maguire, A. A. P., Wallace, K. C. & Miller, D. B. (1985). Inorg. Chem. 24, 597–605.
  • Kukina, G. A., Porai-Koshits, M. A., Gerda, V. I., Shevchenko, Y. N. & Shchurkina, V. N. (1991). Sov. Phys. Crystallogr. 36, 739–740.
  • Moon, D. & Choi, J.-H. (2015). Spectrochim. Acta Part A, 138, 774–779. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Poon, C. K. & Pun, K. C. (1980). Inorg. Chem. 19, 568–569.
  • Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Ronconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633–1648.
  • Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408–6418. [PubMed]
  • Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. [PMC free article] [PubMed]
  • Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373. [PubMed]
  • Subhan, M. A., Choi, J. H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193–2197.
  • Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography