PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actae2this articlesearchopen accesssubmitActa Crystallographica Section E: Crystallographic CommunicationsActa Crystallographica Section E: Crystallographic Communications
 
Acta Crystallogr E Crystallogr Commun. 2016 May 1; 72(Pt 5): 616–619.
Published online 2016 April 5. doi:  10.1107/S2056989016005284
PMCID: PMC4908532

Crystal structure of 1,4-bis­(3-ammonio­prop­yl)piperazine-1,4-diium bis­[dichromate(VI)]

Abstract

The asymmetric unit of the organic–inorganic title salt, (C10H28N4)[Cr2O7]2, comprises one half of an 1,4-bis­(3-ammonio­prop­yl)piperazinediium cation (the other half being generated by the application of inversion symmetry) and a dichromate anion. The piperazine ring of the cation adopts a chair conformation, and the two CrO4 tetra­hedra of the anion are in an almost eclipsed conformation. In the crystal, the cations and anions form a layered arrangement parallel to (001). N—H(...)O hydrogen bonds between the cations and anions and additional C—H(...)O inter­actions lead to the formation of a three-dimensional network structure.

Keywords: crystal structure, dichromate anion, piperazinediium cation, mol­ecular salt, hydrogen bonding.

Chemical context  

Chromium is usually found in trivalent and hexa­valent oxidation states in soil, ground water and seawater (Cespón-Romero et al., 1996  ). Trivalent chromium is an essential element in mammals for maintaining efficient glucose, lipid and protein metabolism. On the other hand, hexa­valent chromium is toxic and recognized as a carcinogen to humans and wildlife. Hence the dichromate ion is environmentally important due to its high toxicity (Yusof & Malek, 2009  ) and its use in many industrial processes (Goyal et al., 2003  ). Recently, the reactions between hexa­ureachromium(III) and inorganic oxoanions (such as Cr2O7 2− or CrO4 2−) in aqueous solution have been investigated (Moon et al., 2015  ). Numerous piperazine derivatives have shown a wide spectrum of biological activities, viz. anti­bacterial (Foroumadi et al., 2007  ), anti­fungal (Upadhayaya et al., 2004  ), anti­cancer (Chen et al., 2006  ), anti­parasitic (Cunico et al., 2009  ), anti­histamine (Smits et al., 2008  ) or anti­depressive activities (Becker et al., 2006  ). Anti­diabetic, anti-inflammatory, anti­tubercular, anti­malarial, anti­convulsant, anti­pyretic, anti­tumor, anthelmintic and analgesic activities (Gan et al., 2009a  ,b  ; Willems & Ilzerman, 2010  ) have also been found to be caused by this versatile moiety. In view of these important properties, we have undertaken the synthesis and X-ray diffraction study of the title compound.

An external file that holds a picture, illustration, etc.
Object name is e-72-00616-scheme1.jpg

Structural commentary  

The mol­ecular entities of the title compound, consisting of a centrosymmetric 1,4-bis­(3-ammonio­prop­yl)piperazinediium cation and a dichromate anion, are shown in Fig. 1  . In the cation, the central piperazine ring (N1/C1/C2/N1i/C1i/C2i; for symmetry operators, see Fig. 1  ) is substituted at the two N atoms by two ammonio­propyl moieties. The piperazine ring adopts a chair conformation, as is evident from the puckering parameters: Q = 0.599 (2) Å, τ = 180.0° and [var phi] = 0°. Atoms N1 and N1i are on opposite sides of the C1/C1i/C2/C2i plane and are both displaced from it by 0.2446 (19) Å. The chair conformation of the cation in the title structure is very similar to those of the same cation in the crystal structures of the 2-hy­droxy­benzoate (Cukrowski et al., 2012  ), the nitrate (Junk & Smith, 2005  ) and the tetra­hydrogenpenta­borate (Jiang et al., 2009  ) salts, despite the differences in the size and shape of the anions in the various structures. The tetra­hedral CrO4 groups in the anion of the title structure are fused together by a common O atom (O8) and are in an almost eclipsed conformation (Brandon & Brown, 1968  ). The Cr—O bond lengths follow the characteristic distribution for dichromate anions, with two longer bridging Cr—O bonds of 1.7676 (16) and 1.7746 (15) Å and six shorter terminal Cr—O bonds [range 1.5909 (19)–1.6185 (15) Å]. The Cr1—O8—Cr2 bridging angle in the complex anion is 127.48 (10)°. The tetra­hedral O—Cr—O bond angles [range 106.52 (8) to 112.85 (12)°] indicate slight angular distortions.

Figure 1
The entities of the organic–inorganic title salt. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) −x + 2, −y, −z + 1.]

Supra­molecular features  

The organic cations and inorganic anions are each arranged in rows parallel to [100] and alternate with each other along [010], forming a layered arrangement parallel to (001). N—H(...)O hydrogen bonds (Table 1  ) between the cations, involving both primary and tertiary ammonium groups, and the anions lead to a three-dimensional network structure (Figs. 2  and 3  ). Additional C—H(...)O inter­actions consolidate this arrangement.

Figure 2
The packing of the mol­ecular entities in the crystal structure of the title salt.
Figure 3
A part of the crystal structure of the title salt in a view along [100] showing N—H(...)O hydrogen-bonding inter­actions as dashed lines. C—H(...)O inter­actions are omitted for clarity.
Table 1
Hydrogen-bond geometry (Å, °)

Synthesis and crystallization  

Potassium dichromate and 1,4-bis­(3-amino­prop­yl)piperazine (PDBP) were mixed in a molar ratio of 2:1 in water. Potassium dichromate was first dissolved in Millipore water of 18.2 MΩ·cm resistivity. Then the amount of PDBP was slowly added to the solution together with a few drops of concentrated hydro­chloric acid and the mixture stirred for 18 h. The solution was then filtered twice with Wattmann filter paper and poured into petri dishes to evaporate at room temperature for several days. Recrystallization from water improved the quality of the material and increased the size of the crystals (maximum crystal size 5×3×2 mm3 after 35 d). A specimen was cleaved for the present structure determination.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2  . All hydrogen atoms were placed geometrically and refined using a riding model: N—H = 0.89 Å for the primary ammonium group with U iso(H) = 1.5U eq(N); N—H = 0.98 Å for the tertiary ammonium group with U iso(H) = 1.2U eq(N); C—H = 0.97 Å with U iso(H) = 1.2U eq(C).

Table 2
Experimental details

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016005284/wm5281sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016005284/wm5281Isup2.hkl

CCDC reference: 1471068

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the SAIF, IIT, Madras, India, for the data collection.

supplementary crystallographic information

Crystal data

(C10H28N4)[Cr2O7]2Z = 1
Mr = 636.36F(000) = 324
Triclinic, P1Dx = 1.950 Mg m3
a = 8.5361 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.6272 (3) ÅCell parameters from 9982 reflections
c = 8.8576 (3) Åθ = 2.4–39.1°
α = 77.761 (1)°µ = 2.03 mm1
β = 72.307 (1)°T = 293 K
γ = 60.985 (1)°Needle, brown
V = 541.81 (3) Å30.35 × 0.30 × 0.25 mm

Data collection

Bruker Kappa APEXII CCD diffractometer1913 independent reflections
Radiation source: fine-focus sealed tube1835 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω and [var phi] scanθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2004)h = −10→10
Tmin = 0.528, Tmax = 0.649k = −10→10
10263 measured reflectionsl = −10→10

Refinement

Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.068w = 1/[σ2(Fo2) + (0.0379P)2 + 0.4739P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1913 reflectionsΔρmax = 0.44 e Å3
145 parametersΔρmin = −0.45 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.9278 (3)0.1703 (3)0.4169 (2)0.0217 (4)
H1A0.95480.23710.47210.026*
H1B0.86790.24980.33440.026*
C20.8955 (3)−0.0195 (3)0.6574 (2)0.0209 (4)
H2A0.8158−0.06610.73190.025*
H2B0.92170.04540.71540.025*
C30.6197 (3)0.2538 (3)0.5974 (3)0.0247 (4)
H3A0.57100.33440.51010.030*
H3B0.63910.31910.66080.030*
C40.4805 (3)0.1911 (3)0.6986 (2)0.0218 (4)
H4A0.51940.12520.79460.026*
H4B0.47230.11270.64070.026*
C50.2943 (3)0.3494 (3)0.7415 (3)0.0259 (4)
H5A0.30460.43150.79310.031*
H5B0.25220.41090.64570.031*
N20.1592 (2)0.2910 (2)0.8492 (2)0.0261 (4)
H6A0.05010.38520.87360.039*
H6B0.14880.21680.80120.039*
H6C0.19730.23580.93760.039*
N10.8006 (2)0.1028 (2)0.53184 (19)0.0183 (3)
H10.77720.03380.47420.022*
O20.1839 (2)0.3536 (2)0.14426 (19)0.0359 (4)
O30.1272 (2)0.5696 (2)0.3451 (2)0.0402 (4)
O40.2800 (2)0.2224 (2)0.41686 (19)0.0359 (4)
O50.6705 (3)0.1105 (3)−0.0133 (2)0.0612 (6)
O60.8440 (3)0.2646 (3)0.0538 (3)0.0564 (6)
O70.7517 (2)0.0359 (2)0.26223 (19)0.0325 (4)
O80.4835 (2)0.3730 (2)0.1987 (2)0.0370 (4)
Cr10.26337 (4)0.37840 (4)0.27693 (4)0.02227 (12)
Cr20.69282 (5)0.19141 (5)0.11987 (4)0.02748 (13)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0192 (10)0.0226 (9)0.0222 (10)−0.0120 (8)−0.0008 (8)0.0007 (8)
C20.0202 (10)0.0260 (10)0.0166 (9)−0.0124 (8)−0.0013 (7)−0.0014 (8)
C30.0179 (10)0.0213 (10)0.0303 (11)−0.0073 (8)0.0011 (8)−0.0071 (8)
C40.0157 (9)0.0230 (10)0.0246 (10)−0.0080 (8)−0.0029 (8)−0.0026 (8)
C50.0200 (10)0.0246 (10)0.0281 (11)−0.0088 (8)0.0008 (8)−0.0051 (8)
N20.0163 (8)0.0313 (9)0.0275 (9)−0.0091 (7)−0.0014 (7)−0.0056 (7)
N10.0155 (8)0.0201 (8)0.0190 (8)−0.0087 (7)−0.0006 (6)−0.0042 (6)
O20.0460 (10)0.0430 (9)0.0291 (8)−0.0252 (8)−0.0145 (7)−0.0021 (7)
O30.0322 (9)0.0346 (9)0.0514 (10)−0.0121 (7)−0.0011 (8)−0.0190 (8)
O40.0387 (9)0.0418 (9)0.0313 (8)−0.0217 (8)−0.0124 (7)0.0042 (7)
O50.0591 (13)0.0843 (15)0.0348 (10)−0.0178 (12)−0.0145 (9)−0.0260 (10)
O60.0323 (10)0.0645 (13)0.0619 (13)−0.0286 (9)0.0011 (9)0.0150 (10)
O70.0384 (9)0.0356 (9)0.0321 (8)−0.0221 (7)−0.0120 (7)−0.0006 (7)
O80.0250 (8)0.0364 (9)0.0484 (10)−0.0163 (7)0.0005 (7)−0.0085 (7)
Cr10.02026 (19)0.0254 (2)0.02321 (19)−0.01134 (15)−0.00346 (13)−0.00582 (13)
Cr20.02130 (19)0.0382 (2)0.0210 (2)−0.01414 (16)−0.00041 (14)−0.00334 (15)

Geometric parameters (Å, º)

C1—N11.498 (2)C5—N21.478 (3)
C1—C2i1.502 (3)C5—H5A0.9700
C1—H1A0.9700C5—H5B0.9700
C1—H1B0.9700N2—H6A0.8900
C2—N11.493 (2)N2—H6B0.8900
C2—C1i1.502 (3)N2—H6C0.8900
C2—H2A0.9700N1—H10.9800
C2—H2B0.9700O2—Cr11.6185 (15)
C3—N11.498 (2)O3—Cr11.6035 (16)
C3—C41.509 (3)O4—Cr11.6070 (16)
C3—H3A0.9700O5—Cr21.5909 (19)
C3—H3B0.9700O6—Cr21.6068 (18)
C4—C51.511 (3)O7—Cr21.6299 (16)
C4—H4A0.9700O8—Cr21.7676 (16)
C4—H4B0.9700O8—Cr11.7746 (15)
N1—C1—C2i111.02 (16)C4—C5—H5B109.6
N1—C1—H1A109.4H5A—C5—H5B108.1
C2i—C1—H1A109.4C5—N2—H6A109.5
N1—C1—H1B109.4C5—N2—H6B109.5
C2i—C1—H1B109.4H6A—N2—H6B109.5
H1A—C1—H1B108.0C5—N2—H6C109.5
N1—C2—C1i110.02 (15)H6A—N2—H6C109.5
N1—C2—H2A109.7H6B—N2—H6C109.5
C1i—C2—H2A109.7C2—N1—C3113.18 (15)
N1—C2—H2B109.7C2—N1—C1108.55 (15)
C1i—C2—H2B109.7C3—N1—C1110.86 (15)
H2A—C2—H2B108.2C2—N1—H1108.0
N1—C3—C4112.22 (16)C3—N1—H1108.0
N1—C3—H3A109.2C1—N1—H1108.0
C4—C3—H3A109.2Cr2—O8—Cr1127.48 (10)
N1—C3—H3B109.2O3—Cr1—O4110.80 (9)
C4—C3—H3B109.2O3—Cr1—O2108.95 (9)
H3A—C3—H3B107.9O4—Cr1—O2109.39 (8)
C3—C4—C5109.66 (16)O3—Cr1—O8106.52 (8)
C3—C4—H4A109.7O4—Cr1—O8108.31 (8)
C5—C4—H4A109.7O2—Cr1—O8112.85 (9)
C3—C4—H4B109.7O5—Cr2—O6112.85 (12)
C5—C4—H4B109.7O5—Cr2—O7107.91 (11)
H4A—C4—H4B108.2O6—Cr2—O7109.68 (9)
N2—C5—C4110.30 (16)O5—Cr2—O8111.08 (10)
N2—C5—H5A109.6O6—Cr2—O8106.39 (10)
C4—C5—H5A109.6O7—Cr2—O8108.89 (8)
N2—C5—H5B109.6
N1—C3—C4—C5−171.94 (16)C2i—C1—N1—C3−176.16 (16)
C3—C4—C5—N2−176.35 (16)Cr2—O8—Cr1—O3175.26 (12)
C1i—C2—N1—C3178.15 (15)Cr2—O8—Cr1—O456.03 (15)
C1i—C2—N1—C1−58.3 (2)Cr2—O8—Cr1—O2−65.22 (15)
C4—C3—N1—C2−64.5 (2)Cr1—O8—Cr2—O552.36 (17)
C4—C3—N1—C1173.31 (16)Cr1—O8—Cr2—O6175.53 (13)
C2i—C1—N1—C258.9 (2)Cr1—O8—Cr2—O7−66.33 (14)

Symmetry code: (i) −x+2, −y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···AD—HH···AD···AD—H···A
C1—H1A···O3ii0.972.283.176 (3)152
C1—H1A···O4iii0.972.613.248 (3)123
C1—H1B···O60.972.533.353 (3)143
C2—H2A···O2iv0.972.493.298 (3)141
C2—H2A···O4iv0.972.593.061 (3)110
C2—H2B···O7i0.972.593.232 (2)124
C3—H3B···O3ii0.972.583.383 (3)140
C4—H4A···O5v0.972.383.208 (3)143
C4—H4B···O7iv0.972.643.309 (2)127
N2—H6A···O2vi0.892.183.040 (2)161
N2—H6B···O7iv0.892.052.854 (2)149
N2—H6C···O2v0.892.222.865 (2)129
N2—H6C···O5iv0.892.643.239 (3)125
N1—H1···O4iv0.982.433.113 (2)126
N1—H1···O70.981.952.763 (2)139

Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x+1, y, z; (iv) −x+1, −y, −z+1; (v) x, y, z+1; (vi) −x, −y+1, −z+1.

References

  • Becker, O. M., Dhanoa, D. S., Marantz, Y., Chen, D., Shacham, S., Cheruku, S., Heifetz, A., Mohanty, P., Fichman, M., Sharadendu, A., Nudelman, R., Kauffman, M. & Noiman, S. (2006). J. Med. Chem. 49, 3116–3135. [PubMed]
  • Brandon, J. K. & Brown, I. D. (1968). Can. J. Chem. 46, 933–941.
  • Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cespón-Romero, R. M., Yebra-Biurrun, M. C. & Bermejo-Barrera, M. P. (1996). Anal. Chim. Acta, 327, 37–45.
  • Chen, J. J., Lu, M., Jing, Y. K. & Dong, J. H. (2006). Bioorg. Med. Chem. 14, 6539–6547. [PubMed]
  • Cukrowski, I., Adeyinka, A. S. & Liles, D. C. (2012). Acta Cryst. E68, o2387. [PMC free article] [PubMed]
  • Cunico, W., Gomes, C. R. B., Moreth, M., Manhanini, D. P., Figueiredo, I. H., Penido, C., Henriques, M. G. M. O., Varotti, F. P. & Krettli, A. U. (2009). Eur. J. Med. Chem. 44, 1363–1368.
  • Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  • Foroumadi, A., Emami, S., Mansouri, S., Javidnia, A., Saeid-Adeli, N., Shirazi, F. H. & Shafiee, A. (2007). Eur. J. Med. Chem. 42, 985–992. [PubMed]
  • Gan, L. L., Cai, J. L. & Zhou, C. H. (2009a). Chin. Pharm. J. 44, 1361–1368.
  • Gan, L. L., Lu, Y. H. & Zhou, C. H. (2009b). Chin. J. Biochem. Pharm 30, 127–131.
  • Goyal, N., Jain, S. C. & Banerjee, U. C. (2003). Adv. Environ. Res. 7, 311–319.
  • Jiang, X., Liu, H.-X., Wu, S.-L. & Liang, Y.-X. (2009). Jiegou Huaxue (Chin. J. Struct. Chem.), 28, 723–729.
  • Junk, P. C. & Smith, M. K. (2005). C. R. Chim. 8, 189–198.
  • Moon, D., Tanaka, S., Akitsu, T. & Choi, J.-H. (2015). Acta Cryst. E71, 1336–1339.
  • Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. [PMC free article] [PubMed]
  • Smits, R. A., Lim, H. D., Hanzer, A., Zuiderveld, O. P., Guaita, E., Adami, M., Coruzzi, G., Leurs, R. & de Esch, I. J. P. (2008). J. Med. Chem. 51, 2457–2467. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Upadhayaya, R. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225–2238. [PubMed]
  • Willems, L. I. & Ilzerman, A. P. (2010). Med. Chem. Res 30, 778–817. [PubMed]
  • Yusof, A. M. & Malek, N. A. N. N. (2009). J. Hazard. Mater. 162, 1019–1024. [PubMed]

Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography