Search tips
Search criteria 


Logo of icmeSpringerOpen.comThis journalPublisherThis journalTOC AlertsSubmit onlineAims
Intensive Care Med Exp. 2015 December; 3(Suppl 1): A501.
Published online 2015 October 1. doi:  10.1186/2197-425X-3-S1-A501
PMCID: PMC4797866

An Innovative Technique For Extracorporeal Carbon Dioxide Removal Featuring An Electrodialysis Unit: An In-Vitro Experiment


Acidification of blood entering the membrane lung (ML) converts bicarbonate ions into dissolved gaseous CO2, increasing the pCO2 transmembrane gradient and thus the extracorporeal carbon dioxide removal (ECCO2R) [1]. Extracorporeal blood acidification has previously been achieved by infusion of lactic acid, which proved to be effective in rising ECCO2R but determined a mild increase of total CO2 production and induced a slight degree of metabolic acidosis [2], thus limiting the overall effectiveness of such treatment.


The aim of this study is to evaluate in-vitro the efficiency of an ECCO2R technique enhanced by an innovative acidification system featuring an electrodialysis unit, which does not require the infusion of any exogenous acid.


The circuit used for this experiment included a bloodcircuit, including a dialyzer, and a dialysiscircuit, a closed loop circuit featuring an electrodialysis (ED) cell and an adult polypropylene membrane lung (Quadrox-i, Maquet). An aqueous polyelectrolyte carbonated solution (CB 32, Novaselect, pH 7.33 ± 0.02, HCO3- 32 mmol/l) was used as a substitute for blood and flowed into the hemofilter at 250 ml/min. the ED unit is able to transfer electrolytes across a semipermeable membrane proportionally to the applied amperage. the ED cell was therefore used to increase chloride concentrations in the dialysate, thus reducing pH before the membrane lung without infusing of any exogenous compound. Five different amperages (0, 2, 4, 6 and 8 Amp) were tested. At the end of each step samples were withdrawn from blood and dialysiscircuit, and CO2 removal (VCO2) was measured.


The application of ED technique determined an increase in chloride concentration before the ML up to 7.1 ± 1 mEq/L (at 8 Amp) and a consequent reduction in pH from 7.48 ± 0.01 to 6.5 ± 0.04. This resulted in a significant raise of CO2 extraction, up to a VCO2 increase of 237% at 8 Amp, (see Figure Figure11).

Figure 1
Membrane lung carbon dioxide removal (VCO 2 ML) at increasing amperages. *: p < 0.001 vs 0 Amp, §: p < 0.001 vs 2 Amp, #: p < 0.001 vs 4 Amp, &: p < 0.001 vs 6 Amp


The tested prototype ECCO2R device, enhanced by an electrodialysis unit, proved to be effective in increasing carbon dioxide removal, proportionally to the applied amperage. Future experimental studies are required to evaluate in-vivo this innovative technique.


1. Zanella A, Mangili P, Redaelli S, Scaravilli V, Giani M, Ferlicca D, et al. Regional Blood Acidification Enhances Extracorporeal Carbon Dioxide Removal: a 48 Hours Animal Study. Anesthesiology. 2014;120(2):416–424. doi: 10.1097/ALN.0000000000000099. [PubMed] [Cross Ref]
2. Zanella A, Giani M, Redaelli S, Mangili P, Scaravilli V, Ormas V, et al. Infusion of 2.5 meq/min of lactic acid minimally increases CO2 production compared to an isocaloric glucose infusion in healthy anesthetized, mechanically ventilated pigs. Crit Care. 2013;17(6):R268. doi: 10.1186/cc13098. [PMC free article] [PubMed] [Cross Ref]

Articles from Intensive Care Medicine Experimental are provided here courtesy of Springer-Verlag