Search tips
Search criteria 


Logo of nihpaAbout Author manuscriptsSubmit a manuscriptHHS Public Access; Author Manuscript; Accepted for publication in peer reviewed journal;
Clin Cancer Res. Author manuscript; available in PMC 2017 March 15.
Published in final edited form as:
PMCID: PMC4794396

Bone Disease in Myeloma: The Claws of CRAB


A dynamic approach to use bisphosphonates according to biomarkers of bone metabolism is presented in the Z-MARK study by Raje and colleagues. This is a major step forward towards a rational approach to bisphosphonates usage.

Multiple myeloma (MM) is characterized by the proliferation of monoclonal plasma cells with attendant destruction of bone. The clinical consequences include osteoporosis, lytic bone lesions and bone destruction. Ultimately, this leads to pathologic fractures and vertebral compressions. The consequences of MM bone disease are devastating and include lifelong pain (such as with vertebral compression fractures), disability and serious decrements of patients’ quality and quantity of life. Randomized studies performed in a time of less effective MM therapies showed that addition of bisphosphonates to standard therapy prevented emergence of skeletal-related events (SRE) (1, 2). It was fortunate such studies were conducted prior to the advent of more effective anti-MM therapies since in the current era, while SRE after diagnosis are still important, the rate of new fractures is low (3). Hence, achieving clinical trial endpoints could have been more complicated, perhaps to the point of preventing such drugs from being approved if they were developed today. One recent trial, the MRC-IX, showed decreased skeletal events associated with zoledronate over clodronate, and improved survival irrespective of bone disease (4). Whether bisphosphonates have any anti-MM activity remains disputed.

In this issue, Raje and colleagues present a smarter and dynamic approach for bisphosphonate management (5). Current guidelines recommend the use of bisphosphonates for two years after which discontinuation or increasing interval between administrations is recommended (6-8). Original recommendations were general “blanket” failing to incorporate adjustments for degree of bone disease, response to therapy, use of bone metabolism biomarkers or any other biomarkers informing on the appropriateness of therapy. In short the recommendations are agnostic to the possibility that in selected cases bisphosphonates may not be needed as much, while in some cases they should be used for longer. The logic behind this principle is an anachronism and disregards modern opportunities for adaptation of therapies. Raje and colleagues challenge this by designing a clinical trial that questions whether monthly administration of bisphosphonates is needed in patients with evidence of normal bone metabolism; measured by the urine 115 N-telopeptide of type 1 collagen (uNTX). This is important as long-term administration of bisphosphonates has been associated with mandible osteonecrosis (ONJ) (9). ONJ is an avascular bone necrosis with superimposed infection secondary to decrease blood supply. It only happens in the lower mandible given the low ratio of cortical to spongiform bone, where alterations of bone formation favoring anabolism can lead to decrease blood supply and necrosis. After all, such ratio of cortical/spongiform bone is essential in a bone that is evolutionary designed for chewing, hunting and fighting. If Raje’s hypothesis is correct then bisphosphonates can be administered every 12 weeks not only diminishing inconvenience but also reducing the risk of ONJ. The study concludes that based on these surrogate markers, less frequent administration of zoledronic acid is associated with a low rate of skeletal related events. It should be noted that the study is quite limited in that it is composed of only a small sample size and therefore the rate of SREs is low. Accordingly the power to detect differences is limited. However, a formal statistical analysis for such a dynamic approach is difficult and extrapolation and comparison to other series is appropriate.

MM is the human cancer with best biomarkers. The presence of monoclonal proteins and the various tests available for their testing has no parallel in other cancers. The monoclonal proteins can be detected by simple serum and urine assays, are quantifiable and can be used for diagnosis as well as monitoring for response and relapse. They are not only disease specific, but patient specific and even clone specific (in the case of biclonal gammopathies). One such marker, the serum free light chain assay, can accurately predict the risk of renal disease in MM patients; in cases without a level of at least 100 mg/dl the risk of renal damage is low (10). Unfortunately no such markers exist yet to ascertain the risk of bone disease (8). Such an assay would be of major help in managing benign disease and in monitoring after treatment. Various bone metabolism markers have been used but without much success. In this study Raje et al propose the use of uNTX as one of the most elegant examples of using a novel biomarker to measure need for bone protecting agents. Other biomarkers for bone metabolism are being developed. Our group is developing an assay of naturally occurring inorganic calcium isotopes as a way to measure in real time whether bone is being formed or destroyed (11). Measuring the various isotope concentrations in blood allows discrimination of patients with MM versus monoclonal gammopathy of undetermined significance (MGUS) and correlates with bone disease. This is based on the principle that in bone formation osteoblasts have a slight preference for lighter isotopic versions of calcium. Further development is underway.

What to do clinically then? Bisphosphonates will no longer be developed by the private sector given two generic alternatives exist, pamidronate and zoledronate. Accordingly it is unlikely, unless cooperative groups prioritize these trials, that randomized phase 3 data will exist to guide better the use of this class of drugs. Thus in patients with controlled MM (i.e. those in a stringent complete response) or with no overt bone disease, it is unlikely that much benefit will come from prolonged administration of bisphosphonates. In patients with limited bone disease it seems likely that effective anti-MM therapy with bisphosphonates administered every 12 weeks will be sufficient for most, based on the data of Raje et al. In cases with extreme bone destruction, administration based on the current recommendations seems appropriate. What role will bone biomarkers play is still to be defined. Larger observations studies that incorporate such biomarkers, and some of the aforementioned novel ones are needed to have a better estimate of the likelihood of SRE; considering baseline bone status, effectiveness of disease control and levels of such biomarkers. Extrapolation of this information will likely lead to a better risk adapted approach use of bisphosphonates.

Lastly, in myeloma four events are the predominant determinants of progression for the benign state to the cancer form of the disease (other new criteria recently added) (12). These are hypercalcemia, renal insufficiency, anemia and the presence of bone disease; best remembered by the mnemonic of CRAB (Figure 1). While anemia and hypercalcemia can be serious, they are largely reversible and without major long-term consequences (the CRAB legs). In stark contrast, development of renal failure or bone complications can seriously hamper patients’ quality of life and also limits patients’ life expectancy. Those are the most dangerous complications of myeloma; the CRAB claws! Raje’s study hits the “Mark” suggesting smarter ways of managing bisphosphonates.

Figure 1
The CRAB claws: renal and bone disease


Grant Support: R. Fonseca is a Clinical Investigator of the Damon Runyon Cancer Research Foundation. This work is supported by the NCI P50CA186781 SPORE grant (to R. Fonseca) and grants from the Predolin Foundation, the Mayo Clinic Cancer Center, and the Mayo Foundation (to R. Fonseca).


Disclosure: R. Fonseca reports receiving royalties, through his institution, from Abbott Diagnostics for intellectual property on FISH probes used to prognosticate multiple myeloma based on genetic categorization of the disease, which is owned by Mayo Clinic and licensed to Abbott Diagnostics; is a consultant/advisory board member for Amgen, Applied Biosciences, Bayer, Bristol-Myers Squibb, Celgene, Janssen, Millennium Pharmaceuticals, Novartis, and Sanofi-Aventis; and is listed a co-inventor on a pending patent application, which is owned by Arizona State University, for the use of calcium isotopes as biomarkers of bone metabolism.

Potential Conflicts of Interest: No potential conflicts of interest were disclosed by the other author.

Contributor Information

Rafael Fonseca, Getz Family Professor of Cancer, Mayo Clinic in Arizona, Scottsdale, AZ.

Tania Jain, Mayo Clinic in Arizona, Scottsdale, AZ.


1. Berenson JR, Lichtenstein A, Porter L, Dimopoulos MA, Bordoni R, George S, et al. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. Myeloma Aredia Study Group. N Engl J Med. 1996;334:488–93. [PubMed]
2. Berenson JR, Rosen LS, Howell A, Porter L, Coleman RE, Morley W, et al. Zoledronic acid reduces skeletal-related events in patients with osteolytic metastases. Cancer. 2001;91:1191–200. Erratum in: Cancer 2001 May 15;91:1956. [PubMed]
3. Terpos E, Kanellias N, Moulopoulos L, Christoulas D, Koureas A, Bagratuni T, et al. Skeletal-related events in patients with multiple myeloma in the era of novel agents: low incidence of pathological fractures after treatment [abstract]. Proceedings of the 55th ASH Annual Meeting and Exposition; 2013 Dec 7-10; New Orleans, LA. Washington DC: American Society of Hematology; Abstract nr 3090.
4. Morgan GJ, Davies FE, Gregory WM, Szubert AJ, Bell SE, Drayson MT, et al. National Cancer Research Institute Haematological Oncology Clinical Studies Group. Effects of induction and maintenance plus long-term bisphosphonates on bone disease in patients with multiple myeloma: the Medical Research Council Myeloma IX Trial. Blood. 2012;119:5374–83. [PubMed]
5. Raje N, Vescio R, Montgomery CW, Badros A, Munshi N, Orlowski R, et al. Bone marker–directed dosing of zoledronic acid for the prevention of skeletal complications in patients with multiple myeloma: results of the Z-MARK study. Clin Cancer Res. 2015 Dec 7; Epub ahead of print. [PubMed]
6. Kyle RA, Yee GC, Somerfield MR, Flynn PJ, Halabi S, Jagannath S, et al. American Society of Clinical Oncology. American Society of Clinical Oncology 2007 clinical practice guideline update on the role of bisphosphonates in multiple myeloma. J Clin Oncol. 2007;25:2464–72. [PubMed]
7. Lacy MQ, Dispenzieri A, Gertz MA, Greipp PR, Gollbach KL, Hayman SR, et al. Mayo clinic consensus statement for the use of bisphosphonates in multiple myeloma. Mayo Clin Proc. 2006;81:1047–53. [PubMed]
8. Terpos E, Morgan G, Dimopoulos MA, Drake MT, Lentzsch S, Raje N, et al. International Myeloma Working Group recommendations for the treatment of multiple myeloma-related bone disease. J Clin Oncol. 2013;31:2347–57. [PMC free article] [PubMed]
9. Badros A, Weikel D, Salama A, Goloubeva O, Schneider A, Rapoport A, et al. Osteonecrosis of the jaw in multiple myeloma patients: clinical features and risk factors. J Clin Oncol. 2006;24:945–52. [PubMed]
10. Hutchison CA, Cockwell P, Stringer S, Bradwell A, Cook M, Gertz MA, et al. Early reduction of serum-free light chains associates with renal recovery in myeloma kidney. J Am Soc Nephrol. 2011;22:1129–36. [PubMed]
11. Gordon GW, Monge J, Channon MB, Wu Q, Skulan JL, Anbar AD, et al. Predicting multiple myeloma disease activity by analyzing natural calcium isotopic composition. Leukemia. 2014;28:2112–15. [PubMed]
12. Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos MV, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15:e538–48. [PubMed]