PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jcinvestThe Journal of Clinical InvestigationCurrent IssueArchiveSubscriptionAbout the Journal
 
J Clin Invest. 1995 March; 95(3): 1169–1173.
PMCID: PMC441454

Missense mutation in exon 7 of the common gamma chain gene causes a moderate form of X-linked combined immunodeficiency.

Abstract

Clinical and immunologic features of a recently recognized X-linked combined immunodeficiency disease (XCID) suggested that XCID and X-linked severe combined immunodeficiency (XSCID) might arise from different genetic defects. The recent discovery of mutations in the common gamma chain (gamma c) gene, a constituent of several cytokine receptors, in XSCID provided an opportunity to test directly whether a previously unrecognized mutation in this same gene was responsible for XCID. The status of X chromosome inactivation in blood leukocytes from obligate carriers of XCID was determined from the polymorphic, short tandem repeats (CAG), in the androgen receptor gene, which also contains a methylation-sensitive HpaII site. As in XSCID, X-chromosome inactivation in obligate carriers of XCID was nonrandom in T and B lymphocytes. In addition, X chromosome inactivation in PMNs was variable. Findings from this analysis prompted sequencing of the gamma c gene in this pedigree. A missense mutation in the region coding for the cytoplasmic portion of the gamma c gene was found in three affected males but not in a normal brother. Therefore, this point mutation in the gamma c gene leads to a less severe degree of deficiency in cellular and humoral immunity than that seen in XSCID.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.2M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Brooks EG, Schmalstieg FC, Wirt DP, Rosenblatt HM, Adkins LT, Lookingbill DP, Rudloff HE, Rakusan TA, Goldman AS. A novel X-linked combined immunodeficiency disease. J Clin Invest. 1990 Nov;86(5):1623–1631. [PMC free article] [PubMed]
  • Schmalstieg FC, Wirt DP, Adkins LT, Brooks EG, Stansberry SD, Swischuk LE, Goldman AS. Postnatal development of T lymphocytes in a novel X-linked immunodeficiency disease. Clin Immunol Immunopathol. 1992 Jul;64(1):71–77. [PubMed]
  • Goldman AS, Palkowetz KH, Rudloff HE, Brooks EG, Schmalstieg FC. Repertoire of V alpha and V beta regions of T cell antigen receptors on CD4+ and CD8+ peripheral blood T cells in a novel X-linked combined immunodeficiency disease. Eur J Immunol. 1992 Apr;22(4):1103–1106. [PubMed]
  • La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature. 1991 Jul 4;352(6330):77–79. [PubMed]
  • Allen RC, Zoghbi HY, Moseley AB, Rosenblatt HM, Belmont JW. Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. Am J Hum Genet. 1992 Dec;51(6):1229–1239. [PubMed]
  • Conley ME, Lavoie A, Briggs C, Brown P, Guerra C, Puck JM. Nonrandom X chromosome inactivation in B cells from carriers of X chromosome-linked severe combined immunodeficiency. Proc Natl Acad Sci U S A. 1988 May;85(9):3090–3094. [PubMed]
  • Puck JM, Nussbaum RL, Conley ME. Carrier detection in X-linked severe combined immunodeficiency based on patterns of X chromosome inactivation. J Clin Invest. 1987 May;79(5):1395–1400. [PMC free article] [PubMed]
  • Puck JM, Stewart CC, Nussbaum RL. Maximum-likelihood analysis of human T-cell X chromosome inactivation patterns: normal women versus carriers of X-linked severe combined immunodeficiency. Am J Hum Genet. 1992 Apr;50(4):742–748. [PubMed]
  • Noguchi M, Yi H, Rosenblatt HM, Filipovich AH, Adelstein S, Modi WS, McBride OW, Leonard WJ. Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell. 1993 Apr 9;73(1):147–157. [PubMed]
  • Noguchi M, Adelstein S, Cao X, Leonard WJ. Characterization of the human interleukin-2 receptor gamma chain gene. J Biol Chem. 1993 Jun 25;268(18):13601–13608. [PubMed]
  • Weber JL, Kwitek AE, May PE, Polymeropoulos MH, Ledbetter S. Dinucleotide repeat polymorphisms at the DXS453, DXS454 and DXS458 loci. Nucleic Acids Res. 1990 Jul 11;18(13):4037–4037. [PMC free article] [PubMed]
  • Edwards A, Hammond HA, Jin L, Caskey CT, Chakraborty R. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics. 1992 Feb;12(2):241–253. [PubMed]
  • Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed]
  • Manyonda IT, Soltys AJ, Hay FC. A critical evaluation of the magnetic cell sorter and its use in the positive and negative selection of CD45RO+ cells. J Immunol Methods. 1992 Apr 27;149(1):1–10. [PubMed]
  • Straub C, Zubler RH. Immortalization of EBV-infected B cells is not influenced by exogenous signals acting on B cell proliferation. Effects of mutant EL-4 thymoma cells and transforming growth factor-beta. J Immunol. 1989 Jan 1;142(1):87–93. [PubMed]
  • Vogelstein B, Fearon ER, Hamilton SR, Preisinger AC, Willard HF, Michelson AM, Riggs AD, Orkin SH. Clonal analysis using recombinant DNA probes from the X-chromosome. Cancer Res. 1987 Sep 15;47(18):4806–4813. [PubMed]
  • Huang TH, Cottingham RW, Jr, Ledbetter DH, Zoghbi HY. Genetic mapping of four dinucleotide repeat loci, DXS453, DXS458, DXS454, and DXS424, on the X chromosome using multiplex polymerase chain reaction. Genomics. 1992 Jun;13(2):375–380. [PubMed]
  • Takeshita T, Asao H, Ohtani K, Ishii N, Kumaki S, Tanaka N, Munakata H, Nakamura M, Sugamura K. Cloning of the gamma chain of the human IL-2 receptor. Science. 1992 Jul 17;257(5068):379–382. [PubMed]
  • Russell SM, Johnston JA, Noguchi M, Kawamura M, Bacon CM, Friedmann M, Berg M, McVicar DW, Witthuhn BA, Silvennoinen O, et al. Interaction of IL-2R beta and gamma c chains with Jak1 and Jak3: implications for XSCID and XCID. Science. 1994 Nov 11;266(5187):1042–1045. [PubMed]
  • Cooper MD, Lawton AR. Circulating B-cells in patients with immunodeficiency. Am J Pathol. 1972 Dec;69(3):513–528. [PubMed]
  • Vetrie D, Vorechovský I, Sideras P, Holland J, Davies A, Flinter F, Hammarström L, Kinnon C, Levinsky R, Bobrow M, et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature. 1993 Jan 21;361(6409):226–233. [PubMed]
  • Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I, Sparkes RS, Kubagawa H, Mohandas T, Quan S, et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell. 1993 Jan 29;72(2):279–290. [PubMed]
  • Conley ME, Puck JM. Definition of the gene loci in X-linked immunodeficiencies. Immunol Invest. 1988 Jul;17(5):425–463. [PubMed]
  • de Saint-Basile G, Le Deist F, Caniglia M, Lebranchu Y, Griscelli C, Fischer A. Genetic study of a new X-linked recessive immunodeficiency syndrome. J Clin Invest. 1992 Mar;89(3):861–866. [PMC free article] [PubMed]
  • Gale RE, Wheadon H, Linch DC. X-chromosome inactivation patterns using HPRT and PGK polymorphisms in haematologically normal and post-chemotherapy females. Br J Haematol. 1991 Oct;79(2):193–197. [PubMed]
  • Thomas JD, Sideras P, Smith CI, Vorechovský I, Chapman V, Paul WE. Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science. 1993 Jul 16;261(5119):355–358. [PubMed]
  • Rawlings DJ, Saffran DC, Tsukada S, Largaespada DA, Grimaldi JC, Cohen L, Mohr RN, Bazan JF, Howard M, Copeland NG, et al. Mutation of unique region of Bruton's tyrosine kinase in immunodeficient XID mice. Science. 1993 Jul 16;261(5119):358–361. [PubMed]
  • Cao X, Kozak CA, Liu YJ, Noguchi M, O'Connell E, Leonard WJ. Characterization of cDNAs encoding the murine interleukin 2 receptor (IL-2R) gamma chain: chromosomal mapping and tissue specificity of IL-2R gamma chain expression. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8464–8468. [PubMed]
  • Kondo M, Takeshita T, Ishii N, Nakamura M, Watanabe S, Arai K, Sugamura K. Sharing of the interleukin-2 (IL-2) receptor gamma chain between receptors for IL-2 and IL-4. Science. 1993 Dec 17;262(5141):1874–1877. [PubMed]
  • Noguchi M, Nakamura Y, Russell SM, Ziegler SF, Tsang M, Cao X, Leonard WJ. Interleukin-2 receptor gamma chain: a functional component of the interleukin-7 receptor. Science. 1993 Dec 17;262(5141):1877–1880. [PubMed]
  • Kondo M, Takeshita T, Higuchi M, Nakamura M, Sudo T, Nishikawa S, Sugamura K. Functional participation of the IL-2 receptor gamma chain in IL-7 receptor complexes. Science. 1994 Mar 11;263(5152):1453–1454. [PubMed]
  • Giri JG, Ahdieh M, Eisenman J, Shanebeck K, Grabstein K, Kumaki S, Namen A, Park LS, Cosman D, Anderson D. Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J. 1994 Jun 15;13(12):2822–2830. [PubMed]

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation